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Abstract: Advanced collaborative and communication technologies play a significant role in intel-
ligent services and applications, including artificial intelligence, Internet of Things (IoT), remote
sensing, robotics, future generation wireless, and aerial access networks. These technologies improve
connectivity, energy efficiency, and quality of services of various smart city applications, particularly
in transportation, monitoring, healthcare, public services, and surveillance. A large amount of data
can be obtained by IoT systems and then examined by deep learning methods for various applications,
e.g., object detection or recognition. However, it is a challenging and complex task in smart remote
monitoring applications (aerial and drone). Nevertheless, it has gained special consideration in
recent years and has performed a pivotal role in different control and monitoring applications. This
article presents an IoT-enabled smart surveillance solution for multiple object detection through
segmentation. In particular, we aim to provide the concept of collaborative drones, deep learning, and
IoT for improving surveillance applications in smart cities. We present an artificial intelligence-based
system using the deep learning based segmentation model PSPNet (Pyramid Scene Parsing Network)
for segmenting multiple objects. We used an aerial drone data set, implemented data augmentation
techniques, and leveraged deep transfer learning to boost the system’s performance. We investigate
and analyze the performance of the segmentation paradigm with different CNN (Convolution Neural
Network) based architectures. The experimental results illustrate that data augmentation enhances
the system’s performance by producing good accuracy results of multiple object segmentation. The
accuracy of the developed system is 92% with VGG-16 (Visual Geometry Group), 93% with ResNet-50
(Residual Neural Network), and 95% with MobileNet.

Keywords: artificial intelligence; IoT; remote sensing; aerial computing; PSPNet

1. Introduction

Today people have been witnessing rapid evolution in almost every field of life be-
cause of the emerging trends of collaborative and communication technologies. The rapid
advancement, deployment, and integration of IoT, artificial intelligence, drone, robotics,
cloud or edge computing, big data analytics, future communication networks, and aerial
access networks have also been accepted as key enablers for different smart city appli-
cations. Due to aerial access networks, which can be established depending upon either
low-altitude or high altitude platforms, when combined with IoT, satellite, and physical
infrastructures, enable a complete access network with global coverage and various quality-
of-service provisioning. Figure 1 shows the collaboration of IoT, drone cameras, intelligent
communication, and aerial access technology that can lead us toward high standards and

Remote Sens. 2022, 14, 4107. https://doi.org/10.3390/rs14164107 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14164107
https://doi.org/10.3390/rs14164107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7751-286X
https://orcid.org/0000-0001-7013-0159
https://orcid.org/0000-0002-4193-6062
https://orcid.org/0000-0002-3479-3606
https://orcid.org/0000-0002-0651-4278
https://doi.org/10.3390/rs14164107
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14164107?type=check_update&version=1


Remote Sens. 2022, 14, 4107 2 of 15

quality of life by providing smart public safety disaster management, smart agriculture, en-
vironmental aspects, and services. These services may assist in traffic control by providing
congestion-free routes to the users, unusual even detection, fire monitoring, energy effi-
ciency, network connectivity, monitoring, and most importantly, security and surveillance
applications. Recently, improvements in advanced aerial devices and technologies, such as
the growth of small, smart, and economical communication networks, satellites, and the
large availability of aerial drones and unmanned vehicles, have transformed numerous
security and surveillance applications. Furthermore, when connected with future commu-
nication networks and satellites, these devices also enhance real-time assistance for smart
cities, as depicted in Figure 1.

Figure 1. Illustration of collaborative IoT and aerial drone in smart city applications.

Aerial drone cameras can efficiently assist in various control and monitoring appli-
cations and also help in the gathering of valuable information [1]. The information can
present excellent possibilities for various applications in smart cities, such as urban man-
agement, land change monitoring, traffic monitoring, and most importantly, surveillance.
These applications include object detection [2], classification [3,4], tracking [5,6], and seg-
mentation [6,7] tasks, which utilized the information obtained remotely (at a distance
from height) by using high-resolution visual devices, such as drone cameras or sensors.
However, identification, classification, tracking, and segmentation of multiple objects using
aerial drone data is also a challenging task [8], which involves multiple factors, such as the
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height of the installed and used camera, the appearance of objects, background varieties,
and environmental requirements. Researchers have introduced various techniques for
identifying multiple objects and regions of interest in aerial data sets in literature. The pro-
posed and developed systems are mainly categorized into two classes, such as conventional
feature-based and high-level deep learning-based methods [9–11]. Conventional methods
utilized multiple features, including shape, color, edge, textual, background, foreground
subtraction, and extraction, to classify different objects. These methods obtain excellent
results for various remote surveillance applications; however, they normally need a huge
amount of data and are not able to recognize or segment different objects whose properties
or characteristics do not exist in the training data set. With the evolution of advanced
deep learning, various convolution neural network based models are used by researchers
to segment different objects and regions of interest in aerial data sets. These advanced
and refined methods significantly enhanced the overall and generalization accuracy of
segmentation methods for different applications [12–19].

This article investigates the collaboration performance between the Internet of things
(IoT) and drones. This might be essential in providing timely and important wireless
communication assistance in various public safety applications, as shown in Figure 1. It
could help to explore areas that are difficult to reach and that provide immediate coverage
and connectivity for the services’ recovery right after a disaster by improving overflow
capacity. Thus, to deliver such vital facilities for public safety, the collaboration between
IoT and drones can support public safety requirements in the case of disasters, such
as real-time monitoring, real-time analytics, and enhanced decision making to support
smart city applications. Successful results of the deep learning designs inspired us to
introduce an IoT-enabled solution for smart surveillance and monitoring in smart city
applications. The system is based on artificial intelligence that uses a deep learning model,
PSPNet [20], for object segmentation in the aerial drone data set. The model utilizes a
pyramid parsing module that uses global context information for various region-based
context collections. The local and global traces collectively produce more stable final
predictions. The PSPNet architecture needs the global information of the image in order
to predict the local predictions; therefore, it delivers more reliable results on benchmark
data sets, such as PASCAL VOC 2012 and cityscapes. Furthermore, the model performs
better than FCN because pixel classifiers cannot obtain the context of the entire input
image. The overall work performed in this article consists of the following steps: we firstly
implement data augmentation techniques to increase the architecture’s performance. Then,
we apply transfer learning and train the pre-trained segmentation model on the aerial data
set. In this work, we use a benchmark publically available data set named Aerial Semantic
Segmentation Drone data set (https://www.tugraz.at/index.php?id=22387) (19 June 2022).
Finally, we examine and compare the segmentation architecture with three different CNN
classification designs, particularly VGG-16, ResNet-50, and MobileNet. The primary goals
of the article are presented as follows:

• To introduce an IoT-enabled solution for smart surveillance applications in smart cities
using an aerial drone.

• To apply artificial intelligence and develop a system based on the deep learning model
for multiple object detection.

• To apply data augmentation techniques and deep transfer learning to increase and
enhance the performance of an aerial drone surveillance system.

• To explore training and testing of the deep learning architecture with different CNN
classifies using aerial drone images.

• To investigate and analyze the results of the segmentation architecture with different
classification models with aerial drone data in terms of efficiency.

The rest of the work performed in the article is categorized into the following parts: In
Section 2, a brief summary of related work is presented that is applied to object detection
in various aerial drone surveillance applications. In Section 3, we present an IoT-enabled
system for intelligent surveillance, which is based on artificial intelligence. We also explain
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the segmentation model and CNN classifiers applied for multiple object segmentation using
an aerial data set. In Section 4, the summary of the data set utilized for the experiments is
briefly discussed. Furthermore, in this part, we also explain the output and performance
results. Section 5 provides a discussion about the proposed method. Lastly, in Section 6, we
review the given work with viable future trends.

2. Related Work

Recent methods developed and introduced for multiple object classification, detec-
tion, and segmentation are classified into conventional hand-crafted features or machine
learning and advanced deep learning methods. In conventional methods, researchers
used different template based methods for identifying a particular object or region, such
as roads with simple visual appearance [21]. Authors in [22] applied gray-scale images
and morphological operations for the detection of buildings. Stankov et al. [23] offered
unsupervised and supervised machine learning with color-based feature designs for seg-
mentation of roofs in aerial data. In [24], authors employed geometric information to
identify objects; it principally encodes prior information by applying parametric generic or
particular shape patterns. Moreover, authors in [25] introduced a segmentation method
to obtain geographical data, such as the relationship between an object’s appearance and
spatial contexts. Ref. [26] employed a mean shift algorithm for object segmentation in
an aerial data set. These techniques overcome the constraints of traditional pixel based
classification systems and have been employed for mapping landslide [27], land cover,
and change detection [28]. Some studies focused on background subtraction methods
including Gaussian mixture model [29] and machine learning techniques, Markov random
fields, random forest, and logistic regression classifier [30,31], for detection of objects in
aerial images.

Researchers have recently started utilizing CNN-based techniques for aerial drone
applications with deep learning. Similarly, authors in [32] introduced a dynamic neural
technique applying a finite state machine for the extraction of roads. Ref. [33] introduced a
deep learning method for the identification of targets in aerial data. Some researchers also
employed segmentation and deep learning-based detection and classification methods for
aerial drone surveillance applications. In [34], scholars executed semantic segmentation
paradigm on observation data of Earth. Garg et al. [35] presented an instance segmentation
paradigm for aerial views. Segnet and U-Net based techniques are applied by [36], enabling
semantic segmentation for high-resolution aerial data sets. Ref. [37] also introduced a
segmentation method for detecting multiple objects.

It is concluded from the above discussion that researchers in recent years have done
significant work. Various conventional features, machine learning [38], and deep learning-
based systems are introduced [39] for many aerial drone applications [40]. Researchers also
applied background subtraction and foreground extraction, such as the Gaussian mixture
algorithm and the machine learning method. They used neural network architectures
for different remote sensing applications, such as ship detection, object detection, road
detection, and tree detection. Similarly, they also studied the state-of-the-art models for
classification, detection, and segmentation models of multiple objects. Though to the best
of our knowledge, they mostly worked on the detection of specifically targeted objects,
identification, recognition, classification, and segmentation of particular objects, including
cars, ships, other vehicles, buildings, roofs, roads, lands, green farms, and trees, etc. This
work presented an IoT-enabled generic surveillance system for multiple object detection,
which can assist in various real-time surveillance applications.

3. IoT-Enabled Leep Learning Based Solution for Object Detection Using Aerial Drone

This work presented an IoT-enabled, smart surveillance solution for smart city appli-
cations. In Figure 2, we have shown the details of the proposed system. It can be seen that
aerial drone vehicles used for monitoring and surveillance are connected through IoT and
future generation networks. The collected aerial drone transferred recorded data to the
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monitoring and surveillance unit. The mentoring unit gathered the data and generated a
true mask or labeled it for all recorded images. A publicly available benchmark data set
has been used. The collected data set images are initially given to a pre-processing phase.
This phase performs shuffling, image resizing, and normalization. In the pre-processing
phase, data augmentation techniques are applied to develop variation in the data set and
the system’s performance. The collected image samples are split into train and test sets
after the pre-processing phase and data augmentation phase.

Figure 2. An IoT-enabled multiple object segmentation system based on deep learning using aerial
drone data set. The overall system is based on a segmentation model with and CNN classifiers.

As detailed in Figure 2, the deep learning architecture is used for the segmentation
model of multiple objects, which is based on deep learning. We applied the PSPNet [20],
a deep learning model for object segmentation basically developed for the segmentation of
multiple objects. As we know, mostly semantic segmentation paradigms mainly consist of
two sections, i.e., an encoder and a decoder. We used an encoder to extract features from the
image, whereas for the prediction class pixels, we used a decoder at the end. This work used
three CNN classification architectures as base networks for object classification, particularly
VGG-16, ResNet 50, and MobileNet. The convolution layers are transferred as the encoder
part in the first step. Taking advantage of the deep transfer learning, as explained in Figure 2,
we combine convolution layers with deconvolution layers as the decoder. The architecture
raining is performed, and the segmentation model is trained with the CNN classification
architectures. We utilize a test set to estimate the segmentation system’s performance for
three separate architectures. This training output is the segmentation map of a specific
object in various test sample images. The segmentation results are assessed by applying a
ground truth or true label mask. Finally, the usual evaluation metrics are applied to define
the results of the developed system.

3.1. Pre-Processing and Data Augmentation

We performed the necessary pre-processing in order to keep the consistency of the seg-
mentation model during training. Moreover, to maintain variation in image appearances,
we performed image normalization, such as managing the brightness and contrast of an im-
age. Lastly, the data set is shuffled into training and testing sample images. The overall data
set utilized in this article mainly contains 400 training samples and 200 testing samples. It is
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a comparatively small data set for the deep learning model training. Hence, we implement
data augmentation techniques to preserve and obtain a moderate amount of sample images
and to evade the over-fitting difficulty by ensuring the adequacy, fairness, and sufficiency
in the variance and robustness of the architectures. For classification architectures, we
resize the input images and the ground truth mask to 224× 224× 3. We applied real-time
data augmentation techniques to the data set, similar to [41]. As a result, images in the
aerial data set are flipped, shifted, and rotated as described in Figure 3. This provides a
considerably greater number of images for the training of models and architectures.

Figure 3. Results of data augmentation performed to increase variation in the data set.

3.2. CNN Based Classifiers as Base Architectures

As discussed earlier, different CNN architectures are applied for classification and
feature extraction of the image later used by the encoder. The deep learning classification
architectures mainly contain a collection of layers, especially convolutional, pooling, ac-
tivation, ReLu, and fully connected layers. We used VGG-16 [42], a CNN model that is
fine-tuned by adjusting some layers to overcome overfitting. It consists of 16 convolutional
layers, having an input image shape of 224× 224× 3, a fixed filter size of 3× 3, and five
max-pooling layers of size 2× 2 in the entire network. There is a softmax layer at the head
of the two fully connected layers. VGG-16 is a large network with nearly 138 million pa-
rameters. It is accumulating several convolutional layers to develop deep neural networks
that enhance the capacity to learn hidden and deep features.

The second architecture used for the classification and extraction of image features is
ResNet50 [43]. It has a 50-layer Residual network with approximately 26 million parameters.
The residual network is a deep CNN model that Microsoft proposed in 2015. Rather than
learning features, the residual network learns from residuals. To deliver data over layers,
it uses the skip connections and combines nth input layer direct to some (n + x)th layer,
allowing extra layers to be accumulated and building a deep architecture. It has forty-eight
convolutional layers, a single max pooling, and one intermediate pooling layer.

The last classification architecture is MobileNet [44]. It is also an effective and in-
terchangeable CNN architecture used in several applications. MobileNet introduces two
distinct global hyper-parameters that are called width and resolution multiplier. These hy-
perparameters allow researchers to trade off efficiency or latency rates depending on their
requirements. It applies depth-wise convolutions rather than conventional convolutions
allowed in previous architectures to produce lighter designs. All convolutional layers are
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composed of depth and point-wise convolutional layers. Evaluating these convolutions as
separate layers, it contains 28 layers and 4.2 million parameters which can be reduced by
tuning hyperparameters.

3.3. Semantic Segmentation Model

We applied the PSPNet model for the segmentation of objects in aerial images. It
is developed by [20], one of the common well-accepted object and image segmentation
models. The architecture of PSPNet predicts the local level predictions using the global
context of the input image, providing better results on benchmark data sets. The model
is better than FCN-based pixel classifiers as it could not obtain the meaning of the entire
image. The overall architecture is presented in Figure 4 mainly divided into two main stages:
encoder and decoder. As discussed earlier, that encoder extracts output features from the
image, whereas the decoder is used to predict the pixel class at the end. The encoder part
of PSPNet has comprised the CNN-based backbone architecture with dilated convolutions
and the pyramid pooling module as described in Figure 4.

Figure 4. The general architecture of the deep learning-based segmentation model used for the
segmentation of multiple objects using aerial drone data set.

The pyramid pooling module is the central element as it supports the segmentation
model to obtain the global information of the input image. It also aids in classifying the
image and the pixels using global information. As shown in Figure 5 extracted from the
backbone CNN, the feature map is pooled at various sizes and later transferred within
convolution layers. These feature maps are obtained using CNN architectures. At the final
layer, we applied a binary cross entropy loss to train the classifier, given as,

L(ŷ, y) = −ylogŷ− (1− y)log(1− ŷ) (1)

ŷ =
1

1 + exp(−(∑j wjxj + b))
(2)

where y ε {0, 1} is the class, x = (x1, . . . , xj, . . . , xn) indicates representative feature n,
and w is used to correspond to x. The same size image feature as the original upsampling
takes place on the pooled features. Lastly, the original feature maps are concatenated with
upsampled features and transferred to the decoder part. This method combines the features
of various scales, therefore adding the entire and complete context.
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Figure 5. Predicted feature maps from the backbone CNN architecture; these feature maps are pooled
at various sizes and later transferred within convolution layers.

To obtain accurate results and better segmentation performance, a convolutional
conditional random field [45] is used for optimization, calculated as:

P(X = x̂| Î = I) =
1

Z(I)
exp(−E(x̂|I)) (3)

In the above equation, if image I has P pixels and k classes, the predicted label graph
for an image I is defined by a random field. Thus, a predicted label graph X is produced to
increase the conditional probability, which can be modeled as a conditional random field
under the Gibbs distribution illustrated in Equation (3). Z(I) is the normalization function.
The energy function [46] E(x̂|I) is given as:

E(x̂|I) = ∑
i=N

σp(x̂i|I) + ∑
i=N

σp(x̂i, x̂j|I) (4)

In the above equation, σp(x̂i|I) is the unitary potential, whereas the σp(x̂i, x̂j|I) is the
pairwise potential. The first one only considers each pixel’s category label, without any
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other pixels’ information. In contrast, the second considers the joint distribution between
the pixel i and pixel j. Unlike the first one, it describes the interaction between the two
pixels. When the output features of the image are extracted from an encoder, it is now
transmitted to the decoder part. The decoder takes these features and transforms them
into predictions by moving them within its layers. It is simply an extra network that uses
features and makes predictions. It is worth noting here that the PSPNet model is not
a perfect segmentation architecture; it is simply an encoder. Thus, we need decoders to
implement PSPNet, commonly using a convolution layer followed by a bilinear upsampling.
To achieve this, the FPN (Feature Pyramid Network ) decoder is applied the same as as in
U-Net [41]. Therefore, we combined the FPN decoder with the PSPNet encoder, which can
obtain the small characteristics from the input image. Later, various upsampled stages of
feature maps are concatenated with the primary feature maps. Finally, these feature maps
are combined as global information at the end of the pyramid pooling module. Ultimately,
it is accompanied by convolution layers to produce the final prediction maps. The PSPNet
model used auxiliary loss during training. A weight of α 0.4 is joined to auxiliary loss to
evaluate the losses.

4. Experimental and Performance Results

This section provided the training and testing observations of the developed system.
We also discussed the segmentation or prediction results of the model for multiple object
segmentation. Furthermore, in the end, we provided the evaluation results for aerial
drone data.

4.1. Data Set

This data set named Aerial Semantic Segmentation Drone data set (https://www.
tugraz.at/index.php?id=22387) (19 June 2022). principally focuses on understanding se-
mantic information of urban areas/scenes in smart cities for developing the security of the
independent aerial drone camera and landing operations. It includes images of more than
twenty houses collected by using a high-resolution camera from a bird’s eye view at the
altitude of 5 to 30 m from the ground. The image size is 6000× 4000 pixels (24Mega Pixels).
The data set contains a total of 400 publicly available images for training and 200 private im-
ages for the testing set. Moreover, the data set provides pixel accurate annotation for similar
training and testing samples. The data set complexity is limited to objects, usually twenty,
including people, trees, land, grass, water, gravel, rocks, pools, paved areas, bicycles, cars,
cats, dogs, doors, windows, roofs, walls, fence poles, fences, and obstructions.

4.2. Training and Testing

The proposed system has been executed using a python programming language
(Pytourch library) with OpenCV 3.6. The implementation is the same as that presented
in [20]. We utilize a conventional per-pixel Softmax Cross-Entropy Loss to train PSPNet.
In addition, the learning rate is given by:

lr = baselr× (1− iter)power (5)

We defined the learning rate to be 0.01 and the power to be 0.9 for our experiments.
The performance of the model can be increased by improving the training iteration.
The weight decay and momentum of the model are set to 0.0001 and 0.9, respectively.
Due to insufficient physical space on GPU, we initiated the “batch size” to 16 throughout
training. The loss curve for training and testing of the PSPNet with CNN classification
architectures is shown in Figures 6 and 7.

https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
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Figure 6. Train and Test Loss with CNN classification architectures.

Figure 7. Train and Test Accuracy with CNN classification architectures.

4.3. Segmentation Results

The segmentation results of the above discussed system are presented in Figure 8. It
can be observed that the system achieves good results for various objects in aerial drone
data. We tested the developed system for different test images. In Figure 8, the first column
visualizes the primary input images; the second and third column displays the true label
masks and segmentation images, whereas the last two columns represent predicted mask
and segmentation results. We have presented segmentation results for five testing images
(row-wise). From Figure 8a, the segmentation architecture effectively segmented the road
and ground in the image. In Figure 8b, the road area along with trees and multiple people
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at different locations is accurately segmented. Similarly, the grass and road are accurately
segmented in Figure 8c,d. The design also segmented the covered building efficiently,
as observed in the last row of Figure 8e.

Figure 8. Multiple object segmentation results are shown row-wise from (a–e) for the model using
aerial drone data. The first column represents original images, the second presents true mask, the
third shows the true segmented mask, whereas the last two columns show the predicted mask and
segmentation results.

4.4. Performance Evaluation

The developed system is evaluated in terms of accuracy, and different evaluation
matrices are applied [12]. Every pixel of the test image is categorized into four classes
according to prediction and ground truth results, which are True Positive (TP), True Nega-
tive (TN), False Positive (FP), and False Negative (FN). Using different parameters given
in Figure 9, we estimated the precision, recall, and accuracy of the system as described
in Figure 10. It can be recognized that the developed system produces excellent results
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with various classification architectures. The precision rate of the segmentation paradigm
with VGG-16 is 72%, with ResNet-50 is 75%, and with MobileNet is 80%. For VGG-16,
ResNet-50, and MobileNet, the Recall rate is 86%, 90%, and 93%, respectively. The F1-Score
ranges between 80% and 90% for all classification architectures. The system’s accuracy is
high with MobileNet, i.e., 96%, whereas for the other two, it is 93% and 95%, respectively.

Figure 9. Relationship between TP, TN, FN, and FP.

Figure 10. Evaluation results with different classification architectures.

To estimate the segmentation results, we used Pixel Accuracy (Pacc), defined as the
accuracy of pixel-wise prediction and provided as:

Pacc =
∑K

i=0(pii)

∑K
i=0 ∑K

j=0(pij)
(6)

The number of pixels in the testing image is defined as K, pii is the predicted pixels
for class i, and pij the true label of object class. The segmentation results of the system
have also been evaluated using Intersection over Union (IoU), and Mean-(mIoU) IoU,
mathematically provided as:

IoU = J(A, B) =
|A ∩ B|
|A ∪ B| (7)
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It is generally defined as the intersection and union area ratio of the predicted segmentation
map B to the ground truth label masks A for k object classes. Furthermore, (mIoU) is
estimated as;

mIoU =
1

k + 1

k

∑
i=0

TP

∑k
j=0 FN + ∑k

j=0 FP− FN
(8)

The segmentation performance of the model with different classification architectures
is described in Table 1. The Pacc and mIoU with VGG-16 is 80%, and 82%, with ResNet-50
80%, and 83%, whereas with MobileNet it gives excellent results with Pacc and mIoU, 83%
and 85%, respectively.

Table 1. Comparison results Pacc and mIoU of PSPNet and Un-Net with different base architectures.

S.No Model Name Pacc mIoU

1 U-Net (VGG-16) 81% 82%
2 U-Net (ResNet-50) 80% 78%
3 U-Net (MobileNet) 83% 82%
4 PSPNet (VGG-16) 80% 82%
5 PSPNet (ResNet-50) 81% 83%
6 PSPNet (MobileNet) 83% 85%

5. Discussion

In the past few years, a large number of Earth-observing satellites have been de-
ployed by space agencies. Researchers have proposed various machine learning and image
processing-based methods that have played a useful role in environmental aerial drone
surveillance applications. Deep learning also holds great promise in fulfilling the challeng-
ing needs of remote sensing applications [6]. It leverages the huge computing power of
modern GPUs to perform human-like reasoning and extract compact features that embody
input images’ semantics. The interest of the remote sensing community toward deep
learning techniques is developing fast, and many architectures have been presented in the
last few years to address remote sensing problems, often with an outstanding performance.

This article provided an IoT-enabled deep learning-based system for object detection
applications using aerial drone images. In Figure 8, we provided the visual results of the
presented model with high accuracy results. The main focus of our study is various object
classification and detection. This method is not only helpful for scene understanding by
detecting and classifying various kinds of objects but also for several other applications
worth mentioning, including fusion, segmentation, and change detection. The method also
provided real-time surveillance applications as embedded with IoT. We also investigated
the collaboration performance between the Internet of things (IoT) and drones, which
might be important in delivering timely and important wireless communication services in
different public safety applications. The accurate detection results help to explore those
areas which are difficult to reach. The system can help to provide immediate coverage and
connectivity for the service recovery right after a disaster by improving overflow capacity.
Therefore, to provide such important facilities for public safety, the collaboration between
IoT and drones can improve safety requirements in the case of disasters. It can help to
monitor in real time and enhance decision making to sustain smart city applications.

6. Conclusions

This article presented an IoT-enabled smart surveillance solution for smart city appli-
cations. The surveillance system identified multiple object identification through segmen-
tation. In particular, we provided a new concept of collaborative aerial drones, artificial
intelligence, and IoT for developing surveillance applications in smart cities. We presented
an artificial intelligence-based system using the deep learning based segmentation model
PSPNet. We implement data augmentation techniques and leverage deep transfer learning
to boost the accuracy of the system. We investigated and compared the system’s accuracy



Remote Sens. 2022, 14, 4107 14 of 15

and performance with different CNN based architectures. The experimental outcomes
illustrate that data augmentation increases the system’s overall performance by producing
good accuracy results of multiple object segmentation. The system’s accuracy is 93%, 95%,
and 96% with CNN architectures VGG-16, ResNet-50, and MobileNet, respectively. We
will continue this work in the future with other deep learning architectures and models.
We will compare the results of different deep learning models with other benchmark data
sets. Moreover, we expect to employ fine tuning to improve the system’s performance with
several publicly available data sets.
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