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1. Background

Land surface phenology (LSP) is an important research field in terrestrial remote
sensing and has become an indispensable approach in global change research, as evidenced
by many important scientific findings supported by LSP in recent decades. LSP involves
the use of remote sensing to monitor seasonal dynamics in vegetated land surfaces and
to retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.).
LSP is an essential indicator of global change and has played a pivotal role in shaping our
understanding about how terrestrial ecosystems are responding to climate change and
human activities. Both regional and global LSP products have been routinely generated
and played prominent roles in modeling crop yield, ecological surveillance, identifying
invasive species, modeling the terrestrial biospheric processes, and assessing global change
impacts on urban and natural ecosystems.

Recent advances in field and spaceborne sensor technologies, as well as data fusion
techniques, have enabled novel LSP retrieval algorithms that refine LSP retrievals at even
higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Mean-
while, rigorous assessment of the uncertainties in LSP retrievals is undergoing, and efforts
to reduce these uncertainties are also forming an active research field. In addition, open-
source software and hardware are being developed and have greatly facilitated the use of
LSP metrics by scientists beyond the remote-sensing community. As such, we organized
this Special Issue to cover the latest developments in sensor technologies, LSP retrieval
algorithms and validation strategies, and the use of LSP products in a variety of fields.
The objective of this Editorial is to offer the readers an overview of the latest develop-
ments in the LSP field and facilitate the distribution of the scientific knowledge from this
Special Issue.

2. Papers in the Special Issue

The 15 papers published in this Special Issue represent diverse themes in the LSP
research field (see Table 1). Figure 1 presents the major keywords contained in the abstracts
of the papers. Although natural ecosystems were mostly studied [1–3], urban [4,5] and agri-
cultural ecosystems [6] were also considered in the as an important field of LSP applications.
High-altitude and high-latitude ecosystems gain particular attention in this Special Issue,
likely due to the sensitivity of these ecosystems to climate change [7–12]. Most studies have
a temporal scale greater than a decade, with a few having used NOAA/AVHRR data of
longer than three decades [10,13]. Additionally, it can be seen that the use of cloud-based
remote-sensing big data analytics facilities such as Google Earth Engine (GEE) have also
been adopted by several studies (e.g., [7–9]). While a majority of the papers focused on
scientific applications, some studies also looked at the theoretical aspect of LSP such as the
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scaling effect [13]. Data-wise, most studies used vegetation indices due to their long-term
continuity; a few papers also exploited the potential of emerging proxies such as solar-
induced chlorophyll fluorescence (SIF) [14]. Lastly, half of the studies published in this
Special Issue used some type of ground phenology data, including phenocam, traditional
phenology observations, and eddy–covariance flux towers.

Table 1. Publication summary of the Special Issue.

Publication Topic Satellite Data

Inclusion of
Ground

Phenology
Data

Target
Ecosystems

Temporal
Scale

Analytic
Platform

Kim et al. [4] Impact of urbanization
on phenology MODIS EVI Yes (phenocam) Urban, rural,

and natural 2016 Local

Wang et al. [8]

Mechanism and impact
of climatic and soil

factors on the phenology
of alpine ecosystems

MODIS NDVI Yes (phenology
stations)

Alpine meadow
and alpine

steppe
2001–2018 GEE

Ma et al. [7]
Phenological trends of
GPP dynamics in the

Arctic
MODIS GPP Yes (Fluxnet) Arctic

ecosystems 2001–2019 GEE

Zhang et al. [6] Crop phenology and
yield prediction

MODIS NDVI,
EVI, and LAI No Maize 2010–2015 Local

Ji et al. [5] Urban heat island effect
on spring phenology

MODIS EVI,
LST, Phenology No Urban, rural 2006–2018 Local

Guo et al. [9]
Mountain phenology

response to
meteorological drivers

MODIS NDVI No Mountainous
ecosystems 2001–2019 Local

Chen et al. [13] Scaling effect of LSP over
complex terrain

MODIS NDVI,
GIMMS3g

NDVI

Yes (phenology
stations)

Grassland,
cropland, and

forests
1982–2020 Local

Yang et al. [10]
Turning points of
grassland autumn

phenology

GIMMS3g
NDVI No

Alpine meadow,
forests, and
shrublands

1982–2015 Local

Guo et al. [15] Snow phenology and its
environmental drivers

MODIS Snow
Cover, NDVI No Forest,

cropland 2001–2018 GEE

Medeiros et al.
[3]

Caatinga phenology and
environmental drivers MODIS EVI No Caatinga 2000–2019 GEE

Wang et al. [14] Comparison of LSP from
SIF and EVI

MODIS EVI,
GOSIF

(Reconstructed
OCO-2 SIF)

No
Terrestrial

ecosystems in
China

2003–2016 Local

Costa et al. [2] Phenology of GPP
and WUE MODIS GPP Yes (Fluxnet)

Tropical forest,
caatinga, and

cerrado
2009–2016 Local

Liu et al. [11] Phenology responses to
snow seasonality

MODIS Snow
Cover No Mountainous

ecosystems 2002–2020 Local

Cui et al. [12]
Phenology response to

soil moisture and
temperature

MODIS NDVI Yes (phenology
stations)

Mountainous
ecosystems 2001–2020 Local

Costa et al. [1]
Phenology of ecosystem

productivity in dry
tropical forest

MODIS GPP,
MODIS NDVI

and EVI
Yes (Fluxnet) Caatinga (dry

tropical forest) 2014–2015 Local
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Figure 1. Cloud of the words contained in the abstracts of the papers published in the Special Issue 
“Remote Sensing of Land Surface Phenology”. The bigger the size, the higher the frequency of each 
word. 

3. Outlook to the Future 
As elaborated in the Call of Papers of this Special Issue, our hope was to not only 

summarize the ongoing diverse LSP developments but also boost discussions on pro-
spects in LSP research. With the 15 selected papers, we believe that this aim should have 
been accomplished. Based upon the new knowledge we gained from this Special Issue, 
we hereby offer our perspective on future research directions in the LSP field:  

First, improving the quality of the input satellite observations remains important as 
it lays the foundation for any downstream phenology retrieval and applications. From the 
sensor perspective, the improvement in sensor performance including spatial, spectral, 
and temporal resolutions is the direction of the development of new-generation remote-
sensing data sources. From the methodological perspective, data fusion can effectively 
regulate the inherent contradiction between “spatial resolution and temporal resolution” 
of satellite remote-sensing observation, and realize the simultaneous improvement in spa-
tial resolution and temporal resolution. In addition, with the development of remote-sens-
ing sensor technology, more spaceborne platforms are becoming available, such as geo-
stationary satellites that can observe the full disk of the Earth every 10–15 min, leading to 
much-improved temporal resolution that is capable of the near-real-time monitoring of 
vegetation dynamics [16–18]. Meanwhile, dozens or even hundreds of micro-/nanosatel-
lites can form a constellation to significantly increase the spatial coverage and spatial–
temporal resolution through a multisatellite synergetic approach. A relatively successful 
case is the PlanetScope constellation, which has launched more than 200 micro-/nanosat-
ellites so far, providing seamless multispectral observation data at a global scale with a 
daily temporal resolution and 3 m spatial resolution, significantly improving the capabil-
ity of resolving the fine details of global phenology change [19,20]. 

Second, the LSP retrieval workflow needs to be refined including the development 
of a more generalized algorithm. An often-encountered challenge in remote-sensing phe-
nology applications is the fact that different data sets do not share the same processing 
algorithm, which makes it difficult to analyze and compare the results from different stud-
ies. Therefore, it is an important future direction for remote-sensing phenology to develop 
a versatile algorithm that can adapt to different circumstances.  

Figure 1. Cloud of the words contained in the abstracts of the papers published in the Special Issue
“Remote Sensing of Land Surface Phenology”. The bigger the size, the higher the frequency of
each word.

3. Outlook to the Future

As elaborated in the Call of Papers of this Special Issue, our hope was to not only
summarize the ongoing diverse LSP developments but also boost discussions on prospects
in LSP research. With the 15 selected papers, we believe that this aim should have been
accomplished. Based upon the new knowledge we gained from this Special Issue, we
hereby offer our perspective on future research directions in the LSP field:

First, improving the quality of the input satellite observations remains important as it
lays the foundation for any downstream phenology retrieval and applications. From the
sensor perspective, the improvement in sensor performance including spatial, spectral, and
temporal resolutions is the direction of the development of new-generation remote-sensing
data sources. From the methodological perspective, data fusion can effectively regulate
the inherent contradiction between “spatial resolution and temporal resolution” of satellite
remote-sensing observation, and realize the simultaneous improvement in spatial resolution
and temporal resolution. In addition, with the development of remote-sensing sensor
technology, more spaceborne platforms are becoming available, such as geostationary
satellites that can observe the full disk of the Earth every 10–15 min, leading to much-
improved temporal resolution that is capable of the near-real-time monitoring of vegetation
dynamics [16–18]. Meanwhile, dozens or even hundreds of micro-/nanosatellites can form
a constellation to significantly increase the spatial coverage and spatial–temporal resolution
through a multisatellite synergetic approach. A relatively successful case is the PlanetScope
constellation, which has launched more than 200 micro-/nanosatellites so far, providing
seamless multispectral observation data at a global scale with a daily temporal resolution
and 3 m spatial resolution, significantly improving the capability of resolving the fine
details of global phenology change [19,20].

Second, the LSP retrieval workflow needs to be refined including the development of a
more generalized algorithm. An often-encountered challenge in remote-sensing phenology
applications is the fact that different data sets do not share the same processing algorithm,
which makes it difficult to analyze and compare the results from different studies. Therefore,
it is an important future direction for remote-sensing phenology to develop a versatile
algorithm that can adapt to different circumstances.
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Third, like many other remote-sensing subjects, validation is the essential component
in any satellite phenology product development. A key issue here is the scale mismatch chal-
lenge [21,22]. Scale matching is not only the matching of spatial scales but also the matching
between ground-based phenology metrics (e.g., budburst, flowering, leaf-coloring, etc.)
and satellite-based metrics (e.g., SOS, EOS, POS, etc.) [23,24]. Therefore, it is critical to
advance the theory and method that can resolve scale mismatch issues so that ground
and satellite observations can be used in a more tandem manner [25,26]. The use of UAV
observations and tower-mounted cameras can, to a certain extent, remediate the scale
mismatch issue [27,28]. Meanwhile, considering the complexity of scale effects, computer
simulations based on 3D radiative-transfer modelling can be used as a powerful tool to
explore the scale effects or mixed image effects in vegetation phenology remote-sensing
monitoring [29]. In addition, for low- and medium-resolution remote-sensing phenol-
ogy products (e.g., MODIS/VIIRS), it is difficult even for UAVs or phenocams to provide
validation data at the comparable pixel scale, in which case indirect “validation” can be
performed using higher-spatial-resolution satellite data [30].
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