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Abstract: Uncrewed Aerial Systems (UAS) and satellites are used for monitoring and assessing
the quality of surface waters. Combining both sensors in a joint tool may scale local water quality
retrieval models to regional and global scales by translating UAS-based models to satellite imagery.
The main objective of this study is to examine whether Sentinel-2 (S2) data can complement UAS
data, specifically from the MicaSense RedEdge MX-Dual sensor, for inland water quality monitoring
in mining environments affected by acid mine drainage (AMD). For this purpose, a comparison
between UAS reflectance maps and atmospherically corrected S2 imagery was performed. S2 data
were processed with Case 2 Regional Coast Colour (C2RCC) and Case 2 Regional Coast Colour for
Complex waters (C2X) atmospheric correction (AC) processors. The correlation between the UAS
data and the atmospherically corrected S2 data was evaluated on a band-by-band and a pixel-by-pixel
basis, and the compatibility of the spectral data was analyzed through statistical methods. The
results showed C2RCC and C2X performed better for acidic greenish-blue and non-acidic greenish-
brown water bodies concerning the UAS data than for acidic dark reddish-brown waters. However,
significant differences in reflectance between the UAS sensor and both S2 AC processors have been
detected. The poor agreement between sensors should be considered when combining data from
both instruments since these could have further consequences in developing multi-scale models.

Keywords: abandoned mine; acidic water; surface water monitoring; drone; Copernicus programme

1. Introduction

Remote sensing techniques have gained popularity in recent years and the improve-
ment in terms of spectral, spatial, and temporal resolutions of the sensors have increased
their use for analysis and monitoring in different fields of study [1-3]. Lately, Uncrewed
Aerial Systems (UAS) have grown as an innovative platform for acquiring ultra-high-
resolution images at low altitudes, providing both high spatial centimeter-scale and flexible
temporal resolution, at an increasingly affordable price. At the same time, recently launched
satellites withing the Copernicus programme, such as Sentinel-2A /B (52), can also provide
a medium spatial resolution (10-20-60 m) with a revisit frequency of five days (at the
equator) but delivering global coverage. Each of these data platforms is generally used
separately even though it is known that they can be complementary and have strong
synergies [4]. While the main applications that exploit the UAS/Satellite complementarities
are precision agriculture and ecology [5-8], water resources in inland waters remain an
underexplored field [9].

UAS imagery can be used to complement satellite imagery with cloud cover [10]
and increase spatial resolution. These characteristics are especially relevant to mapping
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small water bodies, where the satellite resolution does not allow the recognition of events
occurring at a local scale [11-13] or in the case of highly dynamic scenarios such as coastal
areas [14], and to avoid mixed pixels particularly near the water boundaries [15]. On the
other hand, the use of satellite data can scale local models to regional and global scales
by translating UAS-based models to satellite imagery [4,7]. This would be impossible
using only UAS since they have only a few km? swaths, due to the short flight time
and the national legislation regarding air traffic and people’s privacy. Nevertheless, the
differences in acquisition time, resolution, environmental conditions, spectral bands, sensor
position, and atmospheric effects (among others factors), may result in discrepancies in the
performances of the sensors [4]. Thus, it is imperative to study the consistency between
UAS and satellite observations, which may affect the multi-scale model proficiency.

This study focuses on the comparison of reflectance data acquired by the commercial
sensor Micasense RedEdge-MX Dual onboard an UAS (DJI Matrice 210 V2) and by S2
in small water bodies affected by acid mine drainage (AMD) at different extents. AMD
is the formation and movement of highly acidic water rich in metals and sulfate due to
the oxidation of sulfide-bearing minerals exposed to atmospheric weathering processes,
which frequently occurs in metal mine (and coal mine) areas. The result is a highly toxic
solution that causes harmful effects affecting animals, plants, and even humans [16-18].
Data acquisition was carried out in the Tharsis mine complex, at the Iberian Pyrite Belt
(IPB) (SW Spain; Figure 1), where the historical mining activity has left a legacy of several
abandoned sites, which became the sources of AMD in the area. The acid leachates have
reached the aquifers and river streams by percolation and runoff, being responsible for
the degradation of the water system and the formation of water bodies containing highly
acidic and metal-polluted water [16,18,19]. This research will help with understanding
the coupling between chemical and optical properties of water and how remote sensing
is applied to resolving these AMD-affected waters cases. AMD-waters have a complex
composition due to their physicochemical characteristics, which are also observed in their
different colors. Ocean Colour remote sensing usually distinguish two water classes: Case 1
waters which are ocean waters whose optical properties are determined by phytoplankton
and other covarying compounds and Case 2 waters which are coastal and inland waters
whose optical properties are determined by other constituents, such as mineral particles
and Chromophoric Dissolved Organic Matter (CDOM), and their concentrations do not
covary with phytoplankton [20]. Few studies have focused on quantifying water quality
parameters in mining areas and most of them have been based on satellite datasets [21-26],
whereas the application of UAS is rather recent [27]. The novelty of this study consists in
exploring the possibility of combining different scale sensors in order to achieve multi-scale
models. Therefore, the main objective is to examine whether S2 data can complement
UAS data, specifically from the MicaSense RedEdge MX-Dual sensor, for inland water
quality monitoring in mining environments. For this purpose, a comparison between UAS
reflectance maps and atmospherically corrected S2 imagery was performed.

In addition, S2 requires atmospheric correction (AC) to subtract the atmospheric and
sunglint contribution from the top of the atmosphere (TOA) signal, and there are several
AC processors available for inland and coastal waters [28]. In other water masses, these
models have been satisfyingly applied to process from TOA to BOA (bottom of atmosphere)
reflectance, a step required for monitoring terrestrial, emerged intertidal, benthic or coastal
ecosystems [2,28-30]. Hence, for this study, two AC processors were selected to be applied
on S2 data: Case 2 Regional Coast Colour (C2RCC) and Case 2 Regional Coast Colour for
Complex waters (C2X).



Remote Sens. 2022, 14, 4053

30f15

(A) Tharsis Mine

(©)

Filon Centro

661,600 662,400

Figure 1. Location map of sampling sites. Five water bodies (Filon Norte (FN), Filon Centro (FC),
Sierra Bullones (SB), Embalse Grande (EG), and Th18) sampled in the Tharsis Mine (A), and five
water bodies (Mina Lagunazo (ML), Embalse Lagunazo (EL), Laguna Lagunazo A, B, and C (LLA,
LLB, and LLC, respectively)] in Lagunazo Mine site (B). (C) corresponds to aerial images of different
inland water masses evaluated in this study.

2. Materials and Methods
2.1. Study Area and Water Physicochemical Parameters

The study area was the IPB (SW Spain), which contains one of the greatest concen-
trations of polymetallic massive sulfide mineralization on Earth, with more than 1700 Mt
of sulfide ore estimated (mined and reserves) [17,31]. As a result of the historical mineral
exploitation, there are numerous abandoned mining sites, such as the Tharsis and Lagunazo
mines [32], which were the areas sampled for this study.
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Figure 1 shows the water bodies selected for this study: Embalse Grande (EG), Sierra
Bullones (SB), Filon Centro (FC), Filon Norte (FN), and TH18 from Tharsis mine (Figure 1A);
and Mina Lagunazo (ML), Embalse Lagunazo (EL), Laguna Lagunazo A, B and C (LLA,
LLB, LLC) from Lagunazo mine site (Figure 1B). EG and EL are relatively clean water
reservoirs used for agricultural purposes. SB, FC, FN, and ML are pit lakes flooded with
acidic waters, and TH18, LLA, LLB, and LLC are surficial AMD sites.

The study area covers a wide gradient of water compositions, from neutral to ex-
tremely acidic pH (0.01-7.76) and from low to high metal-enriched solutions (e.g., 0.05-60,
895 mg L~! Fe). The water composition is also reflected in the watercolor: EG and ML
are nonacidic water bodies and have a greenish-brown color, ML is acidic and presents
greenish-blue color and the rest of them are dark reddish-brown acid waters with high
iron concentrations. In situ physicochemical data were collected simultaneously with
the UAS data acquisition. Detailed information about sampling can be found in [33].
Briefly, pH, electrical conductivity (EC), oxidation-reduction potential (ORP), and tem-
perature (T) were measured at each sampling point with a CrisonMM40 p multimeter,
previously calibrated with certified solutions. Turbidity was measured using a Hanna HI-
93703 portable turbidimeter at the water surface. Water samples were collected in HDPE
bottles previously acid washed, filtered (0.45 mm pore size cellulose nitrate membrane),
and HNOgs-acidified to pH < 2. Major elements (Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P,
S, Si, Sr, and Zn) were determined by inductively coupled plasma-atomic emission spec-
troscopy (ICP-AES; PerkinElmer® Optima 3200 RL, Waltham, MA, USA) at the Institute of
Environment Assessment and Water Research (IDAEA-CSIC, Barcelona, Spain).

2.2. Remotely Sensed Data

Two different multispectral sensors were used for this study: an airborne sensor
(MicaSense RedEdge-MX Dual onboard a DJI Matrice 210 V2) and a spaceborne sensor (S2).
The spatial resolution and bandwidths of the sensors used in this study are described in
Table 1. Only the bands used for this study are shown in the table.

Table 1. Central wavelengths (nm) and bandwidths of the evaluated sensors bands.

Sensors Coastal Aerosol Blue Green Red EIc{lfg‘i-l EI;::Z NIR
Sentinel-2
Central Wavelength 443 490 560 665 704 740 865
Bandwith 20 60 36 30 15 15 21
MicaSense
Central Wavelength 444 475 560 668 705 740 840
Bandwith 28 20 20 10 10 18 40

2.2.1. UAS Data Acquisition and Processing

The UAS DJI Matrice 210 V2, a rotary-wing quadcopter platform with vertical take-off
and landing (VTOL), was used to collect aerial images at a constant flight altitude over
water bodies. The sensor mounted on the UAS to acquire the imagery was a lightweight
multispectral camera: MicaSense RedEdge-MX Dual, which has ten different channels. The
sensor resolution is 1.2-megapixel for each of the multispectral bands and 3.6-megapixel
for the RGB captures. The lens achieves a ground sampling distance (GSD) of 8 cm/pixel
at 120 m above ground level (AGL). Autonomous aerial flights were performed using the
DJI GS Pro planning software from 120 m AGL altitude with 80% frontal and 75% side
image overlap, the grid was simple, and the speed was set at 10 m/s. It is assumed that
all the multispectral imagery is in the nadir position due to the location of the camera. No
Ground Control Points (GCPs) were added to the flights since the Micasesnse sensor has an
integrated GPS that geo-tag each of the images acquired by the UAS. Furthermore, it was
also equipped with a Downwelling Light Sensor (DLS 2), and a MicaSense’s Calibrated
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Reflectance Panel (CRP) to perform the radiometric calibration on the ambient light changes
during the flight.

The DLS 2 and CRP are necessary for the radiometric calibration on the ambient light
changes during the flight. For this purpose, a picture of the CRP was taken before and after
the flight to capture the lighting conditions of the flight ensuring no shadows were covering
the panel. The use of the CRP allows comparing the data acquisition over different dates
or at different times of day, which is essential for a multiple flight analysis. On the other
hand, the DLS 2 is located at the top of the UAS looking upwards towards the sky and
measures the variations in light intensity throughout the flight by using 10 light sensors
located in different planes to define the sun position and its effect on the images. This light
information is stored in each TIFF image metadata and is used to correct the illumination
variability during the mosaicking process [34]. By using both the DLS2 and CRP during
the data collection, it is possible to choose the best calibration option to get a high-quality
reflectance map during the image processing.

Pix4D mapper (Pix4D S.A., Lucerne, Switzerland) was the Structure from Motion
(SfM) software used to process the multispectral images. Before starting the pre-processing,
images were inspected and discarded if blurred. From all images captured by the UAS
platform, the software creates orthomosaics of the surface reflectance values by image
alignment, creation of a 3D point cloud and triangle mesh, and digital surface model
(DSM), orthomosaic, and index generation (Figure S1). During these steps, the radiometric
processing and calibration are performed, and different calibration methods can be applied
depending on the input data and the light conditions. In this study, two methods were
implemented: Camera and Sun Irradiance and Camera only [35]. For Camera and Sun
Irradiance calibration, Pix4D uses the parameters written in the EXIF metadata and relate
to the camera, as well as the CRP to calculate the absolute irradiance and the DLS data
for normalizing each image for changes in the incoming radiation during the flight. For
Camera only calibration, Pix4D also uses the parameters written in the EXIF metadata and
relate to the camera and the CRP, but the DLS data is not considered. The last method is
more appropriate when the sky is clear and there is no variation in the light conditions [36].
As a result of this process, ten single orthomosaics of the surface reflectance values with a
GSD of 0.08 m were generated for all the flights. These reflectance maps contain reflectance
values ranging between 0.0 and 1.0 for each pixel. The atmospheric correction was not
considered for the UAS imagery, since it is a close-range remote sensing approach and the
atmosphere layer between the UAS and the ground is so thin that it can be omitted [9,37].
Considering that the UAS data are a low altitude remote sensing tool with ultra-high
spatial resolution that is not affected by the atmosphere and that field spectro-radiometric
measurements were not performed, the UAS data were considered as the ground truth
reference source for the remote sensing.

The UAS data acquisition was carried out on 7 October 2020 and the overpassing of
52 was the next day on 8 October 2020.

2.2.2. Sentinel-2 Data Acquisition and Processing

52 Level-1C product was acquired from the ESA Copernicus Open Access Hub (https:
/ /scihub.copernicus.eu/, accessed on 1 March 2022). The study region is covered by one 52
tile (29SQB), which is a 100 km by 100 km squared orthoimage in UTM/WGS84 projection.
The tile was acquired as close as possible to the date on which the UAS-based survey was
carried out. Images with cloud cover and sun glint over the water bodies were discarded.
52 images were available on 8 October 2020, at 11:08:49 UTC.

Satellite imagery needs to be atmospherically corrected since the radiance reaching the
sensor interacts with the atmosphere and is affected by several parameters, such as wind
speed, sun glint, angle of the sun, aerosols, water vapor, and land adjacency effects, among
others. AC processors can correct the “noise” from the radiance to get the water-leaving
reflectance true value. Many AC processors have been tested and validated for coastal
waters, but only a few studies have been performed over inland waters [20,28,38-40].
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In this study, the images were processed to Level-2A (L2A) with the Case 2 Regional
CoastColour processor (C2RCC) and Case 2 Regional Coast Colour for Complex waters
(C2X) [40]. C2RCC is an AC processor based on artificial neural networks (ANN) that
relate TOA water reflectance to radiative transfer simulations of water-leaving radiances. It
uses a radiative transfer model for the atmospheric characteristics and a bio-optical model
for the water characteristics. These water characteristics are parameterized considering
the water reflectance in the blue spectrum (443 nm), based on bio-optical databases. The
ANN are then trained based on TOA reflectance, these modelled water characteristics and
environmental variables [41]. C2RCC was complemented with the CoastColour dataset
to extend the range for coastal waters including extreme cases resulting in the C2X. C2X
uses a special set of networks trained for extreme ranges of absorption and scattering, that
is, for very turbid waters [42]. Previous studies with 52 imagery in inland waters have
obtained good performance for both AC processors [19,43—46], even though for coastal
waters ACOLITE has been proved to be more consistent [23]. The AC was performed
through the ESA’s Sentinel toolbox in the Sentinel Application Platform (SNAP).

All the bands were previously resampled to 10 m in SNAP using the bilinear upsam-
pling method. The satellite imagery was then reprojected to WGS 84/UTM zone 29N with
nearest neighbor interpolation to match the UAS data.

2.3. Spectral Band Comparison

The UAS data (8 cm) was resampled and aligned in the open-source geographic
information system software QGIS to match the satellite pixel size of 10 m employing
the bilinear interpolation method. To compare the results of both sensors datasets, for
each water body the average of six 3 x 3 boxes were extracted from the UAS and S2.
The comparison was based on pure pixels, by choosing central pixels of the water body
when possible, meaning that pixels with only water cover were selected. The UAS bands
were transformed into remote sensing reflectance (Rrs) with unit 1/sr by the following
equation [47,48]:

Rrs = Rhow /7

where 7 has units of steradian and Rhow is the non-dimensional water-leaving reflectance.
Then the UAS-imagery [47,48] were paired with the most contemporaneous available 52
image (8 October 2020) (see detailed information on the flowchart in Figure 2).

The correlation between the UAS data and the atmospherically corrected S2 data
(C2RCC and C2X) was evaluated on a band-by-band basis to determine the strength of
the relationship between both sensors. For this purpose, a linear model was fitted to the
UAS-S2 image pair and the coefficient of determination (R?) was calculated and compared.
Moreover, a pixel-by-pixel and band-by-band comparison was performed as a graphical
output of the analyzed reflectance values. To validate the consistency of both sensors,
the band-by-band root mean square error (RMSE), mean absolute error (MAE), and bias
between all the UAS resampled pixels and the corresponding S2 data were calculated. MAE
and bias provide more robust output with non-Gaussian distributions and outliers [44].

Afterwards, the compatibility of the spectral data from the UAS bands and the S2 bands
was analyzed through statistical methods. The non-parametric paired-sample Wilcoxon
signed-rank test was applied to compare the mean difference of reflectance values from
UAS data with the S2 data band-by-band. This test is an alternative to paired t-test since the
data have no normal distribution according to the results obtained by the Shapiro-Wilk test.
The test will indicate whether there is a statistical difference between the two means of UAS
and S2 data in order to discern if the data combination of both sensors should be successful
and can be complementary. In contrast, if significant differences exist, this should be taken
into account when combining data from both sensors since these differences could affect
the performance of models, leading to biases in the estimation of variables, such as water
quality parameters.
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Figure 2. Flowchart of the methodological procedures for sensors comparison.

3. Results
3.1. Reflectance Spectra

The UAS and S2 sensors’ reflectance spectra for each water body are shown in Figure 3.
The S2 reflectances are atmospherically corrected with C2RCC and C2X processors. Based
on the general shape of the spectra, greenish-blue and greenish-brown water bodies (ML,
EG, and EL) showed a better agreement between sensors (Figure 3A,B,F). For dark reddish-
brown waters (LLA, LLB, LLC, Th18, FC, FN, SB), the shape of the spectra seems to vary
depending on the sensor and atmospheric correction procedure. The differences between
UAS and S2 measurements are pronounced at the coastal blue and NIR bands, while
reflectances are more consistent in the blue, green, red, red-edge 1, and red-edge 2 bands.
Moreover, dark reddish-brown water reflectance is much lower than greenish-blue and
greenish-brown waters due to the higher absorption and smaller backscattering of its

water surfaces.
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Figure 3. Reflectance spectra collected from Embalse Lagunazo (A), Mina Lagunazo (B), Laguna
Lagunazo A (C), Laguna Lagunazo B (D), Laguna Lagunazo C (E), Embalse Grande (F), TH18 (G),
Filén Centro (H), Filon Norte (I), and Sierra Bullones (J) in October with UAS and Sentinel-2 bands
obtained with C2RCC and C2X atmospheric correction processing.

3.2. Spectral Band Comparison

The band-by-band and pixel-by-pixel comparison showed that the UAS and C2RCC
data follow the same trend for the green, red, red-edgel, red-edge2, and NIR bands
(Figure 4C-G)). Nevertheless, C2X showed a high variability of the pixel values in all the
analyzed bands. The UAS surface reflectance data has low variability in the reflectance
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values of all the analyzed bands. The data showing higher reflectance in the coastal
blue, blue, and green band correspond to EL, ML, and EG (Figure 4A—C) which are the
greenish-blue and greenish-brown water bodjies.
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Figure 4. Pixel-by-pixel and band-by-band comparison of UAS remote sensing reflectance data with
52 atmospherically corrected products (CR2CC and C2X). The analyzed bands are costal blue (A),
blue (B), green (C), red (D), rededgel (E), rededge2 (F), and NIR (G). UAS data collected on 7 October
and S2 data on 8 October 2020.

To assess the consistency of both sensors, Figures 5A and S2 shows the statistical
analysis applied to all spectrum bands: R2, RMSE, MAE, and bias, per band and per
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AC. It can be observed that UAS vs. C2RCC performed better than UAS vs. C2X. The
coefficients of determination obtained from comparing UAS orthomosaics and C2RCC
were higher than those obtained with C2X for the green, red, red-edgel, red-edge2, and
NIR bands (Figures 5A and S2). There is a weak relationship between the two sensors for
both atmospheric corrections for the NIR band and there is an extremely weak relationship
for the coastal blue band whose R? is the lowest of all bands. This may be because the
coastal blue band usually has more residuals from the atmospheric correction than other
visible bands. For the regression between UAS and C2RCC data, the results suggest
that while more than 70% of the variation in the green, red and red-edgel bands can be
explained by the linear model, the remaining variation might be due to the differences such
as acquisition dates, the spectral bands, bandwidth of the sensors, radiometric correction,
and atmospheric residuals, among others [46,49].

R2 - UAS reflectance VS S2 reflectance B RMSE - UAS reflectance VS 52 reflectance
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Figure 5. Band by band summary of statistics. (A) R2 (coefficient of determination); (B) RMSE (Root
Mean Square Error) (1/sr), (C) MAE (Mean Absolute Error) (1/sr); (D) bias. UAS data of 7 October
and S2 data of 8 October 2020.

Regarding the coastal blue band, the pixel-by-pixel comparison showed high variabil-
ity between the UAS data and both satellite atmospheric corrections (Figure 4). Only in
this case, C2X values were closer to the UAS data than C2RCC (RMSEcg = 0.0060 1/sr,
MAEcg = 0.050 1/sr for C2RCC and RMSEcg = 0.0021 1/sr, MAEcg = 0.017 1/sr for C2X)
(Figure 5B). The blue band has also high variability between the UAS data and both satellite
atmospheric corrections and the RMSE values are the same (RMSEg = 0.0021 1/sr) for this
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band while the MAE values are similar (MAEg = 0.017 1/sr for C2RCC and MAEg = 0.016
1/sr for C2X). The bias values of C2RCC show negative values for these bands, indicating
an underestimation of the reflectance obtained by this AC processor, while C2X shows
positive values indicating an overestimation of the reflectance values comparing to the
UAS data.

Regarding the green, red, red-edgel, and red-edge2 bands, C2RCC values were gener-
ally closer to the UAS data (RMSEg = 0.0019 1/sr, RMSER = 0.0016 1/sr, RMSERg; = 0.0017
1/sr, RMSERg, = 0.0014 1/sr) than the C2X (RMSEg = 0.0036 1/sr, RMSER = 0.0034 1/sr,
RMSEREg; = 0.0049 1/s1, RMSERg, = 0.0034 1/sr) (Figure 5B). The MicaSense remote sensing
reflectance data were always greater than the satellite’s for the green, red, and red-edgel,
except in the pixels corresponding to ML and EG (Figure 4C-E). C2RCC show a low positive
bias, while C2X has negative values (Figure 5).

Regarding the NIR band, the pixel-by-pixel plot indicates that C2RCC and UAS have
a more similar trend than C2X (Figure 4G), but both atmospheric corrections have similar
RMSE values (RMSEnr = 0.0021 1/sr for C2RCC, RMSEyr = 0.0024 1/sr for C2X) in
this spectral region. Furthermore, C2RCC increases the bias in the NIR band and C2X
decreases it.

The Wilcoxon signed-rank test from the paired two samples showed a statistically
significant difference between mean reflectances of UAS and mean reflectances of S2
based on a band-by-band comparison (p-value < 0.001) (Table 2). The p-value indicates
strong evidence against the null hypothesis, as there is less than a 5% probability the null
is correct. Therefore, the null hypothesis is rejected, and the alternative hypothesis is
accepted. The only non-significant difference from the whole analysis was found in the
blue (p-value = 0.214) and NIR band (p-value < 0.680) for the C2X processor.

Table 2. Wilcoxon signed-rank test of UAS and S2 remote sensing reflectance data.

Bands Coastal Blue Blue Green Red RedEdgel RedEdge2 NIR
Observations 60 60 60 60 60 60 60
Spearman correlation —0.243 0.546 0.685 0.338 0.277 0.000 —0.084
Wilcoxon signed-rank test
for UAS and C2RCC data <0.0001 <0.0001 0.001 0.001 <0.0001 <0.0001 <0.0001
Wilcoxon signed-rank test
for UAS and C2X data <0.0001 0.214 0.002 <0.0001 <0.0001 <0.0001 0.680

4. Discussion

The type of waters presented in this study corresponds to Case 2 waters, which
have great variability in optical properties and can be classified as highly absorbing or
highly scattering waters [38,50,51]. Dark reddish-brown acidic waters as can be seen in
Figure 3C-E,G-]) are highly absorbing waters characterized by very low water-leaving
reflectance and the maximum Rrs is typically <0.5%. While greenish-blue and greenish-
brown waters, such as EL, ML, and EG, are highly scattering waters (Figure 3A,B,F).

The spatial resampling of the drone data from 8 cm to 10 m to match the satellite
resolution provided reflectance values coherent with the values obtained from the 52 data,
even though UAS data were more diverse in reflectance values than 52. The comparison
of the UAS and S2 reflectance spectra for each water body revealed that C2RCC and C2X
performed better for greenish-blue and greenish-brown water bodies concerning the UAS
data, while for dark reddish-brown waters there is a lack of consistency in the form of the
spectral signature obtained by both sensors (Figure 3). According to the band-by-band
and pixel-by-pixel comparison and the statistics obtained, C2RCC data is more similar to
the UAS data than C2X (Figure 4). However, despite the strong correlation found in the
green, red, and red-edgel bands for C2RCC, a significant difference in reflectance, between
MicaSense RedEdge-MX Dual and S2 multispectral data, was found with the Wilcoxon
signed-rank test (Table 2). This means that these differences in the reflectance values should
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be considered when combining data from both sensors since these could have further
consequences in developing multi-scale models.

The poor agreement between sensors may arise from different causes such as the
spectral bands of the sensors, the bandwidth of the sensors, the radiometric correction,
sensor degradation over time and the atmospheric conditions [46,49,52]. In this case, it is
important to mention that the bandwidths of S2 were much wider than the UAS in several
important bands, maybe due to spectral contamination. Radiometric resolution (number of
data bits) is often overlooked and can be a factor along with signal to noise characteristics
of the sensor. In this case, the signal-to-noise ratio (SNR), might be a problem since the
Micasense was developed for land-studies, not water quality (requiring a higher SNR due
in part to factors of water leaving radiances). In addition, it is well known that SNR in
Sentinel 2 is low in blue-green bands. Hence, that difference in radiometric resolution
can be a factor along with signal to noise characteristics of the sensors. One important
factor is the temporal matching, there is one day difference between the UAS and S2
data. It is known that the dynamics of small water masses can greatly impact the results
especially at very high spatial resolutions [53]. The dynamics of the water bodies may
appear calm, but it is recommended to take matchups within a two-hour window around
crossover time. Finally, even though the sensor MicaSense RedEdge is provided with DLS
2 and CRP to accomplish factory radiometric calibration, the calibration parameters may
change when the camera is utilized in real-world conditions. As a result, previous studies
recommend regular calibration of the radiometric calibration coefficients, proving that
there is an impact of the radiometric correction on the spectral consistency between UAS
and satellite data [52,54].

Other studies have found a relatively good correlation of bands between MicaSense
RedEge sensor and S2. For instance, it has found that the spectral response of MicaSense
RedEge sensor matches the response of S2 in a forest environment, except for the NIR
band [55]. A good agreement in the shape of the spectral signature of a drinking water
reservoir affected by eutrophication for both sensors has been showed, making it possible
to develop a multi-scale monitoring tool [9]. On the other hand, the authors of [46]
performed the t-test and Wilcoxon signed-rank test to compare the reflectance values on a
crop environment from MicaSense RedEge sensor and 52 on a band-by-band basis obtaining
the same result as ours, a significant difference in reflectances. It is important to mention
that the analyzed water bodies with similar spectral signatures to the one studied by [9]
(EG, EL, ML) have shown coherence between the shapes of the spectral curves of both
sensors, but are the red AMD-affected water bodies the ones that did not show coherence
in the results and should be further study to determine the cause of the difference in the
sensors’ responses. It is suggested that the spectrum of the AMD-affected water was not
within the training database of the AC processors or the spectrum is out-of-scope of the
algorithm definition, thus giving a water leaving reflectance spectrum with large deviations
from the UAS data [40]. In this sense, new AC should be designed for this complex type
of water. A recommendation to improve the obtained results is to verify the sensors data
with field spectroradiometric measurements or hyperspectral sensor mounted on a UAS,
especially in the dark reddish-brown acidic waters where UAS and S2 data failed to obtain
similar reflectance data. Field spectroradiometric measurement of surface reflectance is a
useful source of information that is completely unaffected by the atmosphere and, thus, is
suitable for assessing the accuracy of the data obtained with other sensors [55,56].

5. Conclusions

This study dealt with a comparison between images of small water bodies derived
from two different platforms: an UAS and the satellite S2. The UAS is an ultra-high-
resolution platform and S2 a free medium resolution platform. The comparison was
mainly based to determine whether the S2 sensor can complement the UAS sensor, in
this case, the MicaSense RedEdge MX-Dual sensor, for inland water quality monitoring in
mining environments. For the S2 data, two AC processors were applied to the imagery:
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C2RCC and C2X, which have a good performance in complex waters and extreme complex
waters respectively. Thus, the overall comparison was made between the UAS, C2RCC,
and C2X datasets resampled to the spatial resolution of 10 m. Considering that the UAS
data are a low altitude remote sensing tool with ultra-high spatial resolution (8 cm) that
is not affected by the atmosphere and that field spectroradiometric measurements were
not performed, the UAS data were considered as the ground truth reference source for
the remote sensing reflectance. The results suggest that even though C2RCC showed a
better performance than C2X compared to the UAS data, there is a significant difference in
reflectance between MicaSense RedEdge-MX Dual and both AC processors which should
be considered when combining data from both sensors since these could have further
consequences in developing multi-scale models. The results obtained may be considered
preliminary due to the limited in situ database and the lack of handheld spectroradiometric
measurements to validate the performance of the UAS sensor and the AC processors.
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