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Abstract: Precise object classification based on Hyperspectral imagery with limited training data
presents a challenging task. We propose a tensor-based dictionary self-taught learning (TDSL)
classification method to provide some insight into these challenges. The idea of TDSL is to utilize
a small amount of unlabeled data to improve the supervised classification. The TDSL trains tensor
feature extractors from unlabeled data, extracts joint spectral-spatial tensor features and performs
classification on the labeled data set. These two data sets can be gathered over different scenes even
by different sensors. Therefore, TDSL can complete cross-scene and cross-sensor classification tasks.
For training tensor feature extractors on unlabeled data, we propose a sparse tensor-based dictionary
learning algorithm for three-dimensional samples. In the algorithm, we initialize dictionaries using
Tucker decomposition and update these dictionaries based on the K higher-order singular value
decomposition. These dictionaries are feature extractors, which are used to extract sparse joint
spectral-spatial tensor features on the labeled data set. To provide classification results, the support
vector machine as the classifier is applied to the tensor features. The TDSL with the majority vote
(TDSLMV) can reduce the misclassified pixels in homogenous regions and at the edges of different
homogenous regions, which further refines the classification. The proposed methods are evaluated
on Indian Pines, Pavia University, and Houston2013 datasets. The classification results show that
TDSLMV achieves as high as 99.13%, 99.28%, and 99.76% accuracies, respectively. Compared with
several state-of-the-art methods, the classification accuracies of the proposed methods are improved
by at least 2.5%.

Keywords: self-taught learning; dictionary learning; hyperspectral image classification; majority
vote; sparse representation

1. Introduction

Hyperspectral images (HSIs) are special images gathered from satellites or airplanes,
which not only contain spatial pixels but also contain hundreds of spectral bands with
every pixel. Because of consisting of abundant information, hyperspectral image (HSI)
is wildly used in remote sensing fields [1–6], such as environment monitoring [1], urban
mapping [2], land use analysis [4], and military affairs [6]. Among these applications,
HSI classification is a basic task, which involves assigning class labels to pixels [7,8] and
implements pixel-wise classification. Therefore, HSI classification has aroused a lot of
interest from researchers.

Classification tasks require quantities of training samples. According to the annotation
of training data, classification methods are divided into supervised learning, unsupervised
learning, semi-supervised learning, transfer learning, and self-taught learning methods.
Unsupervised learning methods just utilize unlabeled data. Therefore, they can extract fea-
tures, but can not give the category labels for the testing data, such as principal component
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analysis (PCA) [9], independent component analysis [10], Gabor [11], sparse represen-
tation [12–15], and autoencoders [16]. On the contrary, supervised learning methods
utilize labeled data to extract features and provide the category labels of testing samples,
such as support vector machine (SVM) [17], and deep learning methods (i.e., convolu-
tional neural networks (CNN) [7,18–25], recurrent neural networks (RNN) [26,27], graph
convolutional networks [28–31], transformers [32], generative adversarial networks [33]).
Semi-supervised learning methods [34–36] offer a solution to overcome the limited labeled
samples problem by combining the power of labeled and unlabeled data information at
the same time [37], such as active learning [38,39], and some extended methods for unsu-
pervised learning [37]. However, semi-supervised learning typically makes the additional
assumption that the unlabeled data can be labeled with the same labels as the classification
task, and these labels are merely unobserved [40]. Transfer learning methods [41–47] utilize
extra labeled data from the source data set to improve the supervised classification of target
data. Moreover, the two data sets do not need to contain the same categories, but the
source data needs to be related to the target data. Since the annotation of HSI is difficult
and expensive to acquire, the self-taught learning methods [40] are more advantageous.
Self-taught learning methods [8,48] utilize unsupervised learning on other unlabeled data
to improve the performance of supervised classification.

Because the HSI contains both spatial and spectral information, the HSI classification
methods can be divided according to the utilization of information. The early studies
just utilize spectral information to classify every pixel, such as SVM [17], spectral sparse
representation [12], one-dimensional CNN (1-D CNN) [18], and RNN [26]. Afterward,
many studies demonstrate that spatial information can improve the performance of HSI
classification [49]. SVM applied to the contextual data, and SVM with composite kernels
both can provide higher accuracies than SVM applied to the spectral data [50]. Further-
more, some researchers improve the sparse representation methods [51–55] with spatial
constraints, including Laplacian sparsity [14,56], joint sparsity [14,15], and group-based
sparsity [13]. Except for incorporating contextual information into spectral information,
some researchers extract joint spectral-spatial features from three-dimensional (3-D) HSI
samples directly to further improve the classification, such as 3-D CNN [7] and tensor-
based sparse representation methods [57–60]. Roy et al. [22] propose a hybrid spectral
CNN (HybridSN) classification method, which is a spectral-spatial 3-D CNN followed by
spatial a 2-D CNN. The 3-D CNN facilitates the joint spectral-spatial feature extraction,
the 2-D CNN reduces the complexity. Zhao et al. [57] decompose the group tensor into
the intrinsic spectral tensor and the corresponding variation tensor via a low-rank tensor
decomposition algorithm and then classify the intrinsic tensor with SVM. To classify HSI
with limited training samples, He et al. [59] present a testing sample tensor as a linear
combination of all the training sample tensors via low-rank tensor learning. Liu et al. [58]
have proposed an extended ridge regression for multivariate labels by taking advantage
of tensorial representation. In our previous works [61], we propose the atom-substitute
tensor dictionary learning (ASTDL) algorithm to train sparse tensor feature extractors,
furthermore, we propose ASTDL enhanced CNN (ASTDL-CNN) classification method and
utilize a 2-D CNN to extract deep features from the sparse tensor features.

The aforementioned studies have demonstrated that the classification accuracies
of spectral-spatial methods are superior to those of spectral methods. Especially, since
the HSI is 3-D data, including one spectral dimension and two spatial dimensions, it
is natural to treat the HSI as a 3-D cube or tensor [57–60,62]. Therefore, we study the
HSI classification method based on tensor sparse representation to preserve the joint
relationships of the spatial information and the spectral information. Furthermore, HSI
data is limited, especially the data with annotation. It has great significance to study the
HSI classification method with limited training data set. Therefore, we study the HSI
classification method based on self-taught learning, which utilizes a small amount of
unlabeled data to improve the supervised classification.
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In this paper, we propose a tensor-based dictionary self-taught learning (TDSL) classi-
fication method for HSI. The other self-taught learning methods require a large quantity
of unlabeled data [8,40,48]. Whereas, the proposed method utilizes a small amount of
unlabeled data from other data sets to improve the supervised classification with a small
labeled data set. The amount of unlabeled data required in the proposed method is much
smaller than in the other self-taught learning methods [8,40,48]. We propose a sparse
tensor-based dictionary learning (STDL) algorithm, to train tensorial feature extractors
for 3-D samples on the unlabeled data set. The proposed STDL algorithm initializes dic-
tionaries with Tucker decomposition (TKD) [63], and updates dictionaries based on the
K higher-order singular value decomposition (K-HOSVD) algorithm [64,65]. Then, we
extract sparse joint spectral-spatial tensor features on labeled data with the learned feature
extractors. The supervised SVM is applied to these tensor features. Furthermore, to utilize
the spatial information in the classification map obtained by TDSL, we add the majority
vote followed by TDSL to refine the classification. The proposed TDSL with the majority
vote (TDSLMV) can reduce the misclassification of pixels in homogenous regions and at
the edges of different homogenous regions. The unlabeled data and the labeled data used
in this method come from two data sets, which can be gathered over different scenes even
by different sensors. For the different scenes, one can be the city, and the other one can
be a valley. When the proposed method trains feature extractors on data of one scene and
directly applies the trained feature extractors to a classification task over another scene,
we definite it as a cross-scene classification. Therefore, TDSL can meet the cross-scene and
cross-sensor classification tasks.

The proposed TDSL and TDSLMV are methods based on sparse representation. Dif-
ferent from the aforementioned sparse representation methods, the proposed methods
utilize tensor techniques instead of vector and matrix techniques, and extract 3-D tensor
features from 3-D sample cubes directly. The 3-D feature tensors preserve the joint spectral-
spatial information, which facilitates the reduction in the requirement for training samples.
ASTDL-CNN is a supervised method, while the proposed methods belong to self-taught
learning methods. The proposed methods utilize a small amount of unlabeled data to
improve classification performance. Compare with ASTDL-CNN, the proposed methods
require less labeled data.

The main contributions of this paper are summarized as follows.

1. A TDSL classification method is proposed for the HSI classification task with lim-
ited training data, and the TDSL can complete the cross-scene and cross-sensors
classification tasks.

2. A STDL algorithm is proposed for 3-D samples with two spatial dimensions and
one spectral dimension, to train joint spectral-spatial tensor feature extractors. In the
algorithm, we initialize dictionaries with TKD and update these dictionaries based
on K-HOSVD.

3. We add the majority vote followed by TDSL to improve the classification. The pro-
posed TDSLMV utilizes the spatial information in the classification map of TDSL to
effectively reduce the misclassified pixels in homogenous regions and at the edges of
different homogenous regions.

4. The classification performance of the proposed TDSLMV is qualitatively and quantita-
tively evaluated on Indian Pines, Pavia University, and Houston2013 datasets. The experi-
mental results demonstrate a significant superiority over several state-of-the-art methods.
Furthermore, the trained feature extractor models can be applied directly to a classification
task on a new dataset, and achieve high precision classification.

The remainder of this paper is organized as follows. Section 2 briefly introduces
the tensor notions and algebra first, and then introduces the related self-taught learning
and tensor decomposition. In Section 3, first, we describe detailedly the proposed STDL
algorithm and then present the proposed TDSL and TDSLMV classification methods.
In Section 4, we perform a series of experiments on five wildly used benchmark data
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sets to analyze parameters in the proposed methods and evaluate the proposed methods
compared with several state-of-the-art methods. Section 5 concludes this paper.

2. Related Works

In this section, we introduce the notions and algebra of tensors [62], first. Next, we
describe the self-taught learning framework in brief [40]. Finally, we introduce the TKD
and higher-order singular value decomposition (HOSVD) [62,63,66].

2.1. Notions and Algebra

Tensors are multidimensional arrays, and the number of dimensions for a tensor is its
order or mode [62]. In this paper, a vector (the tensor of order one) is denoted as a boldface
lowercase letter a ∈ RI1 . A matrix (the tensor of order two) is denoted as a boldface capital
letter A ∈ RI1×I2 . A tensor of order N is denoted as an underlined boldface capital letter
A ∈ RI1×I2×...×IN . Furthermore, a scalar is denoted as a non-boldface letter a or A. Fixing
every index of a tensor but one, we can obtain the vector-valued subtensors, which are
defined as fibers. Whereas slices are the matrix-valued subtensors, defined by fixing all
indexes but two.

The manipulation of reshaping tensors to vectors is called vectorization. The vector-
ization of a tensor A ∈ RI1×I2×...×IN is defined as b = vec(A) ∈ RIN IN−1 ...I1 , and its entries
can be calculated by:

bi1+∑N
k=2[(ik−1)I1 I2 Ik−1]

= ai1i2 ...iN . (1)

Reshaping tensors to matrices is called matrix unfolding or matricization. The mode-n
matricization of a tensor A ∈ RI1×I2×...×IN is denoted as B = A(n) ∈ RIn×I1 I2 ...In−1 In+1...IN ,
and its enters can be calculated by:

bin j = ai1i2 ...iN , (2)

where, j = (i1 − 1)I2. . .In−1 In+1. . .IN + . . . + (iN−1 − 1)IN + iN .
The mode-n product of a tensor A ∈ RI1×I2×...×IN with a matrix B ∈ RJn×In , denoted

by C = A ×n B, is calculated by the multiplication of all mode-n vector fibers with B.
The entries of C ∈ RI1×...In−1×Jn×In+1×...×IN is calculated by:

ci1 ...in−1 jnin+1 ...iN =
In

∑
in=1

ai1 ...in−1inin+1 ...iN bjnin . (3)

The outer product of a tensor A ∈ RI1×I2×...×IN with a tensor B ∈ RJ1×J2×...×JM is
denoted by C = A ◦ B. The entries of C ∈ RI1×I2×...×IN×J1×J2×...×JM is calculated by:

ci1i2 ...iN j1 j2 ...jM = ai1i2 ...iN bj1 j2 ...jM . (4)

The inner product of two same-sized tensors A, B ∈ RI1×I2×...×IN is denoted as:

〈A, B〉 =
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

ai1i2 ...iN bi1i2 ...iN . (5)

Furthermore, the inner product can be utilized to calculate the Frobenius norm of a
tensor. The Frobenius norm of A is denoted as:

‖A‖2
F = 〈A, A〉 =

I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

a2
i1i2 ...iN

. (6)
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2.2. Self-Taught Learning

Self-taught learning [8,40] methods utilize a large quantity of unlabeled data from
another data set, which is different from the target data set, to improve the supervised clas-
sification. The self-taught learning methods for classification include three steps: (1) adopt
unsupervised feature learning methods to obtain feature extractors from data set #1; (2) use
these feature extractors to generate features for data set #2; (3) utilize supervised learning
methods to classify features of data set #2. Compared with semi-supervised learning,
self-taught learning does not require data set #1 to have the same classes as data set #2.
Moreover, self-taught learning does not require the two data sets to share the same genera-
tive distribution. It only requires that the two data sets have the same underlying statistic.
In other words, it just requires the two data sets belonging to the same data type, such as
images, sounds, and text. For example, the two data sets are both HSI data, or the two data
sets are both text data.

2.3. Tucker Decomposition

The manipulation of decomposing tensors into vectors or matrices is called tensor
decomposition. TKD is the manipulation of decomposing a tensor into a core tensor
and several factor matrices. The TKD [62,63] of an order three tensor A ∈ RI1×I2×I3 has
the form:

A = B×1 C×2 D×3 E, (7)

where B ∈ RJ1×J2×J3 is the core tensor, C ∈ RI1×J1 , D ∈ RI2×J2 , and E ∈ RI3×J3 are three
factor matrices. The TKD can be represented by the outer product, the form is:

A =
J1

∑
j1=1

J2

∑
j2=1

J3

∑
j3=1

bj1 j2 j3 · cj1 ◦ dj2 ◦ ej3 , (8)

where cj1 , dj2 , and ej3 are corresponding columns from C, D, and E, respectively.
HOSVD is a particular TKD with a constraint of orthonormal bases [62]. The factor

matrices are columnwise orthonormal, and the core tensor is all orthogonal [63,66]. More-
over, the factor matrices can be obtained by the singular value decomposition (SVD) of the
mode-n matricized of A.

3. Proposed Methods

In this section, we describe the proposed TDSL classification method detailedly.
Figure 1 shows the flow chart of TDSLMV, which includes three main steps: training
feature extractors on the unlabeled data set #1, extracting features and classification for
data set #2, and refining the classification results with the majority vote. For training
feature extractors, we propose the STDL algorithm. Therefore, we introduce the STDL
algorithm, first. Then, we describe the whole proposed classification methods, including
TDSL and TDSLMV.

3.1. The Sparse Tensor-Based Dictionary Learning Algorithm

In the proposed classification method, we use the STDL to obtain feature extractors
from unlabeled data set #1. The STDL trains three dictionaries for the order of three
sample tensors, and it initializes dictionaries with TKD and updates dictionaries based
on K-HOSVD [64,65]. The three dictionaries used in STDL correspond to two spatial
dimensions and one spectral dimension, respectively, and when combined, the three
dictionaries correspond to 3-D tensors. Therefore, the three dictionaries can be used to
extract spectral-spatial feature tensors for 3-D HSI data.

In this paper, the HSI sample set is denoted as X ∈ Rn1×n2×n3×N , where n1 and n2 are
the spatial sizes of the HSI samples, n3 is the spectral size, and N is the number of samples.
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We initialize the three dictionaries with the TKD of all training samples. For the ith
sample X i = X(:, :, :, i) ∈ Rn1×n2×n3 , the TKD is denoted by:

X i = C(i) ×1 A(i)
1 ×2 A(i)

2 ×3 A(i)
3 , (9)

where A(i)
1 ∈ Rn1×n1 , A(i)

2 ∈ Rn2×n2 , A(i)
3 ∈ Rn3×n3 , and C(i) ∈ Rn1×n2×n3 . Then the

dictionaries Ψ1 ∈ Rn1×n1 , Ψ2 ∈ Rn2×n2 , and Ψ3 ∈ Rn3×n3 are obtained by:

Ψ1 =
N

∑
i=1

A(i)
1 , Ψ2 =

N

∑
i=1

A(i)
2 , Ψ3 =

N

∑
i=1

A(i)
3 (10)

The initial dictionaries are obtained after normalization:

ψ
j1
1 =

ψ
j1
1

‖ψj1
1 ‖F

, ψ
j2
2 =

ψ
j2
2

‖ψj2
2 ‖F

, ψ
j1
3 =

ψ
j1
3

‖ψj1
3 ‖F

, (11)

where ψ
j1
1 is the j1th atom of Ψ1, (i.e., the j1th column of Ψ1), j1 = 1, 2, . . ., n1 is the

index of the atom, ψ
j2
2 is the j2th atom of Ψ2, j2 = 1, 2, . . ., n2, ψ

j3
3 is the j3th atom of Ψ3,

and j3 = 1, 2, . . ., n3.
The dictionary learning algorithm solves the following optimization problem:

min
Ψ1,Ψ2,Ψ2,Y

‖X − Y ×1 Ψ1 ×2 Ψ2 ×3 Ψ3‖2
F,

s.t.‖Y(:, :, :, i)‖0 ≤ k, i = 1, 2, . . ., N,
(12)

where Y ∈ Rn1×n2×n3×N is the sparse representation coefficient tensor, and k is the maxi-
mum number of non-zero elements in Y(:, :, :, i).

We solve Equation (12) by alternately performing the sparse representation and the
update of dictionaries. First, we estimate the sparse representation coefficient tensor Y
via the N-way block orthogonal matching pursuit (NBOMP) algorithm [67] with initial
dictionaries. Then, we update dictionaries alternately, and we update one of the three
dictionaries with the others fixed, i.e., update Ψ1 with Ψ2, Ψ3 fixed.

...

Training samples

Data set #1

(Unlabeled data)
Extracting sparse

tensor features 

with Ψ1，Ψ2，Ψ3
Training

classifier

...

......

Training

dictionaries 

with

Samples

extraction

Training samples

Whitened 

PCA

Features of training

samples

Ψ1 Ψ2 

Ψ3 

SVM classifer

...

Data set #2

(Labeled data)

......

Testing samples Features of testing

samples

Classification

Majority

vote

Whitened 

PCA

Samples

extraction

Classification mapProbability map

Feature extractors

x2

x1

......
STDL

NBOMP

NBOMP

Figure 1. Flowchart of the tensor-based dictionary self-taught learning classification method with the
majority vote (TDSLMV).
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First, we update the dictionary Ψ1 atom by atom. When updating the j1th atom of Ψ1,
we first find the samples, which are sparsely represented by the j1th atom. The indexes of
these samples are obtained by inequation:

‖Y(j1, :, :, i)‖2
F > 0. (13)

The index set I1 contains all the i satisfied Equation (13). Thus, the sample subset X̃
contains all the samples represented by the j1th atom, which is denoted by:

X̃ = X(:, :, :, I1). (14)

Similarly, the corresponding sparse representation coefficient tensor is denoted as:

Ỹ = Y(:, :, :, I1). (15)

Then, the temporary dictionary Ψ̃1, which is the dictionary Ψ1 without the jth atom, is
denoted by:

Ψ1(:, j1) = 0. (16)

Next, we definite that:

Rj1 = X̃ − Ỹ ×1 Ψ̃1 ×2 Ψ2 ×3 Ψ3. (17)

We carry out the HOSVD [63,66] for Rj1 , which is represented as:

Rj1 ≈ λ · u1 ◦ u2 ◦ u3 ◦w. (18)

Hence, the current atom is updated by:

ψ
j1
1 =

u1

‖u1‖F
, (19)

Ỹ j1 ×2 Ψ2 ×3 Ψ3 = λ · ‖u1‖F · u2 ◦ u3 ◦w, (20)

where Ỹ j1 = Y(j1, :, :, I1). We update subtensor Ỹ j1 by solve Equation (20) with least
square (LS).

After updating the dictionary Ψ1 and the corresponding sparse representation coeffi-
cients, we update Ψ2, Ψ3 seriatim. The procedures are similar to the previous description.
Now the update steps of the dictionary Ψ2 corresponding to Equation (19), Equation (20)
become:

ψ
j2
2 =

u2

‖u2‖F
, (21)

Ỹ j2 ×1 Ψ1 ×3 Ψ3 = λ · ‖u2‖F · u1 ◦ u3 ◦w, (22)

where Ỹ j2 = Y(:, j2, :, I2). The index set I2 satisfies ‖Y(:, j2, :, i)‖2
F > 0. After updating

every ψ
j2
2 and Ỹ j2 , we update the dictionary Ψ3. The update steps become:

ψ
j3
3 =

u3

‖u3‖F
, (23)

Ỹ j3 ×1 Ψ1 ×2 Ψ2 = λ · ‖u3‖F · u1 ◦ u2 ◦w, (24)

where Ỹ j3 = Y(:, :, j3, I3). The index set I3 satisfies ‖Y(:, :, j3, i)‖2
F > 0.

The overall procedure of STDL is summarized in Algorithm 1.
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Algorithm 1 The STDL Algorithm

Require: X ∈ Rn1×n2×n3×N , the maximum number of non-zero elements k, the maximum
number of iterations iter, t = 0.

1: Decompose every sample tensor X(:, :, :, i) with TKD by Equation (9);
2: Compute dictionaries Ψ1, Ψ2, Ψ3 by Equation (10), and normalize every dictionary by

Equation (11) to obtain the initial dictionaries Ψ1, Ψ2, Ψ3;
3: while t ≤ iter do
4: Fix Ψ1, Ψ2, Ψ3, and solve Equation (12) via NBOMP [67] to obtain Y ;
5: for every atom ψ

j1
1 of Ψ1, j1 = 1 to n1 do

6: I1 = [∅];
7: Find the index set I1 which contains all the i satisfied Equation (13);
8: Ψ1(:, j1) = 0, X̃ = X(:, :, :, I1), Ỹ = Y(:, :, :, I1);
9: Rj1 = X̃ − Ỹ ×1 Ψ1 ×2 Ψ2 ×3 Ψ3;

10: Do HOSVD [63,66] for Rj1 ≈ λ · u1 ◦ u2 ◦ u3 ◦w;

11: Update ψ
j1
1 , Ỹ j1 ×2 Ψ2 ×3 Ψ3 using Equations (19) and (20), and calculate Ỹ j1 by

LS;
12: end for
13: for every atom ψ

j2
2 of Ψ2, j2 = 1 to n2 do

14: I2 = [∅];
15: Find the index set I2 which contains all the i satisfied ‖Y(:, j2, :, i)‖2

F > 0;
16: Ψ2(:, j2) = 0, X̃ = X(:, :, :, I2), Ỹ = Y(:, :, :, I2);
17: Rj2 = X̃ − Ỹ ×1 Ψ1 ×2 Ψ2 ×3 Ψ3;
18: Do HOSVD [63,66] for Rj2 ≈ λ · u1 ◦ u2 ◦ u3 ◦w;

19: Update ψ
j2
2 , Ỹ j2 ×1 Ψ1 ×3 Ψ3 using Equations (21) and (22), and calculate Ỹ j2 by

LS;
20: end for
21: for every atom ψ

j3
3 of Ψ3, j3 = 1 to n3 do

22: I3 = [∅];
23: Find the index set I3 which contains all the i satisfied ‖Y(:, :, j3, i)‖2

F > 0;
24: Ψ3(:, j3) = 0, X̃ = X(:, :, :, I3), Ỹ = Y(:, :, :, I3);
25: Rj3 = X̃ − Ỹ ×1 Ψ1 ×2 Ψ2 ×3 Ψ3;
26: Do HOSVD [63,66] for Rj3 ≈ λ · u1 ◦ u2 ◦ u3 ◦w;

27: Update ψ
j3
3 , Ỹ j3 ×1 Ψ1 ×2 Ψ2 using Equations (23) and (24), and calculate Ỹ j3 by

LS;
28: end for
29: t = t + 1;
30: end while
Ensure: Ψ1, Ψ2, Ψ3.

3.2. The Proposed Classification Methods

The proposed classification method TDSLMV for HSI is illustrated in Figure 1, and
Table 1 details the symbols used in the proposed TDSLMV. Moreover, the classification
method TDSL consists of several steps: data preprocessing, training feature extractors,
extracting joint spectral-spatial tensor features, training classifier, and classification. Fur-
thermore, we add the majority vote to refine the classification results of TDSL, i.e., the
proposed TDSLMV method.
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Table 1. Definitions of symbols used in the proposed TDSLMV.

Symbol Definition Size

Z1 the original data of data set #1 n1 ×m1 × B1
Z2 the original data of data set #2 n2 ×m2 × B2
P the spatial size of a sample patch 1× 1

B the number of principal components
retained by PCA 1× 1

N1
the number of unlabeled training

samples from data set #1 1× 1

X1
the unlabeled training data with samples

extracted from data set #1 after PCA P× P× B× N1

Ntr
2

the number of labeled training samples
from data set #2 1× 1

X tr
2

the labeled training data with samples
extracted from data set #2 after PCA P× P× B× Ntr

2

Nts
2

the number of testing samples from data
set #2 1× 1

X ts
2

the testing data with samples extracted
from data set #2 after PCA P× P× B× Nts

2

Ψ1, Ψ2, Ψ3
the dictionaries which used as the feature

extractors P× P, P× P, B× B

Y tr
2

the feature tensor of the labeled training
data X tr

2
P× P× B× Ntr

2

Y ts
2 the feature tensor of the testing data X ts

2 P× P× B× Nts
2

µ1

the sparsity level parameter in tensor
dictionary 1× 1learning, i.e., the process of training

feature extractors

µ2

the sparsity level parameter in sparse
representation, 1× 1

i.e., the process of extracting features
W the window size in the majority vote 1× 1

Before training feature extractors and extracting features, the two data sets are both
preprocessed with the same procedures. Whitened PCA (WPCA) is used to reduce the
spectral dimensions of the two data sets, first. Redundancy exists in the spectral information
of HSI, WPCA is applied to the spectral dimension to reduce the redundancy. Furthermore,
WPCA can reduce the complexity of models. The new spectral dimensions of the two data
sets are the same after WPCA, even though they are different before. The original data set
#1 is denoted as Z1 ∈ Rn1×m1×B1 , n1 and m1 specify the spatial size, and B1 is the number
of spectral bands. We perform mode-3 matricization on Z1 to obtain a B1 × n1m1 matrix Z1.
Then the WPCA of data set #1 is:

R = D−
1
2 ETZ1, (25)

where R is the whitened matrix, E consists of eigenvectors of the covariance matrix Z1ZT
1 ,

and the corresponding eigenvalues of E consist in a diagonal matrix D. Next, we reshape
the matrix R back to a n1 × m1 × B tensor, B is the number of new spectral dimensions.
The WPCA of data set #2 is similar to the previous procedures. Then the values of the two
data sets are normalized to be 0 to 1, to reduce the luminance variance. We randomly extract
sample patches of size P× P× B from data set #1, denoted as X1. We extract the same size
sample patches at every position with annotation from data set #2. All the samples are split
into training set X tr

2 and testing set X ts
2 randomly.
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Next, we perform STDL on unlabeled samples X1 from data set #1 to obtain the feature
extractors Ψ1, Ψ2, Ψ3. The optimization problem is:

min
Ψ1,Ψ2,Ψ2,Y1

‖X1 − Y1 ×1 Ψ1 ×2 Ψ2 ×3 Ψ3‖2
F,

s.t.‖Y1(:, :, :, i)‖0 ≤ µ1 · P2 · B, i = 1, 2, . . ., N1,
(26)

where µ1 is the sparsity level, N1 is the number of samples in X1.
Subsequently, we extract tensor features with Ψ1, Ψ2, Ψ3 on data set #2. The feature

tensor Y tr
2 of the labeled training set X tr

2 is obtained via NBOMP [67],

arg min
Y tr

2

‖X tr
2 − Y tr

2 ×1 Ψ1 ×2 Ψ2 ×3 Ψ3‖2
F,

s.t.‖Y tr
2 (:, :, :, i)‖0 ≤ µ2 · P2 · B, i = 1, 2, . . ., Ntr

2 ,
(27)

where µ2 is the sparsity level in sparse representation, Ntr
2 is the number of training samples

from data set #2. Then, we vectorize the feature tensor of every sample. This amounts to
mode-4 matricization on Y tr

2 . Therefore, the input of the training SVM model is Y tr
2(4) with

the shape of Ntr
2 × P2B. The feature tensor Y tr

2 of the labeled training set affects the classifier
performance directly. The quality of features and the number of features in the feature
tensor both affect the performance of the classifier. The quality of features is determined
directly by the feature extractors, i.e., the three dictionaries, and indirectly affected by the
sparsity level parameter µ1. The number of features is determined by the sparsity level
parameter µ2.

Once we obtain the SVM model, we can perform the classification procedures. When
we classify the testing set X ts

2 , we extract the corresponding tensor features first. We solve:

arg min
Y ts

2

‖X ts
2 − Y ts

2 ×1 Ψ1 ×2 Ψ2 ×3 Ψ3‖2
F,

s.t.‖Y ts
2 (:, :, :, i)‖0 ≤ µ2 · P2 · B, i = 1, 2, . . ., Nts

2 ,
(28)

to obtain the feature tensor Y ts
2 via NBOMP [67], where Nts

2 is the number of testing samples
from data set #2. Then, the input of the SVM model is the mode-4 matricization of Y ts

2 .
The output labels of the SVM model composite a probability map.

The proposed TDSL classification method consists of all the previous procedures.
Furthermore, we can utilize the spatial information in the classification map of TDSL
to improve the classification results. We refine the classification map via the majority
vote. First, we extract a W ×W patch for every pixel in the probability classification map
obtained by TDSL. Then, we count the number of occurrences of every class in the patch.
We determine the final label for the center pixel by the most frequent class.

C = arg max
c=1,...,M

W2

∑
w=1

f (Lw, c), (29)

f (Lw, c) =

{
1, i f Lw = c

0, i f Lw 6= c
(30)

where f (Lw, c) is the function for counting the number of occurrences of every class, Lw
is the label of wth pixel in the patch, and M is the number of all classes in data set #2.
TDSLMV includes all of the above procedures, and Algorithm 2 summarizes all the steps.

3.3. Hypothesis and Limitations

The assumption behind self-taught models is that the features they learn to extract are
generalizable, i.e., they will work well across data sets if their underlying natural statistics
are similar [8]. The majority vote works under the hypothesis that the pixels belong to the
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same class if they are neighbors. Therefore, if the real class of a pixel is different from its
surrounding pixels, then the pixel will be misclassified after the majority vote.

Algorithm 2 The TDSLMV Algorithm

Require: Unlabeled data set #1 Z1 ∈ Rn1×m1×B1 , labeled data set #2 {Z2 ∈ Rn2×m2×B2 ,
L ∈ Rn2×m2 }.

1: Perform WPCA on Z1 to reduce the spectral dimensions, preserve the first B principal
components, obtain Z̃1 ∈ Rn1×m1×B;

2: Randomly extract sample patches form Z̃1, obtain training data X1;
3: Perform STDL on X1 to obtain the feature extractors Ψ1, Ψ2, Ψ3 by solving

Equation (26);
4: Perform WPCA on Z2 to reduce the spectral dimensions, preserve the first B principal

components, obtain Z̃2 ∈ Rn2×m2×B;
5: Randomly extract sample patches form Z̃2, obtain labeled training set {X tr

2 , Ltr} and
testing set X ts

2 ;
6: Extract feature tensor Y tr

2 of the labeled training set X tr
2 with Ψ1, Ψ2, Ψ3 by solving

Equation (27);
7: Perform mode-4 matricization on Y tr

2 to obtain Y tr
2(4);

8: Train SVM model with the input {Y tr
2(4), Ltr};

9: Extract feature tensor Y ts
2 of the testing set X ts

2 with Ψ1, Ψ2, Ψ3 by solving
Equation (28);

10: Perform mode-4 matricization on Y ts
2 to obtain Y ts

2(4);

11: Predict labels L̃ts of Y ts
2(4) with SVM model and obtain probability map;

12: Perform majority vote on probability map by Equations (29) and (30), obtain the
classification map and the final labels Lts.

Ensure: SVM model, Lts, and classification map.

3.4. Computational Complexity Analysis

For a given training HSI data set with N samples, the computational complexity
of training tensor feature extractors is mainly dominated by the update of dictionaries
using K-HOSVD, which requires O(2P4B2(kN + P4B2)) [64], where P is the spatial size
of each sample, B is the number of spectral bands, k is the number of nonzero coeffi-
cients in each feature tensor, and the computational complexity of extracting features is
O(6k4 + (2k + 3)P2B) [67].

4. Experimental Results and Analysis

In this section, we perform a series of experiments to evaluate our proposed classi-
fication methods. We utilize four widely used HSI benchmark data sets available on the
website (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_
Scenes (accessed on 25 July 2022)): the Salinas, the Indian Pines, the Pavia Center, and the
Pavia University. The Salinas and the Pavia Center are used as unlabeled data sets (i.e.,
data set #1), the Indian Pines and the Pavia University are used as labeled data sets (i.e.,
data set #2). We perform experiments to demonstrate the proposed methods are effective
for cross-scene and cross-sensor HSI classification. When data set #1 is the Salinas, we
denote the proposed methods as TDSL-S and TDSLMV-S. When data set #1 is the Pavia
Center, we denote the proposed methods as TDSL-P and TDSLMV-P. Table 2 summarizes
the abbreviations of the proposed methods. Furthermore, we apply the trained feature
extractor model to a complex dataset Houston2013 (The data were provided by Prof. N.
Yokoya from the University of Tokyo and RIKEN AIP) to demonstrate the advantages of the
proposed methods in terms of applications. The feature extractor model and parameters
are trained on the four aforementioned datasets, and we just retrain the SVM model on the
Houston2013 data.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Table 2. Definitions of abbreviations of the proposed methods in the experiments.

Abbreviation Definition

TDSL the proposed tensor-based dictionary self-taught learning
classification method

TDSLMV the TDSL followed by the majority vote

TDSL-S, TDSLMV-S the data set #1 is Salinas, i.e., training feature extractors
on Salinas

TDSL-P, TDSLMV-P the data set #1 is Pavia Center, i.e., training feature extractors on
Pavia Center

We compare our methods with several state-of-the-art methods: the SVM applied to
spectral data [17], the SVM applied to contextual data (CSVM) [50], the spectral dictionary
learning (SDL) [12], the simultaneous orthogonal matching pursuit (SOMP) [14], the spatial-
aware dictionary learning (SADL) [13], the generalized tensor regression (GTR) [58], Hy-
bridSN [22], ASTDL-CNN [61] and SpectralFormer [32]. Among these methods, SVM,
CSVM, SDL, and SADL belong to SVM-based methods. Simultaneously, SDL, SADL,
SOMP, and ASTDL-CNN are sparse representation methods. HybridSN, ASTDL-CNN,
and SpectralFormer belong to neural network methods. The proposed TDSL extracts
features by sparse representation and classifies features with SVM, thus we compare it with
both SVM-based methods and sparse representation methods. To demonstrate the effective-
ness of feature extractors trained from other unlabeled data, we compare TDSL with SVM.
CSVM is an improved SVM method. To demonstrate the effectiveness of dictionary learning
in TDSL, we compare it with SDL and SADL. SDL is a spectral-based method, and SADL
incorporates spectral information with spatial information. SOMP is a sparse representation
method without the SVM classifier. It is worth comparing our methods with GTR because
GTR utilizes tensor technology and it is necessary to compare our methods with neural net-
work methods and our previous works. The codes of SVM, CSVM, SDL, SOMP, and SADL
are available on the website (http://ssp.dml.ir/research/sadl/ (accessed on 7 May 2020)),
the codes of GTR are available on the website (https://github.com/liuofficial/GTR (ac-
cessed on 25 July 2022)), the codes of HybridSN are available on the website (https://github.
com/MVGopi/HybridSN (accessed on 25 July 2022)), and the codes of SpectralFormer are
available on the website (https://github.com/danfenghong/IEEE_TGRS_SpectralFormer
(accessed on 12 August 2022)).

For our proposed methods, the new number of spectral bands B is set to 50 for all
experiments [60]. Ref. [60] demonstrates when B is larger than 40, the information preserved
by PCA is sufficient to achieve high classification accuracy. The size of the extracted samples
is set to 7× 7× 50 (i.e., P is set to 7, which is the same as in [32]). Ref. [65] demonstrates
the K-HOSVD can achieve convergence in about 5 iterations. Therefore, the maximum
number of iterations for updating dictionaries in Algorithm 1 is set to 10 to guarantee
convergence. Ref. [67] states when tolerance ε = 0.01, a sparse representation is correctly
recovered. Moreover, the higher precision required, the smaller tolerance and more training
time are needed. In our method, the tolerance ε in the NBOMP algorithm is set as 0.02.
The SVM used in the proposed methods is performed by using the radial basis function
(RBF) kernel. In SVM, RBF-kernel parameter σ and regularization parameter C can be
optimally determined by five-fold cross-validation on the training set in the range of
σ = [2−8, 2−7, . . . , 28] and C = [2−8, 2−7, . . . , 28].

The proposed methods implement tensor-based manipulation via the MATLAB Tensor
Toolbox [68]. The SVM in all SVM-based methods is performed by the LIBSVM toolbox [69].
All the methods except the neural network methods are implemented in MATLAB 2017b
on a 64-b octa-core CPU 2.60-GHz processor with 8-GB RAM. HybridSN, ASTDL-CNN,
and SpectralFormer are performed in Python 3.6 with the library of Pytorch 1.3. Fur-
thermore, we evaluate the classification results by three wildly used metrics, the overall
accuracy (OA), the average accuracy (AA), and the Kappa coefficient (Kappa). The OA is
the proportion of correctly classified samples to the overall samples in the testing set, the AA

http://ssp.dml.ir/research/sadl/
https://github.com/liuofficial/GTR
https://github.com/MVGopi/HybridSN
https://github.com/MVGopi/HybridSN
https://github.com/danfenghong/IEEE_TGRS_SpectralFormer
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is the mean value of each category’s accuracies, and Kappa is calculated by weighting the
measured accuracies [7].

4.1. Data Sets Description

The five representative HSI data sets used in this paper are briefly described as follows.
Figure 2 shows the composite three-band false-color maps, the ground truth maps, and the
details of the samples for Salinas, Pavia Center, Indian Pines, and Pavia University. Table 3
shows the information of the Houston2013 dataset.

We first introduce the data sets used as unlabeled data sets, i.e., data set #1.
(1) Salinas: This data set is collected by the Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) sensor over Salinas Valley in California. The HSI consists of
512× 217 pixels with a spatial resolution of 3.7 meters per pixel. The AVIRIS gathers
224 bands in the wavelength range 0.4–2.5 µm, whereas we remove 20 bands, which are
noisy or cover the water absorption region. Therefore, we use 204 spectral bands in the
experiments. The ground truth of Salinas contains 16 classes, including bare soils, vegeta-
bles, and vineyard fields. The details of these classes are displayed in the corresponding
table in Figure 2. We use 10% samples of every class as the unlabeled samples to train
feature extractors.

(2) Pavia Center: This data set is gathered by the Reflective Optics Spectrometer
(ROSIS) over Pavia in northern Italy. The HSI consists of 1096× 715 pixels, and the spatial
resolution is 1.3 meters per pixel. The ROSIS sensor captures 115 bands with a spectral
range of 0.43–0.86 µm. The number of spectral bands is 102 after removing the noisy bands.
The ground truth contains 9 classes, and the detailed information of every class is shown in
the corresponding table in Figure 2. We randomly choose 200 samples from every class as
the unlabeled samples to train feature extractors.

Next, we introduce the data sets used as labeled training data and testing data, i.e., data
set #2.

(1) Indian Pines: This data set is collected by the AVIRIS sensor over the Indian Pines in
Northwestern Indiana. The scene consists of 145× 145 pixels, and the spatial resolution is
20 meters per pixel. We preserve 200 bands after removing noisy bands in the experiments.
The ground truth contains 16 classes, including agriculture, forest, and natural perennial
vegetation. The details of the information, including the name of every class, the numbers of
training samples, and the numbers of testing samples, are displayed in the corresponding
table in Figure 2. The number of training samples accounts for about 15% of the total
samples with annotation.

(2) Pavia University: This data set is gathered by the ROSIS sensor surrounding the
university of Pavia. The image consists of 610× 340 pixels, and the number of spectral
bands for the experiments is 103. The spatial resolution is the same as the Pavia Center.
The ground truth contains 9 classes, and the classes are different from the classes of Pavia
Center. The details of every class are displayed in the corresponding table in Figure 2.
We randomly choose 300 or 400 samples from every class as the labeled training samples,
and the total proportion is less than 1%.

Finally, we introduce the Houston2013 dataset. This data set is gathered by the ITRES
CASI-1500 sensor over the campus of the University of Houston and its neighboring rural
areas in the USA. The image consists of 349× 1905 pixels and 144 bands with a spectral
range of 0.364–1.046 µm. The ground truth contains 15 classes. The details of every class
are displayed in Table 3, whose background colors indicate different classes of land-covers,
and the numbers of training samples are set according to [32].
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Sensor Data set #1 Data set #2

AVIRIS

Salinas

(a) (b)

Class Samples

No Name Total Train

1 Brocoli-green-weeds-1 2009 201
2 Brocoli-green-weeds-2 3726 373
3 Fallow 1976 198
4 Fallow-rough-plow 1394 140
5 Fallow-smooth 2678 268
6 Stubble 3959 396
7 Celery 3579 358
8 Grapes-untrained 11,271 1128
9 Soil-vinyard-develop 6203 621
10 Corn-senesced-green-weeds 3278 328
11 Lettuce-romaine-4wk 1068 107
12 Lettuce-romaine-5wk 1927 193
13 Lettuce-romaine-6wk 916 92
14 Lettuce-romaine-7wk 1070 107
15 Vinyard-untrained 7268 727
16 Vinyard-vertical-trellis 1807 181

Total 54,129 5418

Indian Pines

(c)

Classification Map Ground-Truth Map Error MAP

(d)

Class Samples

No Name Train Test

1 Alfalfa 20 26
2 Corn-notill 150 1278
3 Corn-mintill 150 680
4 Corn 100 137
5 Grass-pasture 100 383
6 Grass-trees 100 630
7 Grass-pasture-mowed 10 18
8 Hay-windrowed 50 428
9 Oats 10 10
10 Soybean-notill 200 772
11 Soybean-mintill 250 2205
12 Soybean-clean 120 473
13 Wheat 30 175
14 Woods 130 1135
15 Buildings-grass-trees-drives 80 306
16 Stone-steel-towers 50 43

Total 1550 8699

ROSIS

Pavia Center

(e) (f)

Class Samples

No Name Total Train

1 Water 65,971 200
2 Trees 7598 200
3 Meadows 3090 200
4 Self-blocking bricks 2685 200
5 Bare soil 6584 200
6 Asphalt 9248 200
7 Bitumen 7287 200
8 Tiles 42,826 200
9 Shadows 2863 200

Total 148,152 1800

Pavia University

(g)

Classification Map Ground-Truth Map Error MAP

(h)

Class Samples

No Name Train Test

1 Asphalt 400 6231
2 Meadows 400 18,249
3 Gravel 400 1699
4 Trees 400 2664
5 Painted metal sheets 300 1045
6 Bare soil 400 4629
7 Bitumen 300 1030
8 Self-blocking bricks 400 3282
9 Shadows 300 647

Total 3300 39,446

Figure 2. Three-band false-color composite images, ground truth maps, the corresponding sensors,
and details of the samples for the four widely used benchmark data sets (the Salinas, the Indian Pines,
the Pavia Center, and the Pavia University): (a) false-color composite image of Salinas, (b) ground
truth map of Salinas, (c) false-color composite image of Indian Pines, (d) ground truth map of
Indian Pines, (e) false-color composite image of Pavia Center, (f) ground truth map of Pavia Center,
(g) false-color composite image of Pavia University, (h) ground truth map of Pavia University.

4.2. Influence of the Sparsity Levels

In the proposed TDSL classification method, there are two sparsity level parameters,
one is in Equation (26) to train feature extractors on data set #1 via the STDL algorithm,
and the other one is in Equations (27) and (28) to extract tensor features on data set #2
via the NBOMP algorithm. Equations (26)–(28) show that the sparsity level parameters
decide the number of nonzero coefficients in feature tensors, and the number of nonzero
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coefficients in feature tensors is also related to the size of the input data. The number
of nonzero coefficients in feature tensors affects the classification accuracy. Therefore,
the sparsity level parameters are selected according to the size of the input data and ensure
that the number of nonzero coefficients in each feature tensor is enough. We suggest that
the number of nonzero coefficients in each feature tensor should be over 20. In this study,
we analyze the impacts of the two sparsity level parameters µ1 and µ2 according to the
experiment results of methods: TDSL-S on the Indian Pines data set, TDSL-P on the Indian
Pines, TDSL-S on Pavia University, and TDSL-P on Pavia University. The numbers of
training samples in the two data sets and the numbers of testing samples in data set #2
are set as Figure 2. The results are displayed in Figure 3. In Figure 3, the red dots are the
actual experiment results, and the three-dimensional surfaces are fitted according to these
red dots. The surfaces can clearly show the influence of the sparsity level parameters on
classification results. We evaluate the sparsity level parameters by the OA, AA, and Kappa.
Furthermore, the actual number of nonzero coefficients in the sparse feature tensor for
every sample in data set #2 is denoted as K, and the average K for the whole data set #2 is
also displayed in Figure 3.

Table 3. Information of the Houston2013 dataset, with the number of training and testing samples.

Class No. Class Name Training Testing
1 Healthy Grass 198 1053
2 Stressed Grass 190 1064
3 Synthetic Grass 192 505
4 Tree 188 1056
5 Soil 186 1056
6 Water 182 143
7 Residential 196 1072
8 Commercial 191 1053
9 Road 193 1059
10 Highway 191 1036
11 Railway 181 1054
12 Parking Lot1 192 1041
13 Parking Lot2 184 285
14 Tennis Court 181 247
15 Runing Track 187 473

Total 2832 12,197

Figure 3 shows the variation of classification accuracies with the two sparsity level
parameters µ1 and µ2. Moreover, µ1, µ2 together decide the actual numbers of nonzero
coefficients in tensor features K, and affect the classification results. Furthermore, for differ-
ent data set #2, the variation tendency is different. The first row and the second row from
top to bottom indicate the results on Indian Pines, i.e., data set #2 is the Indian Pines in the
experiments. The third row and the fourth row indicate the results on Pavia University,
i.e., data set #2 is the Pavia University in the experiments. The first row and the second
row have a similar variation tendency, the third row and the fourth row also have a similar
variation tendency. Figure 3a–h show that OA, AA, and Kappa of TDSL-S and TDSL-P on
Indian Pines increase with the decrease in µ2, while K decreases with the decrease in µ2,
when µ1 is fixed. Moreover, when µ2 is fixed, with the change of µ1, the OA, AA, Kappa,
and K remain the same or fluctuate within a certain range. Figure 3i–p show that the OA,
AA, and Kappa of TDSL-S and TDSL-P on Pavia University increase first and then fluctuate
within a certain range, with the increase in µ1 when µ2 is fixed. Moreover, when µ1 is fixed,
the OA, AA, Kappa increase first and then fluctuate within a certain range with the increase
in µ2.
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Figure 3. Impact of the sparsity level in tensor dictionary learning (µ1) for the unlabeled data sets
#1 (the Salinas and the Pavia Center) and the sparsity level in sparse representation (µ2) for the
labeled data sets #2 (the Indian Pines and the Pavia University) on the classification accuracies (AA,
OA, and Kappa), and the average number of nonzero coefficients in feature tensors (K). From top
to bottom, the first row (a–d) represents the results of the TDSL-S on the Indian Pines, the second
row (e–h) represents the results of the TDSL-P on the Indian Pines, the third row (i–l) represents the
results of the TDSL-S on the Pavia University, and the last row (m–p) represents the results of the
TDSL-P on the Pavia University.



Remote Sens. 2022, 14, 4373 17 of 32

According to Figure 3, it is obvious that the classification accuracies are affected by
both µ1 and µ2. Furthermore, Figures 4–7 display the classification accuracies and K are
affected by µ1 or µ2 when the other one is fixed. Figure 4 shows the results of TDSL-S on
Indian Pines, and Figure 5 shows the results of TDSL-P on Indian Pines. Figures 4a and 5a
show that K remains the same and accuracies fluctuate within a certain range when µ2 is
fixed. Figures 4b and 5b shows that accuracies increase first and then decrease with the
increase in µ2 when µ1 is fixed and K increases with the increase in µ2. Figure 6 shows the
results of TDSL-S on Pavia University, and Figure 7 shows the results of TDSL-P on Pavia
University. Figures 6a and 7a show that accuracies increase first and then fluctuate within
a certain range with the increase in µ1 when µ2 is fixed and K increases step by step with
the increase in µ1. Figures 6b and 7b show that accuracies increase first and then fluctuate
within a certain range with the increase in µ2 when µ1 is fixed. Moreover, K increases first
and then remains the same with the increase in µ2 when µ1 is fixed.
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Figure 4. Classification accuracies (the OA, AA, and Kappa) and the average number of nonzero
coefficients in feature tensors (K) for TDSL-S on Indian Pines. (a) The effect of µ1 when µ2 is fixed
and µ2 = 0.01. (b) The effect of µ2 when µ1 is fixed and µ1 = 0.025.
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Figure 5. Classification accuracies (the OA, AA, and Kappa) and the average number of nonzero
coefficients in feature tensors (K) for TDSL-P on Indian Pines. (a) The effect of µ1 when µ2 is fixed
and µ2 = 0.01. (b) The effect of µ2 when µ1 is fixed and µ1 = 0.01.

For all the experiments, the classification accuracies are related to the average K.
The classification accuracies increase with the increase in the average K, at first. It is
because the average K represents the number of features in the sparse feature tensor. When
the number of features is small, the information represented by these features is not enough
to classify. Whereas, when the average K is larger than a certain value, the classification
accuracies fluctuate in a certain range or decrease. It is because when the number of features
is large enough, the information is enough for classification. The fluctuation is due to noise
and the SVM model. However, if there are too many features, the classifier will be difficult
to classify. The average K is related to the two sparsity level parameters µ1, µ2, and the
error of the least-squares optimization problem Equations (26)–(28). For different data set
#2, the satisfied optimization termination conditions of NBOMP are different. For Indian
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Pines, when the number of nonzero coefficients gets to µ2 · p2 · B, the optimization of sparse
representation stops. Therefore, in Figures 3d,h, 4b and 5b, the K increases with the increase
in µ2. Whereas the influence of µ1 on K is small. For Pavia University, the error of sparse
representation satisfies the conditions for loop termination, before the number of nonzero
coefficients gets to µ2 · p2 · B. In this case, the µ1 decides the maximum of K, and the µ2
decides the actual number of K. When the µ2 is smaller than µ1, the average K increases
with the increase in µ2 first but when the µ2 gets to µ1, the average K keeps the same, despite
the µ2 continuing to increase. This phenomenon is obvious in Figures 3l,p, 6b and 7b.

According to these experiment results, we determine the parameters. The two sparsity
level parameters in the experiments for the two data sets are set as in Table 4.
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Figure 6. Classification accuracies (the OA, AA, and Kappa) and the average number of nonzero
coefficients in feature tensors (K) for TDSL-S on Pavia University. (a) The effect of µ1 when µ2 is fixed
and µ2 = 0.02. (b) The effect of µ2 when µ1 is fixed and µ1 = 0.02.
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Figure 7. Classification accuracies (the OA, AA, and Kappa) and the average number of nonzero
coefficients in feature tensors (K) for TDSL-P on Pavia University. (a) The effect of µ1 when µ2 is fixed
and µ2 = 0.02. (b) The effect of µ2 when µ1 is fixed and µ1 = 0.025.

Table 4. The sparsity level parameters for the proposed methods on the two data sets.

Data Set #2 Indian Pines Pavia University

Method TDSL-S TDSL-P TDSL-S TDSL-P

µ1 0.008 0.035 0.026 0.032

µ2 0.01 0.0087 0.008 0.0089

4.3. Influence of the Majority Vote

After the proposed TDSL gets a probability classification map, we can use the majority
vote to refine the classification results. This is denoted as TDSLMV. The majority vote
utilizes the spatial information in the classification map. We vote in a W ×W window,
and the parameter W influences the refined results. The results on the two data sets #2, (i.e.,
the Indian Pines, and the Pavia University) are displayed in Figure 8.
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Figure 8. Classification accuracies (the OA, AA, and Kappa) for proposed methods with the majority
vote in different window sizes (W) on two data sets. (a) The results of TDSLMV-S on Indian Pines.
(b) The results of TDSLMV-S on Pavia University. (c) The results of TDSLMV-P on Indian Pines.
(d) The results of TDSLMV-P on Pavia University.

It is obvious that the majority vote can refine the classification accuracies to a certain
extent, in Figure 8. When the W equals to 1, the TDSLMV becomes TDSL. Figure 8 shows
the classification accuracies (the OA, AA, and Kappa) increase with the increase in W
first, and then the accuracies decrease with the increase of W. In Figure 8a,c, maximum
accuracies are achieved when W = 5. In Figure 8b,d, maximum accuracies are achieved
when W = 7. The majority vote works under the assumption that the pixels belong to the
same class if they are neighbors. Whereas, when W is larger than a certain value, the pixels
in the window are more likely to belong to different classes. Therefore, when W is larger
than a certain value, the accuracies decrease. For different data sets, the most appropriate
W is different. From Figure 8, we can easily obtain that the most appropriate W for Indian
Pines is 5, and for Pavia University W = 7.

4.4. Parameter Setting for the Comparison Methods

In this work, we compare the proposed methods with nine state-of-the-art HSI classifi-
cation methods, including:

1. SVM [17] is applied to the spectral bands of every pixel in the HSI. The kernel of the
SVM is a polynomial kernel, and the optimal parameters (polynomial kernel degree
d, and regularization parameter C) are obtained by five-fold cross-validation on the
training set in the range of d = [1, 2, . . . , 10], and C = [10−1, 1, 10, . . . , 107].

2. CSVM [50] is SVM applied to the contextual data. The window width of the contextual
data is set as 7. The kernel of SVM is a radial basis function (RBF) kernel, and the
parameters (RBF-kernel parameter σ and regularization parameter C) are also obtained
by five-fold cross-validation on the training set in the range of σ = [0.1, 1, 10, 100],
and C = [10−1, 1, 10, . . . , 107].

3. SDL [12] is a sparse dictionary learning method with spectral data. It utilizes dic-
tionary learning to extract features and uses SVM to classify. We also use five-fold
cross-validation to determine the parameters. The sparse regularization parameter
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ranges in {0.1, 1, 10, 100}. The number of dictionary atoms is proportional to the
number of training samples, the proportion is chosen from { 1

2 , 1
4 , 1

8 , 1
16}.

4. SOMP [14] is a sparse representation method. The method incorporates contextual
information into spectral data. The test samples are sparsely represented by the train-
ing samples and directly determined the labels according to the sparse representation.
The parameters of SOMP are set as those in [14].

5. SADL [13] method is a sparse dictionary learning method applied to the data incorpo-
rating spectral and contextual information, and the sparse coefficients are classified
by SVM. The patch size parameter is set as 7× 7, and the other parameters of SADL
are set as the same as those in [13].

6. The generalized tensor regression (GTR) [58] method extends the ridge regression
with multivariate labels to the tensorial version. GTR takes advantage of tensorial
representation with the nonnegative constraint. The spatial size is set as 7× 7, and the
other parameters are set as the same as those in [58].

7. HybridSN [22] is a CNN method, which assembles 3-D CNN and 2-D CNN. The epoch
is set as 10, the batch size is set as 20, and the learning rate is set as 0.001 and the
numbers of PCA components are set as the same as in [22].

8. ASTDL-CNN [61] is the tensor-based method and CNN-based method, the parameters
are set as the same as reported in [61].

9. SpectralFormer [32] is a transformer-based backbone network, which is focused on
spectrometric characteristics. The pixel-wise SpectralFormer is compared, and the
parameters are set as the same as those in [32].

4.5. Comparisons with Different Classification Methods

We evaluate the proposed methods by comparing them with the aforementioned meth-
ods on two wildly used data sets (the Indian Pines, and the Pavia University). Moreover,
the two data sets correspond to data set #2 in our proposed methods. When we train
feature extractors on the data set Salinas (i.e., data set #1 is the salinas), the methods are
denoted with ‘-S’, and when data set #1 is the Pavia Center, the methods are denoted with
‘-P’. We evaluate the proposed TDSL and TDSLMV at the same time. To demonstrate that
the proposed methods are effective in the cross-scene classification, we perform TDSL-S,
TDSLMV-S on the Indian Pines data, and perform TDSL-P, TDSLMV-P on the Pavia data,
where data set #1 and data set #2 are gathered by the same sensor but over different scenes.
Furthermore, to demonstrate that the proposed methods can work in the cross-scene and
cross-sensor classification, we perform TDSL-S, TDSLMV-S on Pavia University, and per-
form TDSL-P, TDSLMV-P on the Indian Pines, where the data set #1 and data set #2 are
gathered by different sensors over difference scenes.

We perform the experiments with randomly extracted samples ten times for every
method, and the numbers of training samples and testing samples are as shown in Figure 2.
The classification results for the Indian Pines data are reported in Table 5. We report
the results in the form of ‘mean value ± standard deviation’. Table 5 shows that SVM
and SDL obtain poor results since they just utilize spectral data. SpectralFormer obtains
better results than SVM and SDL, although the input of SpectralFormer is also spectral
data. It demonstrates the superiority of neural network methods. CSVM gets better
results than SVM, and SADL obtains better results than SDL, which demonstrates that
contextual information is important for HSI classification. SOMP provides worse results
than SADL, though they are both sparse representation methods applied to both spectral
and contextual data. This implies that training dictionaries from training samples and
classifying the corresponding sparse coefficients by SVM can improve the classification.
Furthermore, SVM can not only give the classification results but also can extract further
features from the sparse coefficients. GTR provides better results than other methods except
for the proposed methods, this stresses that the tensor technology is more beneficial to the
HSI classification. The results of HybridSN are better than SVM, CSVM, SDL, SOMP, SADL,
and SpectralFormer, because HybridSN extracts spectral-spatial features by 3-D CNN and
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2-D CNN. ASTDL-CNN obtains better results than HybridSN, because ASTDL can extract
intrinsic tensor features, which are more conducive to classification. HybridSN and ASTDL-
CNN are CNN-based methods and need more labeled data than GTR, therefore, the results
of GTR are better than those of HybridSN and ASTDL-CNN. The results of TDSL-S are
better than those of SVM, which demonstrates that the feature extractors learned from
another unlabeled data set can extract discriminative features for classification. The results
of TDSL-P demonstrate that the proposed method can provide very high classification
accuracies even meeting the cross-scene and cross-sensor task. TDSLMV-S provides the
best results in terms of the OA, AA, and Kappa. The OA of TDSLMV-S achieves as high
as 99.13%, and even the OA of TDSLMV-P achieves as high as 98.99% in cross-scene and
cross-sensor classification tasks. Compared with GTR, the average OA of TDSLMV-S is
improved by 2.48%. Furthermore, the standard deviations are small which means that the
proposed methods are robust.

Figure 9 illustrates the classification maps obtained by the thirteen aforementioned
methods for the Indian Pines. It can be easily observed that many isolated misclassified
pixels appear in the classification maps of the spectral methods SVM, SDL, and Spec-
tralFormer. From Figure 9b,d,e we can easily observe that the utilization of contextual
information can effectively reduce the isolated misclassified pixels. From Figure 9g,h,j–
m, we can observe that very few isolated misclassified pixels appear in the classification
maps of the tensor-based methods (GTR, HybridSN, ASTDL-CNN, and our methods).
However, the misclassified pixels are more likely to appear together in the classification
maps for tensor-based methods. Especially, the misclassified pixels appear at the edges
between two different homogenous regions. Figure 9g,h show that the misclassified pixels
tend to appear in small homogenous regions. This is because the tensor samples may
contain pixels belonging to different classes, especially when extracting samples at the
edges between different homogenous regions. Figure 9l,m show that the majority vote can
refine the classification, correcting most of the misclassified pixels in the large homogenous
regions and at the edges of different homogenous regions. Therefore, the classification map
of TDSLMV-S is the most similar to the ground truth map of the Indian Pines.

The classification results for Pavia University are reported in Table 6, and the corresponding
classification maps are illustrated in Figure 10. The results of HybridSN and ASTDL-CNN are
better than CSVM, SOMP, SADL, and GTR, and the results of SpectralFormer are better than SVM
and SDL. It demonstrates that neural network-based methods can achieve better results when
the labeled samples are enough. The results of TDSL-S are higher than the comparison methods,
which means the proposed method is superior to the other methods even for the cross-scene and
cross-sensor classification tasks. Moreover, TDSLMV-P provides the highest accuracies in terms of
the OA, AA, and Kappa. The average OA of TDSLMV-P achieves 99.28%, which is very high in all
methods for HSI classification. Even for the cross-scene and cross-sensor classification, the average
OA of TDSLMV-S achieves as high as 99.21%. Compared with ASTDL-CNN, the average OA of
TDSLMV-P is improved by 2.61%. Furthermore, the standard deviations of OA, AA, and Kappa,
for our proposed methods (i.e., TDSL-S, TDSL-P, TDSLMV-S, TDSLMV-P) are smaller than those
for the other methods. This further demonstrates the robustness of our methods.

Figure 10 illustrates the classification maps and the corresponding error maps for the
aforementioned methods. Unlike the Indian Pines, Pavia University consists of many small
homogenous regions, which means that Pavia University contains more edge. Therefore,
the performance of GTR on Pavia University data is worse than it on Indian Pines data.
Figure 10a,c,i show that the misclassified pixels for spectral methods appear not only at
the edges but also in the large homogenous regions. From Figure 10b,e, we can infer
that the utilization of contextual information can reduce the misclassified pixels in large
homogenous regions. Furthermore, the misclassified pixels for tensor-based methods
mainly appear at the edges and in the small homogenous regions, which is observed from
Figure 10f–h,j,k. However, Figure 10j,m show that the majority vote can also correct the
misclassified pixels at edges and in the little homogenous regions.
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Figure 9. Classification maps and the corresponding error maps obtained by (a) SVM (OA = 81.07%),
(b) CSVM (OA = 92.86%), (c) SDL (OA = 76.63%), (d) SOMP (OA = 81.71%), (e) SADL (OA = 91.36%),
(f) GTR (OA = 96.75%), (g) HybridSN (OA = 94.29%), (h) ASTDL-CNN (OA = 96.31%), (i) Spec-
tralFormer (OA = 83.61%), (j) TDSL-S (OA = 97.12%), (k) TDSL-P (OA = 96.07%), (l) TDSLMV-S
(OA = 99.57%), and (m) TDSLMV-P (OA = 99.25%) for the Indian Pines.
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Table 5. Classification accuracies (Mean Value ± Standard Deviation %) of different methods for the Indian Pines data set, bold values indicate the best result for
a row.

CLASS SVM [17] CSVM [50] SDL [12] SOMP [14] SADL [13] GTR [58] HybridSN [22] ASTDL-
CNN [61]

SpectralFormer
[32] TDSL-S TDSL-P TDSLMV-S TDSLMV-P

1 87.69± 8.74 86.15± 11.78 86.83± 4.68 88.08± 4.23 95.77± 3.37 98.08± 2.03 98.56± 2.86 98.37± 1.01 89.74± 2.22 99.57± 0.92 93.70± 4.52 100.00± 0.00 100.00± 0.00
2 66.44± 2.26 85.23± 2.57 68.98± 4.08 73.75± 4.47 82.87± 2.32 92.59± 2.08 86.96± 8.96 80.54± 3.41 69.69± 4.37 94.47± 0.75 92.34± 1.68 98.56± 0.71 97.46± 0.80
3 74.29± 2.82 92.90± 1.43 66.47± 3.64 70.07± 4.50 89.44± 2.25 96.56± 0.76 93.66± 2.41 99.59± 0.16 76.86± 2.39 97.14± 0.79 96.29± 1.45 99.37± 0.54 99.40± 0.94
4 85.69± 1.67 98.61± 1.06 73.83± 5.43 94.23± 2.27 94.82± 2.24 99.93± 0.23 97.54± 3.70 100.00± 0.00 86.37± 3.45 99.75± 0.67 98.90± 1.21 100.00± 0.00 100.00± 0.00
5 93.42± 1.28 96.19± 2.22 92.36± 1.98 94.49± 1.42 96.14± 1.16 97.18± 1.07 94.35± 3.79 96.01± 0.15 89.64± 3.95 97.72± 1.07 96.77± 1.56 99.57± 0.38 99.15± 0.85
6 94.75± 1.38 97.68± 1.04 92.98± 1.91 97.59± 1.32 98.40± 1.40 99.60± 0.21 92.10± 5.85 99.78± 0.07 94.76± 3.30 98.93± 0.52 98.16± 0.71 99.99± 0.04 99.96± 0.13
7 85.56± 11.97 96.67± 5.37 81.53± 12.02 82.22± 10.41 96.67± 2.87 100.00± 0.00 94.44± 7.86 98.21± 1.91 92.59± 6.42 98.93± 3.39 100.00± 0.00 99.64± 1.13 100.00± 0.00
8 94.70± 2.22 95.75± 2.65 94.39± 1.68 99.02± 0.60 99.44± 0.83 99.98± 0.07 89.28± 10.54 100.00± 0.00 95.79± 4.05 95.77± 3.31 89.50± 5.38 98.87± 2.33 98.72± 1.40
9 84.00± 9.17 89.00± 7.38 73.00± 21.11 79.00± 14.49 97.00± 6.75 100.00± 0.00 93.75± 17.68 78.75± 14.08 100.00± 0.00 99.00± 2.11 99.50± 1.58 99.50± 1.58 100.00± 0.00
10 78.41± 1.92 92.24± 1.63 68.93± 3.08 79.02± 3.36 92.40± 1.31 97.23± 1.22 95.68± 2.59 94.83± 2.64 89.29± 5.14 96.99± 0.99 97.53± 0.38 99.31± 0.73 99.68± 0.39
11 77.33± 2.26 91.44± 1.95 67.44± 1.30 90.44± 1.99 89.24± 1.49 95.11± 0.81 95.89± 3.16 97.20± 1.40 81.53± 1.79 95.70± 1.24 94.74± 1.41 98.46± 1.01 98.40± 0.86
12 83.74± 1.92 90.44± 1.67 84.63± 3.81 75.22± 2.24 90.38± 1.89 96.15± 1.12 91.09± 2.57 98.33± 0.57 74.63± 7.21 94.64± 1.49 94.60± 1.66 98.55± 1.18 99.39± 0.53
13 97.49± 1.28 94.57± 5.59 98.12± 1.37 98.23± 0.83 99.09± 0.90 98.97± 0.70 93.29± 4.71 99.94± 0.17 98.10± 0.87 98.00± 1.46 94.68± 4.12 99.56± 0.284 98.88± 1.32
14 93.02± 2.04 95.54± 1.06 88.19± 2.07 97.79± 1.20 97.63± 0.71 99.57± 0.16 95.01± 3.41 98.97± 1.94 91.48± 3.63 99.25± 0.49 98.42± 0.44 99.88± 0.25 99.89± 0.15
15 67.68± 3.38 96.27± 1.24 69.81± 4.41 95.16± 2.29 95.20± 2.08 98.43± 1.05 94.40± 4.58 99.38± 0.77 65.58± 10.69 99.25± 0.59 98.37± 1.14 99.95± 0.16 99.77± 0.39
16 97.21± 1.74 95.12± 3.87 92.33± 4.66 99.77± 0.74 97.21± 2.40 100.00± 0.00 98.26± 2.41 98.92± 0.00 95.35± 4.65 98.49± 0.91 99.14± 0.68 99.68± 0.52 99.25± 0.73

OA 81.16± 0.81 92.42± 0.70 76.38± 0.65 87.02± 0.58 91.80± 0.44 96.65± 0.32 93.28± 1.74 95.58± 0.82 83.04± 0.90 96.81± 0.34 95.63± 0.37 99.13± 0.37 98.99± 0.23
AA 85.09± 1.40 93.36± 0.84 81.24± 1.53 88.38± 0.80 94.48± 0.63 98.09± 0.25 94.02± 1.32 96.18± 1.06 86.96± 0.33 97.73± 0.34 96.42± 0.64 99.43± 0.24 99.37± 0.14

Kappa 78.47± 0.90 91.30± 0.79 73.02± 0.71 85.03± 0.67 90.61± 0.50 96.16± 0.37 92.27± 1.99 94.95± 0.94 80.59± 1.06 96.36± 0.39 95.02± 0.42 99.01± 0.42 98.85± 0.26

Table 6. Classification accuracies (Mean Value ± Standard Deviation %) of different methods for the Pavia University data set, bold values indicate the best result for
a row.

CLASS SVM [17] CSVM [50] SDL [12] SOMP [14] SADL [13] GTR [58] HybridSN [22] ASTDL-
CNN [61]

SpectralFormer
[32] TDSL-S TDSL-P TDSLMV-S TDSLMV-P

1 84.01± 0.79 88.94± 1.33 89.09± 0.89 68.51± 1.11 88.78± 1.08 77.41± 1.18 92.33± 5.09 96.78± 1.67 87.56± 0.89 95.68± 0.75 96.81± 0.58 98.68± 0.41 99.38± 0.38
2 87.16± 1.30 92.98± 0.77 84.95± 1.20 90.49± 1.12 93.26± 1.33 94.01± 1.70 94.67± 4.40 97.12± 1.73 83.01± 3.17 98.44± 0.40 98.49± 0.32 99.42± 0.30 99.40± 0.30
3 77.85± 1.06 88.06± 1.60 78.23± 1.74 93.78± 0.91 88.97± 1.41 90.99± 1.77 91.97± 12.12 92.06± 2.52 83.68± 3.60 94.31± 0.80 95.66± 0.69 98.66± 0.94 99.16± 0.66
4 97.09± 0.54 82.43± 1.58 94.88± 1.06 96.56± 0.56 97.64± 0.61 94.01± 0.68 94.99± 3.22 95.27± 2.41 92.91± 1.15 98.92± 0.35 98.94± 0.31 99.22± 0.29 99.03± 0.35
5 99.91± 0.05 90.00± 1.51 99.84± 0.14 100.00± 0.00 99.81± 0.16 100.00± 0.00 99.42± 0.99 99.99± 0.03 99.43± 0.17 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
6 85.68± 0.95 93.32± 1.12 90.09± 1.53 85.17± 1.36 94.93± 0.76 94.57± 0.88 99.65± 0.72 97.11± 3.84 95.06± 2.20 99.31± 0.15 99.70± 0.28 100.00± 0.01 100.00± 0.00
7 90.71± 1.01 93.30± 1.29 82.36± 2.68 98.22± 0.39 90.00± 1.91 100.00± 0.00 97.99± 5.88 98.25± 3.23 89.94± 2.17 98.95± 0.47 98.55± 0.68 100.00± 0.00 100.00± 0.00
8 82.07± 1.60 85.66± 1.10 70.20± 2.90 89.94± 0.64 85.61± 0.87 83.65± 1.03 86.82± 8.87 96.77± 3.05 88.12± 1.07 90.07± 0.66 90.71± 0.94 97.66± 0.49 97.24± 0.68
9 99.07± 0.43 100.00± 0.00 100.00± 0.00 98.73± 0.68 100.00± 0.00 98.47± 0.32 96.18± 3.77 91.95± 11.04 100.00± 0.00 99.33± 0.32 99.37± 0.21 99.54± 0.14 99.48± 0.13

OA 86.96± 0.52 90.89± 0.31 85.93± 0.72 87.49± 0.49 92.42± 0.66 90.85± 0.77 94.38± 2.59 96.67± 0.94 87.16± 1.15 97.31± 0.24 97.66± 0.16 99.21± 0.16 99.28± 0.14
AA 89.28± 0.20 90.52± 0.32 87.74± 0.59 91.27± 0.25 93.22± 0.33 92.57± 0.26 94.89± 1.62 96.15± 0.86 91.08± 0.30 97.22± 0.15 97.58± 0.11 99.24± 0.13 99.30± 0.12

Kappa 82.62± 0.65 87.85± 0.39 81.35± 0.92 83.26± 0.62 89.81± 0.85 87.69± 0.99 92.45± 3.41 95.60± 1.24 83.07± 1.39 96.45± 0.31 96.91± 0.22 98.95± 0.21 99.05± 0.19
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Figure 10. Classification maps and the corresponding error maps obtained by (a) SVM (OA = 86.24%),
(b) CSVM (OA = 90.79%), (c) SDL (OA = 85.80%), (d) SOMP (OA = 87.95%), (e) SADL (OA = 92.07%),
(f) GTR (OA = 90.87%), (g) HybridSN (OA = 95.95%), (h) ASTDL-CNN (OA = 96.73%), (i) Spec-
tralFormer (OA = 86.12%), (j) TDSL-S (OA = 97.63%), (k) TDSL-P (OA = 97.95%),(l) TDSLMV-S
(OA = 99.45%), and (m) TDSLMV-P (OA = 99.49%) for the Pavia University.

To discuss the performance of the proposed methods when meeting the cross-scene
and cross-sensor classification tasks, we display the OA of the proposed methods on the
two data sets in Figure 11. It can be easily observed that on the Indian Pines data, TDSL-S
and TDSLMV-S provide higher OA than TDSL-P and TDSLMV-P, respectively. Whereas,
on the Pavia University data, the accuracies of TDSL-P and TDSLMV-P are higher than
those of TDSL-S and TDSLMV-S, respectively. This means that the proposed methods
provide higher accuracies for the cross-scene task than for the cross-scene and cross-sensor
tasks. Furthermore, applying the majority vote not only can refine the classification results,
but also close the gaps of accuracies caused by cross-sensor.
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Figure 11. The overall accuracies of proposed methods TDSL-S, TDSL-P, TDSLMV-S, and TDSLMV-P
on the two data sets (the Indian pines and the Pavia University).

To evaluate the impact of different amounts of labeled training samples from data set
#2, we perform all the proposed methods three times with 1%, 2%, 5%, 10%, 20%, and 30%
training samples of the labeled data. We illustrate the results in Figure 12. In Figure 12a,
the accuracies with 1% and 2% labeled training samples are not very high on Indian Pines
data. Because some classes contain very few samples, for 1%, the numbers of labeled
training samples in some classes are less than five. However, when the number of labeled
training samples gets over 5%, the accuracies of TDSLMV are more than 95%. In Figure 12b,
the accuracies of TDSLMV with 1% labeled training samples can obtain 95% on Pavia
University. This demonstrates that our proposed methods can work well with a small
labeled training set.
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Figure 12. The overall accuracies of TDSL-S, TDSLMV-S, TDSL-P, and TDSLMV-P with different
percentages of labeled samples for training. (a) The results for Indian Pines. (b) The results for
Pavia University.

To evaluate the impact of different amounts of unlabeled training samples from data
set #1, we perform the proposed TDSL and TDSLMV three times with 1%, 2%, 5%, and 10%
training samples from the unlabeled data set Salinas, and we perform classification on Pavia
University to evaluate the performance of the feature extractors in cross-scene and cross-
sensor classification task. Figure 13 displays the results. The accuracies with 1% unlabeled
training samples from Salinas are not very high, the OA of TDSL-S is about 60%, and the
OA of TDSLMV-S is lower than 70%. This demonstrates that when the amount of unlabeled
samples is too small, the trained feature extractors can not extract effective generalization
features but the accuracies with 2% unlabeled training samples from Salinas are very high,
and the number of unlabeled training samples is about 1000. This demonstrates that at
least a thousand unlabeled samples are needed to train the feature extractors.
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Figure 13. The classification accuracies (OA, AA, Kappa) of TDSL-S and TDSLMV-S on Pavia
University with different percentages of unlabeled training samples from Salinas.

We report the time of the aforementioned methods in Table 7. It is easily observed that
SVM is the fastest among these methods, CSVM and GTR are the second-fastest methods.
The speeds of SDL, SADL, and ASTDL-CNN are slower than SVM, CSVM, and GTR, be-
cause the dictionary learning and sparse representation methods need more time. In SOMP,
testing samples are sparsely represented by training samples directly, therefore, it does
not need training time. In general, neural network methods need much time to train the
model, therefore, the training time of HybridSN is the longest. SpectralFormer needs less
training time than HybridSN and ASTDL-CNN, because the input of SpectralFormer is the
spectrum, and the number of parameters in the model is small. The training time of ASTDL-
CNN is shorter than HybridSN, because ASTDL simplifies the 2-D CNN. The proposed
methods take the most time except HybridSN and ASTDL-CNN. The training time of TDSL
and TDSLMV includes the time of training dictionaries, the time of sparse representation for
labeled training samples, and the time of training SVM. The testing time of TDSL includes
the time of sparse representation for testing samples and the time of classification with
SVM. The testing time of TDSLMV includes the extra time of the majority vote than TDSL.
Although the proposed methods are not the fastest, they provide high accuracies and can
complete the cross-scene and cross-sensor classification tasks. Therefore, for applications
that are not time critical the proposed methods have distinct advantages.

According to the above experimental results and analysis, the proposed TDLSMV
achieves the highest classification accuracies, including the OA, AA, and Kappa, on both
Indian Pines and Pavia University in all compared methods. Additionally, the standard
deviations of TDSL and TDSLMV are smaller than the other compared methods. It demon-
strates the robustness of the proposed methods. Furthermore, TDSL and TDSLMV can
achieve high accuracies with a small labeled training set. The disadvantage of the proposed
TDSL and TDSLMV is that their speeds are not the fastest.

4.6. Application on a Complex Dataset

We evaluate the classification performance of the trained feature extractor model
applied to the Houston2013 dataset directly. The trained feature extractor models come
from the aforementioned comparison experiments, in which the feature extractor models
are trained on Salinas and Pavia Center data, and the parameters µ1 and µ2 are set as
those in experiments on Indian Pines and Pavia University data, i.e., µ1 and µ2 are set as in
Table 4. We just use the Houston2013 data to retrain the SVM model, because it is necessary
for a classification task. Further, the window size of the majority vote is set as W = 7, which
is the same as in experiments on Pavia University data.
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Table 7. Speeds (Seconds) of different methods on the two data sets (the Indian Pines and the Pavia University).

Data Set SVM [17] CSVM [50] SDL [12] SOMP [14] SADL [13] GTR [58] HybridSN [22] ASTDL-
CNN [61] SpectralFormer [32] TDSL-S TDSL-P TDSLMV-S TDSLMV-P

Indian Pines training time 0.38 2.29 869.55 — 126.19 4.35 3786.11 1543.04 216.96 565.21 329.99 565.21 329.99
testing time 3.16 3.34 27.95 116.90 7.16 3.43 248.39 126.18 0.91 717.88 748.80 718.37 749.34

Pavia University training time 0.74 8.49 833.13 — 482.50 4.98 3328.64 1972.61 1425.93 777.43 964.78 777.43 964.78
testing time 7.54 22.08 97.42 447.06 134.82 16.62 265.37 181.16 2.479 885.61 1466.14 888.17 1468.62
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Table 8 displays the classification results of the SpectralFormer method and the trained
model of the proposed methods. The models of TDSL-S and TDSLMV-S with µ1 = 0.008,
µ2 = 0.01, TDSL-P and TDSLMV-P with µ1 = 0.035, µ2 = 0.0087, are the models trained
in the aforementioned comparison experiments on Indian Pines. The models of TDSL-S
and TDSLMV-S with µ1 = 0.026, µ2 = 0.008, TDSL-P and TDSLMV-P with µ1 = 0.032,
µ2 = 0.0089, are the models trained in the aforementioned comparison experiments on
Pavia University data. It is obvious that the trained model is efficient when applied to a
new dataset. The results of the trained models are superior to the results of SpectralFormer.
In particular, the OAs of models trained in the experiments on Pavia University are more
than 99%. The results of models trained in the experiments on Pavia University are better
than the results of models trained in the experiments on Indian Pines. It is because the
Houston2013 and Pavia University are both gathered over the city, while Indian Pines just
contains agriculture, forest, and natural perennial vegetation. The classification results of
the TDSLMV model trained in the experiments on Indian Pines achieve 98.39% and 97.83%,
which are enough for general applications.

Figure 14 shows the three-band false-color composite image, ground truth map, classi-
fication maps, and the corresponding error maps for the Houston2013 dataset. Figure 14a
shows that the dataset is complex and the labeled categories are scattered. The classification
map of SpectralFormer has many misclassified pixels, and the classification maps of the
trained models just have a few misclassified pixels. This demonstrates that the trained
feature extractor models are efficient when applied to a complex dataset.
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Figure 14. Three-band false-color composite image, ground truth map, classification maps, and the
corresponding error maps obtained by SpectralFormer method and the proposed methods on
the Houston2013: (a) false-color composite image and ground truth map, (b) SpectralFormer,
(c) TDSL-S with µ1 = 0.008 and µ2 = 0.01, (d) TDSL-S with µ1 = 0.026 and µ2 = 0.008, (e) TDSL-P
with µ1 = 0.035 and µ2 = 0.0087, (f) TDSL-P with µ1 = 0.032 and µ2 = 0.0089, (g) TDSLMV-S with
µ1 = 0.008 and µ2 = 0.01, (h) TDSLMV-S with µ1 = 0.026 and µ2 = 0.008, (i) TDSLMV-P with
µ1 = 0.035 and µ2 = 0.0087, (j) TDSLMV-P with µ1 = 0.032 and µ2 = 0.0089.

Table 8. Classification accuracies of the proposed methods and SpectralFormer method on Hous-
ton2013 dataset.

Class SpectralFormer [32]
TDSL-S TDSL-P TDSLMV-S TDSLMV-P

µ1 = 0.008
µ2 = 0.01

µ1 = 0.026
µ2 = 0.008

µ1 = 0.035
µ2 = 0.0087

µ1 = 0.032
µ2 = 0.0089

µ1 = 0.008
µ2 = 0.01

µ1 = 0.026
µ2 = 0.008

µ1 = 0.035
µ2 = 0.0087

µ1 = 0.032
µ2 = 0.0089

1 84.14 92.89 98.32 99.36 98.40 100.00 100.00 100.00 98.16
2 97.46 95.06 100.00 98.41 99.92 100.00 100.00 99.68 100.00
3 99.60 98.42 99.86 99.14 100.00 100.00 100.00 100.00 100.00
4 97.92 92.04 98.23 95.74 99.44 97.83 100.00 99.68 100.00
5 96.50 98.31 100.00 100.00 100.00 100.00 100.00 100.00 100.00
6 95.10 100.00 99.08 99.08 99.69 100.00 100.00 100.00 100.00
7 87.50 89.43 99.13 92.67 98.97 99.45 100.00 99.37 100.00
8 51.57 80.31 98.55 88.50 99.36 92.28 99.28 94.29 100.00
9 69.50 83.71 99.76 88.18 98.16 94.25 100.00 94.81 99.28

10 81.27 87.53 99.84 87.61 99.84 100.00 100.00 94.46 100.00
11 86.43 90.28 99.76 84.21 99.60 98.22 100.00 92.96 100.00
12 66.09 93.27 99.68 93.03 99.51 99.03 99.68 98.46 99.68
13 75.44 88.06 98.93 90.83 100.00 98.72 100.00 100.00 100.00
14 99.60 97.43 98.36 100.00 100.00 100.00 100.00 100.00 100.00
15 98.73 93.48 100.00 99.85 100.00 100.00 100.00 100.00 100.00

OA 83.64 91.14 99.33 93.67 99.43 98.39 99.91 97.83 99.76
AA 85.79 92.01 99.30 94.44 99.53 98.65 99.93 98.25 99.81

Kappa 82.28 90.43 99.28 93.16 99.38 98.26 99.91 97.66 99.74

5. Conclusions

This paper has proposed an STDL algorithm and a TDSL classification method based
on the STDL for HSI. The proposed STDL algorithm initializes dictionaries with TKD and
updates dictionaries based on K-HOSVD. The proposed TDSL method utilizes a small
amount of unlabeled data to train tensorial feature extractors with the STDL algorithm and
then utilizes these feature extractors to extract discriminative joint spectral-spatial tensor
features on the other data set. To provide the classification results, SVM is applied to the ten-
sor features. Compared to traditional self-taught learning methods, the proposed method
just utilizes a small amount of unlabeled and labeled data. Furthermore, the proposed
TDSLMV refines the classification with the majority vote on the classification map obtained
by TDSL. The proposed methods have been evaluated on four widely used benchmark data
sets and TDSLMV provides the highest accuracies, the average OA of TDSLMV achieves as
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high as 99.13% and 99.28% on Indian Pines and Pavia University, respectively. The experi-
mental results demonstrate that the proposed methods can complete the cross-scene and
cross-sensor classification tasks with high accuracy. TDSLMV can effectively reduce the
misclassified pixels in the homogenous regions and at the edges of different homogenous
regions, compared with other classification methods, and the average OA is improved
by at least 2.5%. Moreover, accuracies of the trained feature extractor models applied
directly to the classification task on Houston2013 reach 99%. When the proposed method
is applied to a classification task with limited data, the feature extractor models can be
trained on a publicly available dataset and directly applied to the task data. The proposed
method can alleviate the problem of limited data. Because of the speeds of the proposed
methods, the future work of this research focuses on accelerating dictionary learning and
sparse representation.
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