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Abstract: Correctly estimating the relative permittivity of buried targets is crucial for accurately de-
termining the target type, geometric size, and reconstruction of shallow surface geological structures.
In order to effectively identify the dielectric properties of buried targets, on the basis of extracting the
feature information of B-SCAN images, we propose an inversion method based on a deep neural
network (DNN) to estimate the relative permittivity of targets. We first take the physical mechanism
of ground-penetrating radar (GPR), working in the reflection measurement mode as the constrain
condition, and then design a convolutional neural network (CNN) to extract the feature hyperbola
of the underground target, which is used to calculate the buried depth of the target and the relative
permittivity of the background medium. We further build a regression network and train the network
model with the labeled sample set to estimate the relative permittivity of the target. Tests were
carried out on the GPR simulation dataset and the field dataset of underground rainwater pipelines,
respectively. The results show that the inversion method has high accuracy in estimating the relative
permittivity of the target.

Keywords: ground-penetrating radar (GPR); deep learning; regression network; parameter inversion

1. Introduction

GPR has been widely used in shallow subsurface detection using non-destructive
remote sensing measurement technology. The GPR transmits electromagnetic pulse signals
underground and inverts the received GPR echo data to obtain information such as the
shape, size, location, and dielectric parameters of the buried target. The commonly used
GPR inversion methods include reverse-time migration (RTM) methods [1], common
midpoint (CMP) measurements [2], diffraction tomography (DT) approaches [3], and full
wave inversion (FWI) [4]. The migration method converts (or migrates) an unfocused space-
time GPR image into a focused one, showing the true location and size of the target, but it
cannot get the electromagnetic parameters of the targets [5,6]. The CMP method is usually
used to invert the permittivity of the medium, which constructs the propagation equation
of electromagnetic waves under different transmission and reception distances by using
the B-SCAN data with the change of the transmission and reception distance [7,8]. The DT
imaging method is established based on the Fourier Transform and Born approximation,
which can be deduced from the linear relationship between the spatial Fourier transform
of the object contrast function and the back-scattered field of the targets [9,10]. FWI is a
data-fitting technique to estimate the permittivity and conductivity of the medium through
the minimization of the distance between the observed data and those predicted by the
adopted model [11,12], but this inversion method is very sensitive to the initial model; a
poor starting model can easily lead the inversion into a local minimum or cycle skipping.

Fundamentally, estimating the electrical property parameters of the subsurface medium
based on the scattered field obtained by GPR entails solving an electromagnetic inverse
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scattering problem. However, the integral equation describing the distribution of the
underground field based on Maxwell’s equations is non-linear and ill-posed. At the same
time, the real underground scene is usually more complex, with media that can be lossy
and dispersive; this prevents the use of exact inverse procedures in operative cases. For
non-linear and ill-posed problems, a large number of research studies have been employed,
e.g., Van Den Berg et al. [13] discussed an iterative optimization solution for the non-linear
cost function of scattered fields. Babcock et al. [14] implemented a reflection waveform
inversion method to calculate the permittivity and conductivity of thin-layer media, which
uses a non-linear grid search with a Monte Carlo scheme to initialize starting values to
find the global minimum. Feng et al. [15] used a method combining a total-variation
model constraint and multi-scale inversion strategy to deal with the ill-posed problem of
GPR inversion. A trade-off between accuracy and stability can be established by intro-
ducing a regular term and combining linear approximation and regularization strategies,
e.g., Feng et al. [16] utilize modified total-variation regularization to constrain the inverted
models to improve inversion stability and mitigate ill-posedness. However, the weight
parameter of the cost function after adding a regularization term needs to be determined
through considerable numerical experimentation, and the linear approximation is usually
carried out under the corresponding preconditions. For instance, under the assumption
of weak wave field scattering (small disturbance), the Born approximation [17] treats the
field component as a perturbation expansion, and the Rytov approximation [18] treats the
complex phase of the field component as a perturbation expansion. Therefore, all these
factors call for an innovation of the inverse scattered field analysis method.

In recent years, deep-learning methods have been used in the object segmentation [19],
detection [20], and identification [21] of optical images with notable success. In the geo-
science community, deep-learning methods have also been widely investigated for seismic
fault detection [22,23], seismic facies identification [24,25], the detection of target feature
hyperbola in GPR B-SCAN images [26,27], and the classification and identification of GPR
buried targets et al. [28,29]. In geophysical inversion, deep-learning-based methods have
also been used to invert seismic velocity or impedance. For instance, Zhang et al. [30]
adopted an adjoint-driven deep-learning FWI method that utilizes the fully convolutional
network (FCN) to invert seismic velocity. Ren et al. [31] developed a CNN-based method
to estimate seismic velocity. Zhang et al. [32] utilized the ability of DNNs to non-linearly
map inputs to expected outputs and perform impedance inversion by a semi-supervised
framework. GPR and seismology are both wave-based geophysical techniques; some
deep-learning-based methods to inverse GPR scatter field have been introduced in the
literature, e.g., Liu et al. [33] developed a trace-to-trace structure of DNN to reconstruct the
permittivity map of tunnel linings but did not verify it in the field scenario. Leong et al. [34]
proposed a CNN-based method to directly invert the electromagnetic velocity in the sub-
surface layered structure medium; this method is only for the case where there is no buried
target in the layered medium. Ji et al. [35] used a DNN-based method to invert the spatial
location, size, and permittivity of objects with different sizes; however, the inversion results
in the field scenario have a large deviation. Meanwhile, such methods are data-driven and
make use of large data sets to learn the solution to the inverse scattered field. It should be
noted that the echo data is obtained under the constraints of the physical mechanism of GPR.
To this end, a combined GPR physical model-driven and data-driven approach is proposed
to invert the GPR scattering electric field. In this study, we focus on the non-linear mapping
transformation based on a regression network to invert the permittivity of buried targets.
More specifically, the contributions of this study are as follows:

(1) A method combining the physical mechanism of GPR and using CNN to detect the
high-level features of B-SCAN images is proposed to effectively obtain the main
parameter information for inversion of the GPR scattering field.

(2) We propose a regression-model-based approach to estimate the permittivity of sub-
surface targets. Specifically, by analyzing the physical characteristics of the GPR echo
data in the reflection measurement mode [36], the target scattering intensity, buried
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depth, and the permittivity of the background medium are used as input parameters
of the regression network, and the estimation result of the target permittivity is output
by non-linear mapping transformation.

(3) According to the MAXWELL equations, we discuss the validity of using regression
models to estimate target permittivity after generalizing the subsurface half-space
from a single-layer medium to a layered structure, which is verified by numerical
simulations and field experiments.

The study is organized as follows: we first introduce a combined model-driven and
data-driven approach to invert the permittivity of buried targets. Then, we apply the
methodology to synthetic data sets and validate the proposed method using field data.
Finally, we present our conclusions.

2. Materials and Methods

In this section, we focus on the method of building a regression network model to
estimate the relative permittivity of the target based on the feature information extracted
from the B-SCAN image. It should be noted that in our previous research work [37,38],
we analyzed the feature hyperbola detection method of B-SCAN images based on a con-
volutional neural network (CNN) in detail; the network structure used in this paper is
described in Section 2.2.

2.1. GPR Physical Mechanism

In the reflection measurement mode, GPR detects the buried target by transmitting
electromagnetic pulse signals into the ground. The distance between the transmit and
receive antennas is fixed, and they move together along the azimuth, close to the ground.
The echo signal is shown as a function of the measuring point and travel time, and this
provides a B-SCAN image, wherein the localized target appears as a diffraction hyperbola
that opens downwards. We assume that the incident uniform plane electromagnetic wave
can be expressed as

Ei(r, t) = E0ej(kr−ωt) (1)

where E0 is the intensity of the incident electromagnetic waves, k is the wave number, r is
the distance between field point and source point, ω is the angular frequency of the emitted
electromagnetic wave. Electromagnetic physical phenomena such as the reflection and
refraction of incident waves occur at a dielectric boundary

Ei = Es + ET
Es = γ · Ei
ET = T · Ei

(2)

where Es and ET are the reflected wave and refracted wave, respectively. According to
Snell’s law [39], reflection coefficient γ and transmission coefficient T are given by

γ =

√
ε1 −

√
ε2√

ε1 +
√

ε2
(3)

T =
2
√

ε1√
ε1 +

√
ε2

(4)

where ε1 and ε2 are the dielectric constant of medium 1 and medium 2, respectively. It
should be noted that the dielectric constant of the medium is a complex number, and its
expression is ε = ε′ − jε′′ , where ε′ represents the real part of the permittivity and ε′′ is the
dielectric loss factor. Consider the attenuation of electromagnetic waves in a lossy medium.
Usually, the attenuation is described by the conductivity (S/m) or the electric loss tangent
(tan δ) at a given frequency [40]. The permittivity discussed in this paper refers to the real
part ε′ of ε, and the attenuation of the medium is described by the conductivity parameter.
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For a lossy medium, it can be deduced from the MAXWELL equations that the
amplitude of the incident electromagnetic wave decays exponentially with the distance in
the propagation direction [36]. The reflected wave, considering the influence of attenuation
factors, can be expressed as

E′s = Ese−αr (5)

α = ω

√√√√ εrµr

2
(

√
1 +

σe2

ω2εr2 − 1) (6)

where α is the decay factor, and εr, µr, and σe are the relative permittivity, relative perme-
ability, and electrical conductivity of the medium, respectively. In general, the relative
permeability µr of the background medium in the underground half-space is equal to
the relative permeability µ0 of the air, i.e., µr = µ0 = 1, and when the parameter ω is
determined, the soil medium generally satisfies σ2/ω2ε2 << 1. It can be seen that when
the attenuation is constant, the relative permittivity is the main electrical characteristic
parameter that affects the scattering intensity. Figure 1 shows the simulated B-SCAN
images when different targets are buried in the soil. Figure 1a is an air-filled target, and its
relative permittivity is set to 1 and its conductivity is set to 0; Figure 1b is a water-filled
target that has a relative permittivity of 81 and a conductivity of 0.03 S/m; the relative
permittivity of the background medium soil is 11 and the conductivity is 0.02 mS/m.
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As shown in Figure 1, since the phases of the air-filled target and the water-filled
target are opposed, the amplitude of the scattered electric field shows an opposite peak. As
shown by the characteristic hyperbola of the rectangular area in Figure 1a,b, the amplitude
of the air-filled target is negative, and the amplitude of the water-filled medium target is
positive. According to Equations (3) and (5), if ε1 < ε2, the scattered electric field E′s(r, t)
will generate an additional phase; that is, when the electromagnetic wave propagates from
a medium with a small permittivity to a medium with a large permittivity, the phase will
be reversed. In order to obtain the phase information of E′s(r, t), it can be mapped to
the complex domain by Hilbert transform and denoted as Ê′s(r, t); this process can be
expressed as

Ê′s(r, t) =
1
π

∞∫
−∞

E′s(r, t)
1

t− τ
dτ (7)
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Then, the instantaneous phase calculation formula of the scattered field can be
expressed as

θ(r, t) = tan−1 (
Im[Ê′s(r, t)]

Re[Ê′s(r, t)]
) (8)

where Im(·) and Re(·) represent the imaginary part and the real part of the complex number,
respectively. By comparing θ(r, t) with the phase of the direct wave in the echo signal, the
phase change information at the target boundary can be obtained, and the spatial position
information of the target feature’s hyperbola in B-SCAN images can be accurately located.

According to the above analysis of the physical mechanism of GPR, it can be seen that
the electromagnetic (EM) wave is partly reflected at the interface between two different
media and partly transmitted into the next layer. (1) The reflected wave is based on
the amplitude strength, proportionally dependent on the relative permittivity for each
subsurface layer. The larger the dielectric contrast, the higher the reflection amplitude,
and when EM waves pass from a medium with a lower permittivity to a higher one, the
reflected waves are out-of-phase with the incident waves. (2) The refracted wave is in phase
with the incident wave and propagates into deeper layers, and attenuation increases as
the depth increases. Hence, the scattering intensity A of the target in the echo signal, the
buried depth d of the target, and the relative permittivity εr of the background medium
are the main parameters that affect the estimation result of the relative permittivity εT of
the target. Accordingly, in Section 2.4, we take A, d, and εr as the input parameters of the
regression network to estimate εT . The acquisition of parameters A, d, and εr is related to
the characteristic hyperbola of the target, that is, the scattering intensity at the vertex of
the characteristic hyperbola corresponds to parameter A, and the position of the vertex
corresponds to the parameter d, and parameter εr can be calculated by using the geometric
relationship of the hyperbola.

Remark 1. According to the physical mechanism of GPR, we analyze the main factors affecting
electromagnetic scattering in the subsurface, such as target scattering intensity, attenuation and
phase change of electromagnetic waves, etc., and then determine the relevant parameters for solving
the dielectric constant of the target. The prior information obtained based on the GPR physical
mechanism is integrated into the DNN model to accurately invert the GPR inverse scattering field.

2.2. CNN-Based Feature Hyperbola Detection Method

The target in the B-SCAN image exhibits a hyperbolic structure with a downward
opening and a certain intensity feature. Based on this, we use a CNN-based semantic
feature detection network to extract the target feature information in B-SCAN images.

The network structure for extracting semantic features, shown in Figure 2, is mainly
composed of two parts: convolution and deconvolution networks. The convolution net-
work is used to extract the high-level semantic information of the input B-SCAN image,
and the deconvolutional network up-samples the semantic feature map to obtain a feature
map of the same size as the input image. To deal with interfering signals in B-SCAN images,
we employ a classifier network to identify target feature hyperbolas. In this paper, the
classification network consists of two fully connected layers of size 1 × 1 × 4096 and a
softmax activation function.

Remark 2. Starting from the echo signal, the method of extracting the main parameter information
in the GPR data is discussed to invert the permittivity of the target. A CNN-based B-SCAN
image feature extraction method was used to obtain the main parameter information of GPR data.
Compared with typical neural network models based on anchor boxes and non-anchor boxes, such as
the Faster RCNN network and the YOLO series network, the proposed method utilizes the difference
in the electrical parameters of target and background media to extract the semantic features of images.
Furthermore, according to the B-SCAN image under the constraint of GPR, the target exhibits a
hyperbolic structure with a downward opening, and a classification and recognition network is used
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to identify the target and interference information. This greatly improves the accuracy of extracting
feature information from GPR image data in complex scenes.
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2.3. Background Dielectric Permittivity Calculation Method

The geometric structure of the target feature hyperbola in the GPR B-SCAN image
is shown in Figure 3. The separation distance between the transmitter and receiver of
the inner system is fixed, and the GPR moves in the x direction with set step size ∆x;
ordinate z is the two-way travel time, and horizontal coordinate x0 and vertical coordinate
z0, corresponding to the vertex of the hyperbola, indicate the horizontal position and the
burial depth of the target, respectively. The corresponding two-way travel time at burial
depth z0 is t0; xi denotes the horizontal coordinate of the antenna at the ith trace; the
distance between xi and the target is denoted as D. The following relations can be observed
from the geometry in Figure 3.

D =
√
(x0 − xi)

2 + z2
0 (9)
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Let the propagation velocity of the EM wave emitted by GPR in the medium be v; then,
t(xi) =

2D
v , where t(xi) denotes the two-way travel time from the antenna at position xi to

the buried target. Discretize the axes, i.e., let x0 = i0∆x, xi = i∆x, t0 = j0∆t, t = j∆t, and
plug them into Equation (9). According to the calculation of t(xi), the following equation
can be obtained

j2 =
4∆x2

∆t2v2 (i− i0)
2 + j20 (10)

where ∆x and ∆t are known quantities. Taking three different coordinate points on the
characteristic hyperbola and plugging them into Equation (10) yields the wave speed v, and
then the relative permittivity εr of the background medium can be calculated by v = c/

√
εr.

2.4. Regression Network-Based Permittivity Estimation Method

Consider the geometry of the 2D problem depicted in Figure 4. The geometry consists
of two half-spaces where the upper half-space is free space, with magnetic permeability
µ0 and permittivity ε1, respectively. The lower half-space represents the ground, with
magnetic permeability µ0 and permittivity ε2(r), respectively, and the target (µ0, ε(r)) is
buried underground. We first use the MAXWELL-based equations to deal with the inverse
scattering problem, which is described by the integral relationships.
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Assuming that the GPR emits an electromagnetic pulse signal q(r) with an angular
frequency ω to the ground, the total scattering field U(r) satisfies the Helmholtz equation

(∇2 + k2
0(r))U(r) = q(r) (11)

where the wave number k0(r) is given by

k2
0(r) =


ω2µ0ε1 r ∈ Ω1
ω2µ0ε2(r) r ∈ Ω2
ω2µ0ε(r) r ∈ <

(12)

When there is no target underground, we define a background wave number corre-
sponding to the underground half-space as

k2
b(r) =

{
ω2µ0ε1 r ∈ Ω1
ω2µ0ε2(r) r ∈ Ω2

(13)
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Plugging Equation (13) into Equation (11) yields

(∇2 + k2
b(r))U(r) = q(r)− χ(r)U(r) (14)

where the contrast function χ(r) is defined as

χ(r) = k2
0(r)− k2

b(r) (15)

We introduce Green’s function Gb(r, r′), which satisfies the following wave equation

(∇2 + k2
b(r))Gb(r, r′) = −δ(r− r′) (16)

The description of the total scattering field U(r) can be denoted as

U(r) = −
∫

Gb(r, r′)[q(r′)− χ(r′)U(r′)]dr′ (17)

Combining Equations (11) and (16), the equation for calculating the incident field Ui(r)
can be obtained as

Ui(r) = −
∫

Gb(r, r′)q(r′)dr′ (18)

Since U(r) is the sum of Ui(r) and Us(r), the result of the subtraction of
Equations (17) and (18) is

Us(r) =
∫

r′∈<
G(r, r′)χ(r′)U(r′)dr′ (19)

The process of inverting the target permittivity εT (which is included in the parameter
term χ(r′)) by Equation (19) can be described as

εT = O−1{Us(r), p̂|(γ, α, d)} (20)

where O−1 is the inverse operation, p̂ is the parameter set, including main parameters such
as reflection coefficient γ, attenuation factor α, and target burial depth d. It can be seen
from Equation (20) that under the constraint of the parameter set p̂, an explicit formulation
cannot usually be obtained when inverting the GPR inverse scattering field according to
Us(r). However, it is known from the universal approximation theorem [41] that a fully
connected neural network with a large number of neurons in its hidden layer has the
ability to represent any function we wish to learn. Based on this, DNN can be used to
characterize the inherent non-linear relationship between the observed quantity Y and the
feature information of the input signal X:X = f̂ (Y, Ŵ), where Ŵ is the weight parameter set
of DNN. That is, in the expression form, DNN is a non-linear mapping from the observation
space † to the feature space X . For any y ∈ †, DNN(y) ∈ X can be explicitly expressed as

DNN(y) = f̂L(· · · f̂i(· · · f̂1(y, w1) · ··, y, wi) · ··, y, wL) (21)

where wi is the weight coefficient of the ith layer of the DNN network, which can be
determined by learning, L is the depth of the DNN, which can be determined by cross-
validation. In order to invert the scattered field equation shown in Equation (19), combined
with the physical mechanism of GPR working in the underground half-space and the above
data-driven DNN model, we determine the main physical parameters describing the field
distribution, such as the target scattered field intensity A, the background permittivity εr,
and target burial depth d. They are used as the input of the DNN to train the network
model and output the estimation results of target permittivity. The designed regression
network structure is shown in Figure 5.
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The detailed parameters of each layer in the regression network are shown in Table 1.

Table 1. Details of the DNN.

Layer Ouput_Dim Layer Details

Hidden layer 1 64
Input_dim: 3

Activation: Relu
Dropout: 0.2

Hidden layer 2 128
Input_dim: 3

Activation: Relu
Dropout: 0.2

Hidden layer 3 256
Input_dim: 3

Activation: Relu
Dropout: 0.2

Hidden layer 4 512
Input_dim: 3

Activation: Relu
Dropout: 0.3

Hidden layer 5 512
Input_dim: 3

Activation: Relu
Dropout: 0.3

Hidden layer 6 1 —

The following regression network-based algorithm can be implemented to estimate
the permittivity εT :
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(1) Make a data set S for training the DNN:

S =
{

εT

∣∣∣(A(1), ε
(1)
r , d(1)), · · ·, εT

∣∣∣(A(i), ε
(i)
r , d(i)), · · ·, εT

∣∣∣(A(N), ε
(N)
r , d(N))

}
where N represents the number of training set samples, and A(i), ε

(i)
r and d(i) are the

intensity of the target, the relative permittivity of the background medium, and the buried
depth of the target in the ith sample, respectively.

(2) The non-linear mapping X = f̂ (Y, Ŵ) is expanded into an L layer DNN, and the
network model is trained on the example set. In general, empirical risk can be used to
evaluate the results of model training, that is, to measure the degree of fit between
the model and the training set in an average sense, where the empirical risk can be
defined as

Rem f (w) =
1
N

N

∑
n=1

l(xn, DNN(yn; w))

where w =
{

w(1), w(2), · · ·, w(L)
}

represents the set of all weight parameters in the DNN

of the L layer, with metric function l(·) =
∣∣∣∣·∣∣|22 . The training process of the DNN is to solve

the following optimization problem:

w∗ = argmin
w

Rem f (w)

Gradient descent can be used to solve this optimization problem.

(3) For the observation value y ∈ † of the input DNN, through non-linear mapping
transformation, the output value DNN(y) is the parameter inversion result.

Remark 3. The traditional model-based inverse problem-solving method has the advantage of
defining the search space of the solution according to the physical mechanism, but it has the problem
of difficulty in accurate modeling and accurate inversion. While learning-based inverse problem-
solving methods do not depend on models, their effectiveness inherently depends on network topology
and hypothesis space. We propose a combination of physical model-driven and data-driven methods,
such as expanding the non-linear mapping process shown in Equation (20) into an L-layer DNN
and then optimizing the solution. The main idea is to use the powerful learning ability of neural
networks to solve the problems of accuracy and difficult model selection of traditional model methods
while using model methods that can solve the difficulties of machine learning in determining network
topology and hypothesis space.

3. Results and Analysis

We demonstrate the effectiveness of the regression-network-based method for solving
the non-linear mapping problem of the GPR inverse scattering field. Firstly, a numerical
simulation experiment is carried out for the situation where the subsurface half-space is a
single-layer medium, and the input parameter set of the regression network is determined
according to the extracted target feature hyperbola to output the estimated result of target
permittivity. Then, according to the MAXWELL equations, the subsurface half-space is
extended to the layered media, and the influence on the output prediction results when the
input parameters of the regression network have a certain deviation is discussed. Finally, it
is verified in field scenes.

3.1. Numerical Simulation Description

The radar parameters are set to the following: the frequency of the GPR transmitting
the ricker waveform pulse to the ground is set to 400 MHz, the time window is set to 45 ns,
the receiving and transmitting antennas are moved close to the ground, and the distance is
set to 0.15 m. In the model structure shown in Figure 4, the lower half-space scene is set up
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as follows: the width along the azimuth direction is 5 m, and the depth along the range
direction is 2 m. The relative permittivity of the background medium is set to 9. The shape
of the buried target is set to a rectangle, where the size of the air-filled target is randomly
generated between 0.3–0.5 m in width and 0.3–0.4 m in height; the width and height
of the water-filled target are randomly generated between 0.25–0.65 m and 0.25–0.45 m,
respectively. The targets are randomly distributed in the soil layer, and 1000 images are
simulated for each of the air-filled and water-filled targets using the GPRMAX toolbox [42];
a total of 2000 B-SCAN images are obtained.

According to the MAXWELL equations, we can generalize the model with a single-
layer medium in the lower half-space shown in Figure 4 to the case of a layered medium.
As shown in Figure 6, the lower half-space consists of a concrete layer and a soil layer, and
the target is located in the soil layer.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 24 
 

 

3.1. Numerical Simulation Description 
The radar parameters are set to the following: the frequency of the GPR transmitting 

the ricker waveform pulse to the ground is set to 400 MHz, the time window is set to 45 
ns, the receiving and transmitting antennas are moved close to the ground, and the dis-
tance is set to 0.15 m. In the model structure shown in Figure 4, the lower half-space scene 
is set up as follows: the width along the azimuth direction is 5 m, and the depth along the 
range direction is 2 m. The relative permittivity of the background medium is set to 9. The 
shape of the buried target is set to a rectangle, where the size of the air-filled target is 
randomly generated between 0.3–0.5 m in width and 0.3–0.4 m in height; the width and 
height of the water-filled target are randomly generated between 0.25–0.65 m and 0.25–
0.45 m, respectively. The targets are randomly distributed in the soil layer, and 1000 im-
ages are simulated for each of the air-filled and water-filled targets using the GPRMAX 
toolbox [42]; a total of 2000 B-SCAN images are obtained. 

According to the MAXWELL equations, we can generalize the model with a single-
layer medium in the lower half-space shown in Figure 4 to the case of a layered medium. 
As shown in Figure 6, the lower half-space consists of a concrete layer and a soil layer, 
and the target is located in the soil layer. 

 
Figure 6. Layered media model structure diagram. 

In the layered structure shown in Figure 6, the specific parameters of the under-
ground scene are set as follows: 
(1) The width along the azimuth direction is 5 m, the depth along the range direction is 

2 m, and the average thickness of the concrete layer is 0.25 m. 
(2) There are 4–6 concave and convex blocks with a maximum width and height of 0.3 

m and 0.05 m, respectively, which are randomly generated at the lower boundary of 
the concrete layer to simulate the rough interface between concrete and soil. 

(3) The permittivity of soil along the range direction is generated in a random way; con-
sidering the influence of water content in soil at different depths, the range is set to 
9–25. 

(4) The number of targets is set to 1 or 2, and the shape is set to a rectangle (the size of 
the air-filled target is randomly generated between 0.3–0.5 m in width and 0.3–0.4 m 
in height; the width and height of the water-filled target are randomly generated be-
tween 0.25–0.65 m and 0.25–0.45 m, respectively). A single target is randomly distrib-
uted in the soil layer, and two targets are randomly distributed in the left and right 
half of the soil layer, respectively. 

Figure 6. Layered media model structure diagram.

In the layered structure shown in Figure 6, the specific parameters of the underground
scene are set as follows:

(1) The width along the azimuth direction is 5 m, the depth along the range direction is
2 m, and the average thickness of the concrete layer is 0.25 m.

(2) There are 4–6 concave and convex blocks with a maximum width and height of 0.3 m
and 0.05 m, respectively, which are randomly generated at the lower boundary of the
concrete layer to simulate the rough interface between concrete and soil.

(3) The permittivity of soil along the range direction is generated in a random way;
considering the influence of water content in soil at different depths, the range is set
to 9–25.

(4) The number of targets is set to 1 or 2, and the shape is set to a rectangle (the size of
the air-filled target is randomly generated between 0.3–0.5 m in width and 0.3–0.4 m
in height; the width and height of the water-filled target are randomly generated
between 0.25–0.65 m and 0.25–0.45 m, respectively). A single target is randomly
distributed in the soil layer, and two targets are randomly distributed in the left and
right half of the soil layer, respectively.

Under the above scenario settings, a total of 4000 images are obtained, in which
the targets are air-filled and water-filled media, the number is 1 and 2, respectively, and
1000 images are simulated for each setting.
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3.2. Simulation Results and Analysis
3.2.1. Single-Layer Background Medium Scene

In the single-layer background medium scene, the B-SCAN images (with the direct
wave signal removed) of the air-filled target and the water-filled target are shown in
Figure 7a,c. It should be noted that all B-SCAN images in the following figure indicate that
the direct wave interference signal has been removed. A CNN feature extraction network
model, with the structure shown in Figure 2, is used to extract the feature hyperbolas of the
target, and the result of fitting the hyperbola by the least squares (LS) method is shown in
the red curves in Figure 7b,d.
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To verify the validity of the result of the permittivity of the background medium
calculated using the geometric relationship shown in Figure 3, we selected 100 images from
a sample of 2000 B-SCAN images for testing, including 50 images of each of the air-filled
and water-filled targets. The calculation results of εr, corresponding to each test image, are
shown in Figure 8.
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Figure 8. Calculation results of εr.

The calculated value of εr ranges from 8.58 to 9.41, and the reference value of εr is set
to 9. The maximum deviation of the results is 0.42, and the average deviation is 0.16. It
can be seen that using the geometric relationship to estimate εr can obtain higher accuracy.
Further, the results of the target relative permittivity estimated by the regression model
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are analyzed. For the 2000 B-SCAN images simulated in the scenario shown in Figure 4,
the corresponding parameters A, εr, and d are calculated according to the target feature
hyperbola extracted from each image, forming a data set with a sample size of 2000. In total,
100 sets of data were selected as the verification set (50 sets of data for air-filled medium
targets and 50 sets of water-filled medium targets each), 100 sets of data were selected as
test sets (50 sets of data for air-filled medium targets and 50 sets of water-filled medium
targets each), and the remaining 1800 sets of data were used as training sets. The validation
set is mainly used for tuning the hyperparameters of the DNN model. In our training, the
epoch was set to 100 and the batch size was set to 100; the mean squared error function was
used as the loss function (the mean of the squared errors between our target and predicted
values), and the optimizer adopted ‘Adam’. After 20 epochs, the model training tends to be
stable; the change curves of the loss functions of the training set and the validation set are
shown in Figure 9.
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For 100 sets of test data, the estimation results using the regression model are shown
in Figure 10.
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It can be seen that the DNN network has high accuracy in estimating the relative
permittivity results of the air-filled and water-filled targets, with an average accuracy of
99.27% and 99.13%, respectively. This is the estimation result of εT under the condition of
accurately labeling the parameters A, εr, and d. When analyzing the background medium of
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the layered structure in Section 3.2.2, we will further discuss the influence of the parameters
εr and d on the estimation results when there is a certain deviation.

3.2.2. Layered Background Medium Scene

In this section, we extend the underground half-space from a single-layer medium
to a layered medium, where the calculation results of the permittivity of the background
medium are usually averaged and the data processing procedure for estimating the target
permittivity is similar. First, the results of extracting the feature hyperbolas of the target in
the B-SCAN image using CNN are shown in Figure 11.
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The results shown in Figure 11a–d indicate that the GPR B-SCAN image contains
one cavity target, one water-filled medium target, two cavity targets, and two water-filled
medium targets, respectively. The LS method is used to fit the target feature hyperbola in
the GPR B-SCAN image, and the result is shown in the red curve in Figure 11. Then, use
the geometric relationship to calculate the relative permittivity of the background medium,
and 100 images are selected from the 4000 simulated images for testing. The calculation
result of εr is shown in Figure 12.

In the model structure shown in Figure 6, since the simulation scene is set as a layered
structure, for each B-SCAN image, the result of calculating εr represents the mean value of
the relative permittivity of the background medium. In order to quantitatively analyze the
validity of calculating the mean value of εr using Equation (10), on the one hand, according
to the target burial depth d set in the simulation process and the two-way travel time
t corresponding to the vertex of the target feature hyperbola in the B-SCAN image, the
average wave speed v can be calculated according to d = v · t/2, and the average value
εgt of the relative permittivity of the background medium can be obtained according to
v = c/√εgt; this is used as a reference. The calculation results are shown in the blue curve
in Figure 12. On the other hand, selecting three different coordinate points on the fitted
hyperbola and plugging them into Equation (10) yields the average wave velocity ṽ, and
the approximate result εe of the background relative permittivity can be obtained according
to ṽ = c/

√
εe. The result is shown as the black curve in Figure 12. Comparing the values of

εgt and εe, we can see that εe deviates from εgt in the range of 0.01–0.95, and the average
difference between εgt and εe is 0.44.
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Compared with the single-layer uniform background medium model shown in Figure 4,
the electromagnetic scattering under the layered structure is more complicated, and the
averaging method will also introduce certain errors. These factors produced greater de-
viations in the final results for calculating the background dielectric permittivity, but the
calculation results on the test samples are generally satisfactory.

To train the regression network model and predict the permittivity of the target, for
the 4000 B-SCAN images simulated in the scenario shown in Figure 6, the corresponding
parameters A, εr, and d are calculated according to the target feature hyperbola extracted
from each image, forming a data set with a sample size of 4000. In total, 200 sets of data
were selected as the validation set (100 sets of data for air-filled medium targets and 100 sets
of water-filled medium targets each), 200 sets of data were selected as the test set (100 sets
of data for air-filled medium targets and 100 sets of water-filled medium targets each), and
the remaining 3600 sets of data were used as the training set. In our training, the epoch was
set to 100, the batch_size was set to 200, the mean squared error function was used as the
loss function, and the optimizer adopted ‘Adam’. After 30 epochs, the model training tends
to be stable; the change curves of the loss functions of the training set and the validation set
are shown in Figure 13.
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The above trained regression network is used to predict the permittivity εT of the
targets; the prediction results on 200 test images are shown in Figure 14.
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When the background medium is a layered structure, the average accuracy of the
estimation results for the permittivity of the cavity and water-filled targets is 98.85% and
98.30%, respectively. Comparing the calculation results shown in Figures 10 and 14, it is
clear that the accuracy of the output results of the regression network is also higher after
the subsurface half-space is extended from a single-layer medium to a layered medium.
It can be seen that under the condition of effectively obtaining the input parameters A, εr,
and d, the non-linear mapping transformation shown in Equation (20) can be well solved
using the DNN.

Due to the complexity of the geological environment, in order to discuss the influence
of the deviation of parameters εr and d on the prediction results, we calculated the predic-
tion errors under different deviation degrees. Specifically, the deviation of parameter εr is
within the range of 25%, 100 random deviations are generated at 5% intervals each time,
and the deviation corresponding to d is set according to the computational relationship
equation d = ct

2
√

εr
between d and εr. For the test sample set containing 200 groups of data,

the mean value of the prediction error on 100 random deviations was calculated separately
for each group of test data, and the statistical results are shown in Figure 15.
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As the degree of deviation of parameters εr and d increases, there is an overall de-
creasing trend in the accuracy of the estimation results for parameter εT . When the range
of εr and d deviations from the reference value increases from 5% to 25%, the average
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accuracy of the target permittivity estimation results for air-filled and water-filled media
will also decrease from 97.37% and 97.30% to 85.04% and 84.77%, respectively. Among
them, the maximum estimated deviation values are 0.23 (ground truth of εair = 1) and
18.89 (ground truth of εwater = 81). From the results of the average precision and maximum
deviation of the above statistics, although there is a certain error in the estimated value of
εT , according to the typical values of the electrical characteristic parameters of common
underground targets, air and water are not misidentified as other types of media at this
time. In the experiment, we further increase the deviation values of parameters εr and
d. For example, when the deviation range is increased to 35%, the maximum deviation
values of the estimated permittivity of the air-filled and water-filled targets are 1.03 and
33.56, respectively, which is prone to misjudgment. It can be seen that in the presence
of small deviations in the input parameters of the DNN, the effective judgment of the
target medium type can be realized according to the output results of the network, and the
designed regression model has a certain robustness.

3.3. Field Results and Analysis

In order to verify the effect of the proposed regression network model on the field data
set, the LAUREL radar shown in Figure 16a was used to detect the underground rainwater
pipes buried in an industrial park in Shanxi, China. Figure 16b shows the rainwater pipe
under the manhole cover. The main working parameters of the impulse radar were set
as follows: the working mode was “wheel”; the working frequency was 400 MHz; the
number of sampling points was set to 512; the trace sampling interval was 0.04 m; the
time window was 100 ns. In the process of data collection, referring to the construction
drawings of buried underground rainwater pipelines, the length of the detected pipelines
along the pipeline laying direction was 1.2 km in total. The B-SCAN image corresponding
to a detection area in the echo data is shown in Figure 16c.
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According to the measured data shown in Figure 16c, in the process of making the
training set, one trace of the echo data was taken every 1 m in length, and the obtained
measured data set contained a total of 1100 groups of data, of which 1000 groups were
used for training and 100 groups were used for testing. Taking the pipeline burial depth
(d′ = 0.9 m) designed during construction as a reference, the average wave velocity can be
calculated according to the two-way travel time corresponding to the upper boundary of
the pipeline in the B-SCAN image. The relative permittivity εr

′ of background media can
be further obtained by using the relationship between the wave velocity of electromagnetic
waves in the medium and free space. The DNN model is trained according to the prepared
measured parameter set {εr

′, d′, A′}, and the estimation results of the relative permittivity
of the target on the test set are shown in Figure 17.
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In order to simplify the analysis process, it is assumed that the filling in the pipeline
is an air medium; that is, the target to be detected is equivalent to an air-filled medium.
From the statistical results on the test set, the average accuracy rate reached 95.52%, and the
target relative permittivity estimation results ranged from 0.93 to 1.05. Further, we check
the validity of the proposed method with respect to standard inversion processes.

In traditional parameter inversion methods, FWI is the state-of-art solution to quan-
titatively estimate the parameters of a medium. To demonstrate the superiority of the
DNN-based parameter inversion method, a comparative analysis is carried out with the
FWI-based parameter inversion algorithm [33]. The statistical test results under the field
scenario are shown in Table 2.

Table 2. Comparison with FWI.

Algorithm
Index Average Accuracy Estimated Range Time Consuming

FWI-based 89.13% 0.86–1.18 2820 s
DNN-based 95.52% 0.93–1.05 0.023 s

It can be seen that the DNN-based method has better performance than the FWI-based
method. In terms of the computational cost, the FWI-based algorithm takes approximately
2820 s to complete the inversion for a B-SCAN image with a size of 1428 × 563. In contrast,
a well-trained DNN is capable of inverting a set of test data within approximately 0.023 s.
The time-consumption of the above-mentioned DNN-based method only refers to the time
used to invert the permittivity εT according to the input parameters A, εr, and d and does
not include the time used to calculate the parameters in the parameter set {εr

′, d′, A′} and
the time consumed to train the regression model. Although making the parameter set and
using it to train the DNN is a computationally intensive process, it takes place only once.
The well-trained regression model can be used with near real-time speed for processing a
set of GPR image data. In terms of the complexity of the implementation, the proposed
method starts from the GPR image data and uses the CNN with the cascade structure
shown in Figure 2 to automatically extract the feature information of the target and directly
calculate the parameters A, εr, and d from the fitted curve and the geometric relationship
shown in Figure 3 for the inversion of target permittivity. This method can be extended to
medium parameter estimation for other subsurface targets. In contrast, FWI is sensitive to
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the initial model, and it also encounters two bottlenecks: non-linearity and ill-posedness.
In practical applications, it usually needs to be improved according to the actual scenario.

The reason why our method is better than FWI is that, on the one hand, for the
FWI method, it can be seen from Equations (15) and (19) that the wave number is a key
factor affecting the inversion results. When the frequency of the electromagnetic pulse
emitted by GPR is constant, the relative permittivity of the background medium is the
main factor affecting the estimation result of the target permittivity, and it is very difficult
to accurately estimate the inhomogeneous and anisotropic background medium. On
the other hand, due to the non-linear and ill-posed problems of the FWI method, the
corresponding approximations are generally required (such as Born approximation or
Rytov approximation, etc.), and this process also generates certain errors. In addition, the
DNN method learns the non-linear mapping relationship between the input parameter
set {εr

′, d′, A′} of the regression network and the output estimate of the target relative
permittivity εT through a large number of samples, and the numerical simulation results in
Section 3.2.2 show that the DNN method has certain robustness. This conclusion is further
validated by the test results on the above field datasets.

It should be noted that considering the detection process of underground pipelines in
actual projects, when collecting data, we detect along the laying direction of the pipeline.
At this time, affected by factors such as azimuth resolution, the target in the echo data
does not show typical hyperbolic structure features; the corresponding B-SCAN image
is shown in Figure 16c. The relative permittivity of the background medium cannot be
calculated according to the hyperbolic geometric constraint shown in Figure 3. In this
regard, in the process of making the data set, we sampled the echo data shown in Figure 16c
in segments; this process does not affect the validity of the regression network for verifying
the parameter estimation results.

4. Discussion

This study investigates the problem of estimating dielectric constants of subsurface
targets using deep learning. We discuss the data processing procedure of inverting target
permittivity using the extracted feature hyperbola from the GPR echo data, in which
the subsurface half-space is extended from a single-layer medium to a layered medium.
Through GPR numerical simulation, the accuracy of the medium parameter estimation
results obtained by the proposed method is very high. For the field case study, the predicted
results matched the ground truth data very well. Our method shows that deep-learning-
based inversion can not only perform GPR scatter field inversion accurately but also quickly
and efficiently.

Our approach focuses on building a framework for solving GPR inverse scattered
fields that combines model solving and example learning. The scattered field equation
shown in Equation (19) is derived from the MAXWELL equations, and the corresponding
inverse model (shown in Equation (21)) is given. This non-linear scattering field equation
is usually solved iteratively. Here, we trained the DNN by generating a large number of
2D profile data sets and learned the non-linear mapping relationship from the observation
space to the feature space to output the parameter estimation results. Our method provides
a new way to solve the GPR inverse scattering field problem.

We acknowledge that there are certain differences between the constructed geoelectric
model and the real underground scene and that the geological structure we consider is
idealistic and simplified. In order to verify the effectiveness of the proposed algorithm, in
the numerical simulation experiment, we discussed the error of the output result when the
input parameters of the regression network model have different deviations and we also
conducted field experiments. The statistical results show that the proposed method has a
certain anti-interference ability. However, in the practical application of GPR parameter
inversion, the background medium is usually inhomogeneous and anisotropic, and the
geological environment in natural scenes is complex and variable. In particular, when the
water content of the background medium in the lower half-space is different, the corre-
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sponding relative permittivity will change greatly, which will lead to a larger error in the
parameter prediction results. In this regard, it is necessary to collect more data in different
geological environments to augment the training sample set to improve the generaliza-
tion performance of the network. We strongly believe that our method can achieve high
accuracy results when there are no significant anomalies in the input parameters of the
regression model.

The proposed method for inversion of the permittivity of subsurface targets using
example learning under the constraints of the GPR physical mechanism can be extended to
other inverse problems. For future research, we will further investigate the multi-parameter
(e.g., permittivity and conductivity) inversion problem of dielectric material to better
reconstruct the underground scene.

5. Conclusions

In this study, we designed a regression model based on DNN to estimate the permittiv-
ity of buried targets. Since the inverse scattering field is non-linear and ill-posed, by using
the labeled sample set to train the regression model, the regression network can learn the
intrinsic non-linear mapping relationship between output and input parameters. The main
input parameters of the regression network, such as the permittivity of the background
medium, the buried depth of the target, and the scattering intensity, are determined by
combining the GPR physical mechanism and the scattering field equation, and the complete
data processing process, from the GPR echo signal to the relative permittivity estimation
results of the subsurface target, is analyzed.

Overall, the combined physical-model-driven and data-driven method proposed in
this paper can accurately estimate the relative permittivity of subsurface targets. Numerical
simulation results show the robustness of the designed regression network, and, in the
actual measurement scenario, the accuracy of the prediction results of the method in this
paper is also high. The simulation and field experimental results show the feasibility of the
method in this paper for the inversion of dielectric parameters in complex scenarios.
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