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Abstract: The proven relationship between soil moisture and seismic ground response highlights
the need for a tool to track the Earth’s surface soil moisture before and after seismic events. This
paper introduces the application of Soil Moisture Active Passive (SMAP) satellite data for global
soil moisture measurement during earthquakes and consequent events. An approach is presented
to study areas that experienced high level of increase in soil moisture during eleven earthquakes.
Two ancillary datasets, Global Precipitation Measurement (GPM) and Global Land Data Assimilation
(GLDAS), were used to isolate areas that had an earthquake-induced increase in soil moisture from
those that were due to hydrological processes. SMAP-based soil moisture changes were synthesized
with seismic records developed by the United States Geological Survey (USGS), mapped ground
failures in reconnaissance reports, and surface changes marked by Synthetic Aperture Radar (SAR)-
based damage proxy maps. In the majority of the target earthquakes, including Croatia 2020, Greece
2020, Indonesia 2018, Taiwan 2016, Ecuador 2016, and Nepal 2015, a relationship between the SMAP
soil moisture estimates and seismic events was evident. For these events, the earthquake-induced
soil moisture response occurred in liquefaction-prone seismic zones. The New Zealand 2016 event
was the only study region for which there was a clear inconsistency between ∆SMSMAP and the
seismic records. The promising relationship between soil moisture changes and ground deformations
indicates that SMAP would be a useful data resource for geotechnical earthquake engineering
applications and reconnaissance efforts.

Keywords: SMAP; remote sensing; soil moisture; seismic ground response; satellite data;
earthquake reconnaissance

1. Introduction

Soil moisture impacts site characteristics including soil strength, stiffness, and damp-
ing due to the presence of inter-particle suction stresses [1–4]. Changes in the dynamic soil
properties influence the seismic response of geotechnical systems such as site response,
soil–structure interaction, and ground failure [5–11]. In addition, seismic events can cause
an increase in soil moisture content, resulting in ground deformations and subsequent dam-
age to infrastructure in extreme conditions [12–15]. This relationship between soil moisture
and seismic response underscores the importance of studying the pre- and post-event soil
moisture content in earthquake-hit regions. For example, the impact of the initial soil degree
of water saturation on seismic compression and the consequent changes in water content
have received significant attention in recent years [16–20]. These include the impacts of
induced strain levels, soil volumetric deformation characteristics, fines content, and state
of saturation. Partially saturated sands subjected to seismic compression experience an
increase in degree of saturation [20].

Remotely sensed and in situ soil-moisture-measurement approaches have been widely
used over the past decades [21–23]. Due to challenges in sensor installation, data collection,
and maintenance [21], there are a limited number of large-scale in situ soil-moisture-
monitoring networks, and these measurements are unlikely to be available to provide the
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required and immediate estimation of soil moisture before and after a seismic event. Within
this context, well-calibrated remote sensing methods can provide effective alternative
solutions to understand and evaluate the interaction between soil moisture and earthquake
response at global scales.

Remote sensing has been used in recent decades to study geohazards such as earth-
quakes, volcanic eruptions, floods, and landslides [24–29]. Natural hazards assessments
have benefited from remote sensing data for post-event surface damage detection [30–33],
geodetic observations of volcanoes using GPS and InSAR [34], passive microwave measure-
ments of precipitation that are applicable to improve flood forecasting [35,36], and remotely
sensed soil moisture products used for analyzing landslide events [24,37–39].

For earthquake engineering, remote sensing techniques have been utilized to appraise
different aspects of an event such as liquefaction, landslides, ground displacement, and
infrastructure damage assessment [40–43]. Optical imagery has been widely used to
identify ground failures [31,42] as well as structural damage [44,45]. However, optical
imagery is limited by atmospheric conditions and may not have the temporal resolution
and availability for pre- and post-earthquake data. Synthetic aperture radar (SAR) has
also provided a tool to measure ground movements [46], detect surface changes [40], and
identify structural damage [47] by measuring the reflections from its transmitted signals
as well as advanced data-processing techniques [42]. Table 1 presents a summary of the
satellite data used to develop remote sensing methods for the assessment of earthquake
events, and their applications and challenges.

Table 1. Satellite data used in earthquake engineering.

Technique Satellite Challenge Application Literature

Optical satellite
imagery

GeoEye
IKONOS
Landsat

Quickbird
Worldview

• Temporal resolution and availability of
pre- and post-earthquake data

• Limitations caused by atmospheric
conditions (e.g., cloud cover and
sun illumination)

• Limited aerial coverage

Identification of
ground failures [31,48–50]

Pixel-based or object-based
identification of

structural damage
[44,45]

Synthetic
aperture radar

ALOS
CSK

COSMO
ENVISAT
Sentinel

• Temporal resolution and availability of
pre- and post-earthquake data

• Significant data manipulation and
processing

• Limited aerial coverage

Measurement of ground
movements and slip

across faults
[46,51,52]

Detection of surface change [40,53]

Pixel-based identification of
structural damage [47,54,55]

Due to the limited availability of in situ soil saturation measurements at large spatial
scales, which are essential for a liquefaction or landslide probability assessment, parameters
such as water table depth, precipitation measurements, and topographic conditions have
been used as proxies for soil saturation to model and investigate geotechnical engineering
events such as landslide and liquefaction [12,56]. Satellite image processing using thermal,
near-infrared and shortwave infrared indicators as proxies for soil wetness have success-
fully mapped highly liquefied regions after earthquakes [25,31]. However, to date, direct
observations of space-borne soil moisture data have not been used for seismic response
analysis and geotechnical applications, which can be an alternative to the current proxies
for soil saturation.

The Soil Moisture Active Passive [57] Earth observing satellite mission was launched
in 2015 by National Aeronautics and Space Administration. SMAP detects soil moisture
content in approximately the top 5 cm of the soil layer [58]. With near-global coverage,
SMAP’s L-band radiometer measures the brightness temperature of Earth’s surface and
estimates land surface conditions, such as vegetation water content and soil roughness,
and then it derives the land surface soil moisture [59]. SMAP revisits each region around
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the globe every 2–3 days (or sooner) to capture surface soil moisture conditions. Using the
Backus–Gilbert optimal interpolation, SMAP retrieves the soil moisture at a resolution of
9 km, and has a finer spatial resolution as well as a higher accuracy than its predecessors,
such as the Tropical Rainfall Measuring Mission (TRMM) and Advanced Microwave
Scanning Radiometer 2 (AMSR-2) [60]. SMAP microwave observations have been widely
validated since the relevant datasets were released in April 2015 [61,62]. SMAP offers rich
scientific datasets that have been used in a range of applications; for example, weather
and climate predictions [63], agricultural and food productivity [64], and natural hazard
monitoring, such as floods and landslides [65,66]. However, this product has not been
employed by the earthquake engineering community to advance the state of the knowledge
and practice. Considering the role of soil moisture content in seismic ground response,
the SMAP observations may help the community understand the interaction between
soil moisture and earthquakes and evaluate how pre- and post-event soil moisture affects
different aspects of earthquake-induced soil response.

While earthquake-induced soil moisture responses are well-understood, the soil mois-
ture also changes due to precipitation, infiltration, and evapotranspiration. Thus, observed
soil moisture changes must account for these responses in order to determine the net
response due to an earthquake. Ancillary datasets are needed at the global scale to isolate
earthquake-induced soil moisture changes. The Global Precipitation Measurement (GPM)
datasets [67] and Global Land Data Assimilation (GLDAS) product [68] are two products
available for this purpose. The GPM monitored precipitation, which is a pivotal factor
in soil moisture content, throughout the study period (time interval between pre- and
post-event SMAP data). The GLDAS model data are generated from a climatologically
consistent atmospheric forcing dataset and soil moisture variations are simulated based on
satellite and ground-based observational meteorological data products.

The main objective of this paper is to evaluate the potential application of SMAP to
quantify surface soil moisture before and after earthquakes. The paper is organized as
follows: First, the target earthquakes and the data used in this study are identified. Then,
the soil moisture and rainfall data products and methods are described. The findings from
the integration of soil moisture variations with seismic data are presented. Finally, the
conclusions and some recommendations for future investigations are given.

2. Materials and Methods
2.1. Study Regions

To evaluate seismic-induced soil moisture variations, a set of recent earthquakes
coinciding with SMAP’s lifespan from April 2015 to the present that are rich in recorded
seismic data were identified. This study focused on seismic areas that experienced moderate
to high-intensity earthquakes during the SMAP observation period. Three main criteria
were considered for event selection: (1) target earthquakes had a moment magnitude greater
than 6.0; (2) events are well-documented with post-event field investigations, seismic
records, and site characterizations maps; and (3) high-quality SMAP data are available;
for example, SMAP cannot measure soil moisture values when a region is covered by
snow and SMAP data are not reliable if radio-frequency interference (RFI) corrupts the
data in regions such as Japan [69]. The geographic location, the mainshock date, and the
magnitude of the eleven target earthquakes are depicted in Figure 1. The wide temporal
and spatial distribution of target earthquakes ensures that the observations from this study
can be extended to other seismic events.

For each earthquake, a focus zone was determined that contains all regions having a
Modified Mercalli Intensity (MMI) of 5 or greater, based on data reported by the United
States Geological Survey [70]; an example for the Petrinja, Croatia 2020 earthquake is
shown in Figure 2 (focus zones for other study regions are shown in Figure A1 of the
electronic supplement).
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Figure 2. Focus zone of Petrinja, Croatia 29 December 2020 earthquake.

2.2. Data and Processing
2.2.1. Seismic Records

Seismic activity data, reconnaissance reports, and remotely sensed damage assess-
ments from multiple resources were collected for the target events in order to qualitatively
assess the possible relations between the soil moisture content dynamics of the shallow
surface and the geotechnical characteristics of the earthquakes. The USGS Earthquake
Hazard Program Data Center provides comprehensive near-real-time seismic data. For
this study, peak ground acceleration (PGA) and MMI contours and earthquake-induced
ground failure (landslide and liquefaction) estimates, which are publicly available at the
USGS [70], were collected and classified for each study region and focus zone.
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For all the target earthquakes in this paper except the Petrinja, Croatia 2020 earthquake,
Geotechnical Extreme Events Reconnaissance (GEER) Association, funded by the National
Science Foundation (NSF), assembled reconnaissance teams to record geotechnical aspects
of the events [71]. For the Petrinja, Croatia 2020 earthquake, the Structural Extreme Events
Reconnaissance (StEER) product [72] was used in this study. These reconnaissance reports
mainly reviewed the earthquake history and geologic background of the study regions and
also mapped geotechnical and, in some cases, structural damage by on-ground mapping
and/or aerial imagery using small unmanned aerial vehicles.

Following major natural events, NASA’s Advanced Rapid Imaging and Analysis [73]
team produces damage proxy maps (DPM) to identify the extent of potentially damaged
areas. These maps are produced based on synthetic aperture radar (SAR) images [40].
DPMs were downloaded and used for three seismic zones in this research, including Samos
in Greece, Palu in Indonesia, and Accumoli in Italy [73].

2.2.2. Soil Moisture and Precipitation Data

SMAP soil moisture observations are the primary dataset used to identify earthquake-
induced near surface moisture changes. Because this research aims to capture and study
seismic-induced soil moisture changes, the effects of climatic variables such as precipitation
and evaporation on the soil moisture variation should be separated. For this purpose, three
datasets were adopted. Table 2 summarizes the spatial and temporal resolution of the
data products used in this study. It should be noted that in the rest of this manuscript, the
spatial resolution of the GLDAS and GPM are reported in km (i.e., approximately 25 km
and 10 km, respectively). For the sake of consistency, converted from kg/m2 to cm3/cm3,
soil moisture values reported by GLDAS are presented herein in volumetric form.

Table 2. Summary of remote-sensing-derived data products.

Platform Product Spatial Resolution Temporal Resolution Unit

SMAP Soil moisture 9 km 1–3 days cm3/cm3

GLDAS Soil moisture 0.25◦ 3-hourly kg/m2

GPM Precipitation 0.1◦ Half-hourly mm

SMAP is an Earth observation satellite, launched in January 2015, that carries an
L-band radiometer and radar designed to enhance the scientific understanding of the
interrelation between the land surface soil moisture, the freeze–thaw state, and the atmo-
sphere for monitoring natural hazards, improving climate forecasts, assisting agricultural
productivity, and tracking the water cycle [61]. The radar could have provided SMAP
observations with a much higher spatial resolution, but it stopped transmitting data in July
2015. Nevertheless, the radiometer still continues to operate and provide high-accuracy
data. This radiometer has the potential to record the soil moisture data over the global land
area, excluding regions masked by urban areas, snow and ice, or inland open water bodies,
and mountainous or highly vegetated areas, and its measurements are independent of
weather conditions and solar illumination [58]. This study used enhanced level-3 passive
surface soil moisture data (L3_SM_P_E), which were retrieved by the SMAP radiometer
that provides the soil moisture in the top 5 cm of the soil column [57]. The L3_SM_P_E
includes soil moisture records at 6:00 AM or 6:00 PM local solar time (LST). This data
product has a grid resolution of 9 km on Equal Area Scalable Earth 2.0 grids and a 3-day
average temporal resolution. In this paper, version 5 of this data product was used, which
is freely available from the National Snow and Ice Data Center (NSIDC) [74] in hierarchical
data format version 5 (HDF5).
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GLDAS, developed by NASA, is a robust tool to model global land surface states.
GLDAS-2.1 is a generation of this system that combines satellite and ground-based obser-
vational meteorological data products, including precipitation, air temperature, surface
pressure, solar radiation, and wind through land surface models to estimate near-real-
time global land surface variables, such as soil moisture, soil temperature, evaporation,
snowmelt, and canopy transpiration, among others. In other words, GLDAS-2.1 utilizes
meteorological data as the inputs to land surface models to simulate land surface variables.
Hence, it does not record the perishable seismic-induced soil moisture change, and it is
an appropriate tool to separate earthquake-induced moisture changes from atmospheri-
cally induced changes. GLDAS-2.1 provides soil moisture products in four different soil
layers, i.e., 0–10 cm, 10–40 cm, 40–100 cm, and 100–200 cm, with a spatial resolution of
25 km at 3-h time steps. For this study, soil moisture data in the top layer (0–10 cm) were
downloaded in network common data form version 4 format (NetCDF4) [75].

GPM is a joint mission between international space agencies to observe the Earth’s
precipitation. The Integrated Multi-Satellite Retrievals for GPM (IMERG) algorithm consol-
idates and calibrates datasets from the GPM satellite constellation to estimate precipitation
over the Earth’s surface at a 10 km spatial resolution with a half-hour temporal resolution.
The GPM (IMERG) Level 3 Version 06 Final Run precipitation product used in this study
includes bias correction based on a monthly gauge analysis. Because there might be a lag
between pre- and post-event SMAP-based soil moisture data, accumulated precipitation
data in this time window for study regions, measured by GPM, were downloaded and
processed. The GPM data are released in network common data form version 4 format
(NetCDF4) [76].

Previous studies have shown that GLDAS and SMAP soil moisture products have
similar spatial patterns and show good agreement with in situ soil moisture measure-
ments, with both soil moisture datasets having an accuracy that is generally lower than
0.04 cm3/cm3. [77–79]. As discussed earlier, GLDAS soil moisture simulations cannot
reflect seismically induced soil moisture changes. Therefore, in this paper, to differenti-
ate earthquake-induced soil moisture changes from climate-induced ones, the recorded
moisture change data extracted from SMAP and GLDAS were compared.

2.2.3. SMAP Event Window

Considering the SMAP repeat frequency, there is a time interval of about 24 to 72 h
between pre- and post-earthquake SMAP data. Table 3 lists the mainshock date and the pre-
and post-event SMAP data available for each earthquake. To avoid the effects of diurnal
cycles on soil moisture, only 6:00 AM SMAP surface soil moisture retrievals were used in
this study and therefore, for each earthquake, the nearest available 6:00 AM SMAP data
were selected for the analysis. For example, the Petrinja, Croatia 2020 earthquake happened
at 11:20 AM coordinated local time [80], which equals 12:20 LST, on 29 December 2020.
The nearest available SMAP data for the Croatia region before and after this earthquake
were acquired on 29 December 2020 (6:00 AM LST) and 30 December 2020 (6:00 AM
LST), respectively.

Because GLDAS has a three-hour temporal resolution, soil moisture data from this
platform are available less than three hours before and after earthquakes. However, since
pre- and post-event SMAP soil moisture data were being compared with the GLDAS
data, the soil moisture products provided by GLDAS were downloaded for the same pre-
and post-event dates and times as in SMAP. The SMAP data time interval (SMAP event
window), dictated by the temporal resolution of SMAP, also determined the time period
for which the accumulated precipitation data (GPM) were obtained for this study.

Soil moisture change (∆SM) in the SMAP event window was calculated for both
SMAP and GLDAS soil moisture products as follows:

∆SM = SMPost − SMPre (1)
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where SMPre and SMPost are the soil moisture before and after the event, respectively.
Figure 3 shows an example of ∆SM maps calculated based on SMAP (∆SMSMAP) and
GLDAS (∆SMGLDAS) in their native spatial resolution, as well as the GPM accumulated
precipitation in this time window for the Petrinja, Croatia 2020 earthquake.

Table 3. Available pre- and post-event SMAP data (SMAP event window).

Study Region Earthquake Name Pre-Event SMAP Data Event Date Post-Event SMAP Data

Croatia Petrinja, Mw 6.4 29 December 2020 29 December 2020 30 December 2020
Greece Samos, Mw 7 30 October 2020 30 October 2020 2 November 2020
Turkey Elazig, Mw 6.7 23 January 2020 24 January 2020 26 January 2020

Indonesia Palu, Mw 7.5 27 September 2018 28 September 2018 30 September 2018
Mexico Puebla, Mw 7.1 17 September 2017 19 September 2017 20 September 2017

New Zealand Kaikoura, Mw 6.4 12 November 2016 13 November 2016 15 November 2016
Italy Accumoli, Mw 6.2 23 August 2016 24 August 2016 24 August 2016

Ecuador Muisne, Mw 7.8 16 April 2016 16 April 2016 18 April 2016
Taiwan Meinong, Mw 6.4 5 February 2016 5 February 2016 6 February 2016
Chile Illapel, Mw 7.8 16 September 2015 16 September 2015 19 September 2015
Nepal Gorkha, Mw 8.3 23 April 2015 25 April 2015 26 April 2015
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Figure 3. Soil moisture change of Croatia region reported by (a) SMAP (∆SMSMAP) and (b) GLDAS
(∆SMGLDAS ), and (c) GPM accumulated precipitation of Croatia region in the SMAP event window.
White grids are locations where SMAP soil moisture data are not available (e.g., due to mountain,
water, etc.).

2.2.4. Resampling to Coarser Grids

As shown in Table 2, the GLDAS data have the coarsest grid. For the sake of consis-
tency of spatial resolution, SMAP and GPM data products were resampled to a spatial
resolution matching GLDAS. For this purpose, the average resampling method was per-
formed [81]. Figure 4 demonstrates examples of SMAP and GPM data products before and
after the resampling.
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(c) Accumulated precipitation of Croatia region in the SMAP event window (10 km × 10 km).
(d) Resampled accumulated precipitation of Croatia region in the SMAP event window with coarser
grid (25 km × 25 km).

3. Results
3.1. Relationship between ∆SM and GPM Data

Precipitation is the most important hydrological variable that influences the soil
wetness condition, particularly for the near-surface. Both the GLDAS and SMAP soil
moisture products effectively respond to atmospheric conditions [61,79]. Hence, a strong
relationship should exist between ∆SM values and the intensity and spatial pattern of
rainfall events. While ∆SMGLDAS will follow this relationship, earthquake impacts on soil
moisture may change this template for the observed ∆SMSMAP. Figure 5 shows ∆SM values
from SMAP (∆SMSMAP) and GLDAS (∆SMGLDAS), as well as the amount of accumulated
precipitation in the SMAP event window for some of the target earthquakes at a 25 × 25 km
resolution, i.e., after resampling SMAP and GPM data to coarser grids (similar maps for
other seismic zones are shown in Figure A2 of the supplement). In three of the study zones,
including Meinong in Taiwan, Accumoli in Italy, and Samos in Greece, no significant rainfall
was reported in the SMAP event window. While ∆SMGLDAS followed GPM, in which soil
moisture decreased in these regions, the SMAP data showed considerable increases in soil
moisture content for some grids. These increases were readily observed for many grids in
Palu, Indonesia and Illapel, Chile as well. These results, in turn, suggest that SMAP can
register earthquake-induced soil moisture increases.
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3.2. Moisture Differences

The difference between the two sets of soil moisture change data, i.e., ∆SMSMAP and
∆SMGLDAS, was used to identify the grids experiencing earthquake-induced soil moisture
increases during seismic events. The moisture difference indicator (MDI) for each grid was
expressed as follows:

MDI = ∆SMSMAP − ∆SMGLDAS (2)

Figure 6 shows the MDI maps for all the study zones in the corresponding SMAP
event window. In the Petrinja, Croatia 2020 earthquake, the MDI is positive for most grids,
meaning that the soil moisture change from SMAP (∆SMSMAP) is higher than that from
GLDAS (∆SMGLDAS).
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Because of the fundamental disparities between the methods used in SMAP and
GLDAS, a difference between ∆SMSMAP and ∆SMGLDAS might have existed even in the
absence of the earthquake. For instance, for the vegetated areas with vegetation water
contents more than 5 kg/m2, such as forests and wetlands, SMAP can overestimate the soil
moisture content [78]. Moreover, SMAP and GLDAS estimate the soil moisture for two
different soil depths. Although previous studies showed strong correlations between the
soil moisture of the soil columns, whether selected shallow or deep [82], this difference
between shallow and deep soil moisture is still an uncertainty. GLDAS provides soil
moisture values for a deeper soil layer, and it may show lower variability (∆SM) in response
to the atmospheric conditions [83]. Nevertheless, GLDAS helps to understand whether the
SMAP increased soil moisture during the event window might be due to precipitation. To
isolate the grids with a significant earthquake-induced soil moisture increase, a moisture
difference threshold (MDT) was defined. In the grids for which the MDI exceeds the MDT,
the earthquake had a notable impact resulting in soil moisture increase.

Before choosing GLDAS for this study, GLDAS and SMAP were compared for longer
periods in normal conditions (i.e., without an earthquake). For example, while grids with
an MDI > 0.08 cm3/cm3 can be seen in the SMAP event window, the absolute values
of the MDI in the absence of an earthquake in the central Croatia region under normal
conditions are generally lower than 0.04 cm3/cm3. Moreover, the average absolute values
of the MDI for grids of this region for the time period from January 2019 to December
2020 was approximately 0.028 cm3/cm3. However, because no verified or average value of
MDT in the absence of earthquake has been reported in the literature, in this paper, several
thresholds were evaluated. Threshold values, i.e., 0, 0.02, 0.04, and 0.08 cm3/cm3, were
used to identify the grids with a notable earthquake-induced soil moisture increase. Grids
having an MDI less than zero were neglected. This is a conservative assumption because
in many cases the climate-induced soil moisture changes recorded by SMAP are less than
that by GLDAS [78], i.e., in some grids, despite the MDI < 0, there might have been a
seismic-induced soil moisture increase masked by a climate-induced soil moisture change.

The evaluation of the differences between the values of ∆SMSMAP and ∆SMGLDAS
(MDI) confirms that SMAP can be used to detect a seismic-induced soil moisture increase.
In five out of the eleven target earthquakes—Petrinja in Croatia, Samos in Greece, Palu in
Indonesia, Kaikoura in New Zealand, and Gorkha in Nepal—some grids show MDI values
higher than 0.08cm3/cm3. Given that the land surface soil moisture content has a small
range of values, from 0.05 to 0.6 cm3/cm3, an 0.08cm3/cm3 difference between ∆SMSMAP
and ∆SMGLDAS strongly supports that SMAP can capture the soil moisture increases caused
by seismic events. Furthermore, although the SMAP data time interval is 72 h for most of
the target earthquakes (see Table 3), an MDI > 0 was recorded in all earthquakes, except
for seismic zones in Elazig, Turkey and Puebla, Mexico.

Numerous factors such as the geological setting of the region, topographic conditions,
groundwater level, earthquake characteristics, soil density, and pre-event soil moisture
conditions are critical regarding how and to what extent surface soil moisture increases
as a result of earthquakes. Future research is needed to study the effects of each of these
factors on seismic-induced soil moisture change. For instance, the large number of grids
without an earthquake-induced soil moisture increase (i.e., grids with an MDI < 0) in
Elazig, Turkey, in comparison with other seismic zones that have the same SMAP data
time interval, may be attributed to: (1) the low pre-event soil moisture of this region;
(2) a deeper groundwater level than the other study regions; and/or (3) a smaller earthquake
magnitude than the other study regions.

3.3. Integration of ∆SMSMAP with Seismic Records

A more in-depth assessment of the grids with an MDI > 0 was conducted to better
understand the relationships between ∆SMSMAP and the seismic records. In order to
qualitatively examine the relationship between ∆SMSMAP and the geotechnical aspects of
the target earthquake data, ∆SMSMAP maps were synthesized with ground failures reported
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by reconnaissance reports, DPMs produced by ARIA, and near-real-time liquefaction
and landslide hazard maps developed by USGS. In this section, ∆SMSMAP data were
analyzed using their native spatial resolution to take advantage of the higher spatial
resolution of the original SMAP data rather than the coarser resampled resolution. For
example, Figure 7a–d show the ∆SMSMAP grids for the seismic zone in Petrinja, Croatia
at a 9 × 9 km resolution located inside the previously specified 25 × 25 km isolated grids
for which the MDI was higher than the corresponding MDTs, which were 0.08, 0.04, 0.02,
and 0 cm3/cm3, respectively. Event-specific discussions on how soil moisture change maps
correlate with seismic response characteristics are presented for seven target earthquakes
below. Integrated maps for the New Zealand 2016 and Chile 2015 earthquakes are shown
in Figures A3 and A4 of Appendix A, respectively.
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3.3.1. Petrinja, Croatia

The 2020 Petrinja earthquake on 29 December with an M 6.4 mainshock resulted in
pervasive liquefaction with large surface manifestations that led to structural infrastructure
damage [72]. Figure 8d shows that almost all of the ground failures, identified by field
reconnaissance teams, were located in grids with an MDI > 0. In addition, grids for
which the MDI was higher than 0.08 cm3/cm3 (Figure 8b) contained some of the reported
liquefied zones and areas characterized by a high probability of liquefaction by the USGS.
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fied area and some local tsunami inundations were reported in these regions by the GEER 
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faction probability where SMAP observations showed a decrease in soil moisture (Figure 
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Figure 8. ∆SMSMAP (9 km × 9 km) in grids with (a) available soil moisture data, (b) MDI > 0.08,
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Croatia 2020 earthquake.

3.3.2. Samos, Greece

The Samos, Greece earthquake with a moment magnitude M 7.0, occurred offshore of
the northern coast of Samos Island. With rainfall close to zero in this region throughout
the SMAP event window, it can be deduced that the earthquake caused an increase in
the soil moisture over all of the grids depicted by a positive ∆SMSMAP in Figure 9. One
liquified area and some local tsunami inundations were reported in these regions by the
GEER team [84]. The GEER report also found no liquefaction features in areas with high
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liquefaction probability where SMAP observations showed a decrease in soil moisture
(Figure 9a).

Figure 10 shows the DPM of this earthquake, overlayed on the ∆SMSMAP and seismic
records, that identifies areas in which considerable surface changes and deformations oc-
curred. Yellow to red pixels represent increasingly significant surface change and potential
damage. The extent of potentially severely damaged areas, classified as major surface
change by the DPM, indicate that there might have been other locations in grids with
∆SMSMAP > 0 that experienced ground failures but were not inspected by the GEER team.
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Figure 10. Damage proxy map of Samos, Greece 2020 earthquake, identifying areas in which
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grids with MDI > 0. The DPM surface changes range from minor (yellow pixels) to major (red pixels)
for potential damage.

3.3.3. Palu, Indonesia

The 2018 Palu earthquake struck on 28 September 2018 in Palu City and the Central
Sulawesi region of Indonesia. This earthquake triggered four massive flowslides and gen-
erated tsunami waves in coastal areas, which caused around 4340 fatalities [85]. As shown
in Figure 11c, all of the reported ground failures, coastal areas impacted by tsunami waves,
and most of the areas with a high probability of landslide and liquefaction occurrence were
located in grids with an MDI > 0.04 cm3/cm3. Moreover, the DPM and USGS liquefaction
and landslide hazard maps, shown in Figure 12, raise the possibility of other ground
failures in areas that experienced a high soil moisture increase but were not assessed by the
GEER team.
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Figure 12. Damage proxy map of Palu, Indonesia 2018 earthquake, identifying areas in which
considerable deformations, overlayed on seismic records and ∆SMSMAP (9 km × 9 km) in grids with
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3.3.4. Accumoli, Italy

The Accumoli earthquake with a moment magnitude recorded as 6.0 occurred on 24
August 2016 in the central part of Italy. As depicted earlier in Figure 5, the central part of
Italy did not experience any rainfall event in the SMAP event window. However, grids
with ∆SMSMAP > 0.05cm3/cm3, shown in Figure 13a, indicate a considerable effect from
the seismic event on the soil moisture content of this region. Some of these grids were
located within the MMI contour of 6 and inspected by reconnaissance teams [86]. Some
other grids with ∆SMSMAP > 0.05cm3/cm3 were far from the epicenter of the earthquake
and located outside of the visually inspected zones, but Figure 14 shows that these regions
experienced ground failures as well.
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Figure 14. Damage proxy map of Accumoli, Italy 2016 earthquake, identifying areas in which
considerable deformations occurred, overlayed on seismic records and ∆SMSMAP (9 km × 9 km) in
grids with MDI > 0. The DPM surface changes range from minor (yellow pixels) to major (red pixels)
for potential damage.

3.3.5. Meinong, Taiwan

On 6 February 2016, southern Taiwan was struck by the Meinong earthquake. The
∆SMSMAP map represents the soil moisture increase after this earthquake (see Figure 15a).
This increase can be attributed to the earthquake impacts due to the absence of precipitation
in its SMAP event window. GEER field reconnaissance teams reported a large number of
surface manifestations of liquefaction in the surveyed areas, all of which were located in
regions with MDI > 0. Grids with positive values of ∆SMSMAP, corresponding to the USGS
liquefaction hazard map, increase the possibility of liquefaction occurrence in regions not
inspected by GEER teams [80].
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3.3.6. Muisne, Ecuador

On 6 April 2016, a moment magnitude M 7.8 earthquake struck offshore of the west
coast of northern Ecuador. As shown in Figure 16, high values of MDI were experienced
in grids with a heightened likelihood of liquefaction. However, these areas were beyond
the reconnaissance extent. For this event, SMAP data might have been used by field
reconnaissance teams to flag regions with a high soil moisture increase and to assess
possible ground failures.
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2016 earthquake.

3.3.7. Gorkha, Nepal

For the 2015 M 7.8 Nepal event, the USGS liquefaction model predicted the highest
probability of liquefaction in regions that were not inspected by reconnaissance teams [87].
However, SMAP identified seismic-induced soil moisture increases (i.e., grids with MDI > 0.08
and 0.04 cm3/cm3 in Figure 17) in those areas. Similar to Muisne, Ecuador, SMAP data
might have been used a priori by field reconnaissance teams to support the USGS model
results and to focus regions for inspection.
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4. Discussion

SMAP soil moisture data with support from soil moisture modeled by GLDAS were
examined during eleven strong seismic events. Despite the limitations of the spatial and
temporal resolutions of microwave remote sensing data, this study provides qualitative
evidence that SMAP can detect the soil moisture increase caused by earthquakes, especially
for earthquakes with one of the following conditions: (1) extensive and large surface
manifestations of liquefaction, (2) a 24 h SMAP event window (Croatia 2020, Greece
2020, Indonesia 2018, Taiwan 2016, Italy 2016, Nepal 2015), (3) no rainfall during the
SMAP event window (Greece 2020, Taiwan 2016, Italy 2016), and (4) high values of MDI
(MDI > 0.04 cm3/cm3). Further research needs to be conducted to categorize the effects of
hydrogeological conditions on these seismic-induced soil moisture changes.

In this study, a comparison between soil moisture obtained from SMAP and GLDAS
was used to identify regions with high soil moisture increase after earthquakes, but there
still exist areas for the continued development of more meticulous systems for separating
climate-induced soil moisture changes from seismic-induced ones with higher spatial reso-
lution for MDI, especially for those with a 48 or 72 h SMAP data time interval. Moreover,
although the temporal resolution of SMAP data is significant in comparison with other satel-
lite data used by the earthquake engineering community for other purposes such as damage
proxy maps, the perishability of earthquake-induced soil moisture changes highlights the
need for more complex systems to filter climate-induced soil moisture changes.

Another challenge is that earthquake-induced soil moisture response occurs at much
finer scales than SMAP’s 9 km. Passive microwave radiometers, such as SMAP, pro-
vide a high temporal resolution but a coarse spatial resolution when compared to active
microwave sensors and SARs. Over the last few years, many downscaling approaches,
including satellite- and model-based methods, have been employed to downscale the
coarse resolution of different satellite soil moisture products [23,88–90]. Previous stud-
ies provided opportunities to improve the spatial resolution of SMAP soil moisture data
products to 1 km [90,91]. As the remote sensing technologies are advanced and the next
generation of radars are lunched [92], better spatial resolution with global coverage will
be expected. Future works would likely benefit from using well-established satellite soil
moisture downscaling approaches to address the issue of SMAP’s coarse spatial resolution
and to isolate seismic-induced soil moisture changes at a higher resolution; specifically, by
taking advantage of both radiometer and radar measurements through the integration of
both data [88].

Furthermore, the encouraging relationships between ∆SMSMAP and seismic records
suggest that the earthquake community could employ SMAP as a comprehensive dataset
for investigations that seek to leverage interactions between land surface soil moisture
and seismic events. In the majority of the target earthquakes, including Croatia 2020,
Greece 2020, Indonesia 2018, Taiwan 2016, Ecuador 2016, and Nepal 2015, a relationship
between land surface soil moisture and seismic events was evident. For these events, the
earthquake-induced soil moisture response occurred in liquefaction-prone seismic zones.
In the Italy 2016 and Chile 2015 earthquakes, though no serious liquefaction features were
reported by the GEER teams, there were still SMAP grids with a notable soil moisture
increase (MDI > 0.04 cm3/cm3) that may have caused other types of ground deformations,
such as seismic compression. However, there is not adequate mapped evidence to confirm
this theory. In Italy 2016, damage proxy maps identified ground failures at some grids
with a positive MDI. New Zealand 2016 is the only study region for which there is a clear
inconsistency between ∆SMSMAP and the seismic records. In this seismic zone, there are a
remarkable number of grids with a high MDI, but most of them are outside of the regions
with high values of PGA and MMI, and also liquefied areas. As expected, for earthquakes
with a 24 h SMAP event window, including Croatia 2020, Greece 2020, Italy 2018, and
Taiwan 2016, the results show more substantial evidence than those with a 48–72 h SMAP
data time interval. By expanding the target earthquake database, future studies may yield
more finely tuned quantitative formulations.
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∆SMSMAP maps combined with seismic records and damage proxy maps show that
grid cells where the MDI > 0 contain liquefied areas mapped by reconnaissance teams
as well as regions with a high probability of liquefaction occurrence that were beyond
the reconnaissance extent. Field reconnaissance teams could use the method presented
in this study to identify regions that experienced a high soil moisture increase after each
earthquake and, in combination with the USGS model results, to prioritize those regions in
field surveys. For example, grids with both high values of MDI and a high liquefaction
probability are highly likely to be regions that experienced liquefaction. Future research is
recommended to better understand how to improve the accuracy of liquefaction probability
models using MDI as a potential parameter for the surface soil saturation condition after
an earthquake.

In addition to the L3_SM_P_E surface soil moisture used for this study, other SMAP
data products might have value for the earthquake community. For instance, L4-SM
provides estimates of the root zone soil moisture in the top 1 m of the soil column. This
data product is produced by assimilating SMAP observations from the top 5 cm of the
soil column with estimates provided by land surface models. L4-SM and its downscaled
version [91] could be used to evaluate the effects of the pre-event root zone soil moisture
on seismic site response as well as ground failures and earthquake damage.
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(c) MDI > 0.04, (d) MDI > 0.02 cm3 cm3⁄ , (e) MDI > 0 cm3 cm3⁄  integrated with seismic records 
for Kaikoura, New Zealand 2016 earthquake. 
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