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Abstract: The accurate spatial positioning of the target in a fixed camera image is a critical sensing
technique. Conventional visual spatial positioning methods rely on tedious camera calibration and
face great challenges in selecting the representative feature points to compute the position of the
target, especially when existing occlusion or in remote scenes. In order to avoid these deficiencies,
this paper proposes a deep learning approach for accurate visual spatial positioning of the targets
with the assistance of Global Navigation Satellite System (GNSS). It contains two stages: the first
stage trains a hybrid supervised and unsupervised auto-encoder regression network offline to gain
capability of regressing geolocation (longitude and latitude) directly from the fusion of image and
GNSS, and learns an error scale factor to evaluate the regression error. The second stage firstly
predicts regressed accurate geolocation online from the observed image and GNSS measurement, and
then filters the predictive geolocation and the measured GNSS to output the optimal geolocation. The
experimental results showed that the proposed approach increased the average positioning accuracy
by 56.83%, 37.25%, 41.62% in a simulated scenario and 31.25%, 7.43%, 38.28% in a real-world scenario,
compared with GNSS, the Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) and
the supervised deep learning approach, respectively. Other improvements were also achieved in
positioning stability, robustness, generalization, and performance in GNSS denied environments.

Keywords: visual spatial positioning; uncalibrated image; global navigation satellite system; multi-
sensor fusion; deep learning

1. Introduction

Fixed cameras are widely deployed in outdoor areas to provide fine-grained informa-
tion about the physical world. The accurate and reliable spatial positioning of the target in
the fixed camera image is an important sensing technique in many promising applications,
such as surveillance of autonomous vehicles, monitoring of mobile robots, digital twin, sea
pilling, airport security surveillance and so on.

The current visual spatial positioning methods can be divided into two categories:
calibrated methods [1–3] and uncalibrated methods [4–6]. The calibrated methods heavily
rely on camera calibration. However, even with some matured camera calibration methods,
the calibration procedure can be tedious and require a certain level of expertise [1]. The
uncalibrated methods require no camera calibration, but highly rely on feature point
selection and matching [5]. However, in many scenarios, for both calibrated and existing
uncalibrated methods, choosing the representative positioning feature points in the image
to compute the position of the target is challenging, especially in the occasion of occlusion
or in remote scenes. For instance, for the large-size and complex-shaped airplane at an
airport, as shown in Figure 1a, it is dramatically difficult to choose the representative
positioning feature point (i.e., the landing gear tyre) in the image to compute the spatial
position of the airplane, due to the mutual occlusion of its components and the difficulty
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of detecting the landing gear tyre of the small airplane object in far view field. Likewise,
as shown in Figure 1b, it is difficult to choose a visual representative positioning feature
point of Person 1 when his feet are occluded by Person 2. If we choose an inaccurate visual
representative positioning feature point, the computed position of the target will deviate
from the ground truth, especially in far view field, as shown in Figure 1c. Therefore, it
is essential to explore an alternative visual spatial positioning method which requires no
camera calibration (uncalibrated) and can overcome the feature point selection problem.
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Figure 1. (a,b): The difficulty of choosing visual representative positioning feature points. (c): The
occurrence of projection offset in traditional visual spatial positioning methods, produced by the
pinhole-based 3D camera model if choosing a wrong representative positioning feature point, which
is difficult to be overcome in existing visual positioning methods.

In many occasions, the Global Navigation Satellite System (GNSS) devices are mounted
on the targets, such as airplanes at airport and autonomous vehicles on the road. GNSS
can provide external positioning information to the image. It enables us to explore a
visual spatial positioning method which takes advantage of GNSS, to exempt from camera
calibration and the positioning feature point selection problem. However, GNSS is always
noisy and unstable due to various factors such as multi-path effect and signal blockage [7,8].
Fortunately, image and GNSS can be complementarily fused to improve the accuracy and
stability of spatial positioning. Although some multi-sensor fusion approaches integrating
image and GNSS have been presented [8–10], they rely on camera calibration, and cannot
avoid the deficiencies of camera calibration and feature point selection problem mentioned
above. If without camera calibration, since an uncalibrated image is high-dimensional,
images and GNSS are highly heterogeneous, how to fuse them to obtain accurate spatial
positions poses another great challenge.

To effectively address the above issues, this paper focuses on the fusion of an un-
calibrated image and GNSS to obtain accurate spatial positions of the target from three
considerations. Firstly, in order to avoid the deficiencies of camera calibration and fea-
ture point selection, a deep learning regression algorithm is presented to directly regress
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target’s accurate geolocation from the image, without camera calibration. Thanks to the
advances of visual object detection techniques [11], the accurate visual location of the target
can be obtained using a time-varying image bounding box, thus free from selecting fixed
positioning feature points. Secondly, in order to improve the accuracy and stability of the
spatial positioning result, the complementary information from image and GNSS are fused.
Thirdly, in order to deal with high heterogeneity between image and GNSS, an auto-encoder
based framework is proposed as the backbone of the deep learning regression algorithm.

To be specific, this paper proposes a two-stage approach to provide accurate spatial
positions of the target. The first stage firstly obtains the accurate visual locations of the
target using image bounding boxes. Then, it develops a hybrid supervised and unsu-
pervised auto-encoder regression network to learn the spatial relationship between the
image bounding boxes and GNSS. The supervised part of the regression network learns the
relationship between the image bounding boxes and GNSS positions in a point-to-point
manner. The unsupervised part of the regression network learns the relationship between
the image bounding boxes and GNSS positions in a space-to-space manner. The hybrid su-
pervised and unsupervised auto-encoder regression network can better filter out the noisy
information in the training samples and increases the accuracy of the regressed positioning
results comparing with the supervised learning method. After being trained offline, the
regression network gains capability of regressing accurate geolocation directly from the
fusion of image bounding box and GNSS. In addition, it designs an error scale factor to
facilitate the evaluation of regression error. The second stage executes online fusion and
filtering with two steps. The first step regresses a predictive accurate geolocation from
the fusion of the observed image bounding box and GNSS measurement. The second
step filters the predictive regressed geolocation and the GNSS measurement according
to their estimation confidence levels, and outputs the optimal position estimation which
is robust to errors of sensors. Experimental results in one simulated scenario and two
real-world scenarios demonstrate the superiority of the proposed approach over GNSS, the
well-known Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) and the
state-of-the-art supervised learning approach.

The contributions of this paper are four-fold:

(1) We present a novel accurate spatial positioning method based on uncalibrated fixed
camera image and GNSS. As far as we know, it is the first time that accurate spatial
geolocations from the fusion of fixed camera image and GNSS have been directly
output, free from the highly calibration-error-sensitive 3D reconstruction and tricky
positioning feature point selection;

(2) We design a hybrid supervised and unsupervised auto-encoder fusion and regression
framework for multi-sensor optimal position estimation. To the best of our knowledge,
this is the first paper to optimize spatial positioning based on the fusion of image
and GNSS using auto-encoder. We also mathematically prove that the proposed
hybrid auto-encoder can yield optimal solution to the fusion and regression problem
of multi-sensor position estimation;

(3) Since our proposal is learning based, we make it possible that once the regression
network is well trained offline with the assistance of GNSS, the camera itself can
online automatically output the accurate geolocations of the targets in its view field.
This function is significantly useful in some GNSS partially denied environments,
where we first train a visual locator when GNSS is available, and then use it to predict
the spatial positions of target when GNSS is not available;

(4) We elaborately handcraft datasets which contain fixed camera images and GNSS in
simulated and real-world scenes for the visual spatial positioning community. It is
available at https://github.com/sculiang/image-spatial-localization (accessed on
23 April 2021).

The rest of this paper is organized as follows: Section 2 describes the related work
about image-based and multi-sensor fusion based spatial positioning. Section 3 thoroughly
introduces our two-stage approach for accurate spatial positioning. Section 4 shows the

https://github.com/sculiang/image-spatial-localization
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experimental results and discussion in terms of accuracy, robustness, generalization and the
performance in GNSS denied environment. Section 5 draws the conclusion and suggests
future work.

2. Related Work
2.1. Image-Based Spatial Positioning

The image-based spatial positioning has attracted a lot of attention over the years. Most
of the conventional methods required camera calibration [12], which aimed to compute the
intrinsic parameters (focal length, principal points, and lens distortion) and the extrinsic
parameters (rotation and translation matrix related to the world coordinate system). Some
methods were used for fixed camera calibration [1], and some methods were used for
moving camera self-calibration [13]. In moving camera self-calibration, a series of images
were taken from different views in the calibration process. For the calibration of fixed
camera, an array of reference points with accurately known world coordinates were usually
needed. Camera calibration in small-scale environments has been well studied [1,2,14], but
camera calibration in large-scale environments still needs more research [3,12]. Reference
points in large-scale environments are difficult to choose and their exact positions in the
real world are difficult to ascertain. Some methods had supplemented camera calibration
in large-scale environments with the assistance of GNSS [9]. However, the performance
was quite sensitive to the GNSS accuracy at the chosen reference points, and the measuring
process required two or three trained staff members to work together, which leaded to
high labor costs and low efficiency. Several uncalibrated image-based positioning methods
have been proposed, for the applications of visual servo [4–6] and stereo vision [15,16].
However, they usually used binocular vision system [15,16] or used moving monocular
vision system [5] and were highly sensitive to the accuracy of feature points selection and
matching in different views.

2.2. Multi-Sensor Fusion Based Spatial Positioning

There are many approaches that integrate multiple sensors to realize accurate spatial
positioning [8,9,15–26]. The traditional methods of fusing GNSS with images firstly trans-
formed the global GNSS coordinates to local camera coordinate system, and then fused
them using optimization [8,9]. Min et al. [8] transformed the coordinates of GNSS to a
local camera coordinate system, and the GNSS and visual tracks were calibrated with the
improved weighted iterative closest point and least absolute deviation methods. However,
these methods rely on camera calibration, and their positioning performances are impaired
by the aforementioned deficiencies of camera calibration.

With respect to data fusion, most of the existing studies have been based on filtering
methods. Kalman filter (KF) based algorithms have often been used for fusing data from
different sources and has resulted in more accurate positioning [21,22]. However, KF based
algorithms cannot directly process high-dimensional images and are limited in dealing with
non-linearity and uncertainty. Alongside filtering, neural network (NN) based methods
have been also studied for data fusion. In [23–25], artificial neural network-based fusion
methods were proposed to learn the velocity or position errors between GNSS and inertial
navigation system (INS) and compensate the INS when GNSS was denied. Images were
not often considered by naive neural networks in fusion with GNSS, due to the difficulty
to train.

Considering their great successes in computer vision, deep learning algorithms have
also been used recently [16,26]. Sun et al. [26] proposed a method to train a geospatial
deep neural network (Convolutional Neural Network + Long Short Term Memory) to
predict the ego-positions of camera using only ordinary ground imagery and low accuracy
cellphone-grade GPS. Although we both use deep learning to fuse image and GNSS for
positioning purpose, our work obviously distinguishes from theirs. On the one hand,
their work used a sequence of images captured by a moving camera mounted on a car
for navigation purposes, whereas our work uses a single image from a fixed camera for
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surveillance purposes. It is worth mentioning that there is no literature about the image-
aided accurate spatial positioning which requires no camera calibration for surveillance
purpose. Our study fills this research gap. On the other hand, the output of their network
was a location difference relative to the hand-picked ground control points, whereas
our output is directly an accurate geolocation, with no need of ground control points.
Mahmoud et al. [16] proposed an uncalibrated stereo vision method with deep learning
for position estimation for a robot arm system. Their method is currently the most similar
one to ours, because we both develop a deep learning regression network to directly
regress positions of the target from uncalibrated fixed camera images. Our work extends
that for theirs in two aspects. Firstly, the input of their network was the fusion of one
camera image with another overlapped camera image (i.e., binocular), whereas ours are the
fusion of target’s monocular image and GNSS. Secondly, their method used a 2D marker
attached to the target to ease the detection and matching of the feature points, which would
dramatically decrease the flexibility and practicality in actual situations. By comparison,
our method can automatically and adaptively output the target’s image bounding box
corner points, with no need of additional feature marker, free from feature points detection
and matching, thus guarantees the high flexibility and practicality in actual situations.

3. Methodology

This paper provides accurate spatial positions of the target based on the fusion of
uncalibrated image and GNSS. An overview of the proposal is illustrated in Figure 2.
A fusion architecture with two stages is designed. Stage One is to train a hybrid supervised
and unsupervised auto-encoder regression network offline before time tk. Stage Two is
to output an optimally filtered position online at time tk. In Stage One, we prepare a lot
of training samples which contain the target’s visual locations in images and their corre-
sponding GNSS positions to train the hybrid auto-encoder regression network. The visual
locations in the images are acquired by image target detection and tracking algorithm [27],
and the GNSS data are standardized for the sake of better training. A regression error scale
factor is created and learned to evaluate the scale of regression error. Stage Two is divided
into two steps: the first step regresses a predictive accurate geolocation from the fusion of
the observed visual location and the measured GNSS position using the trained hybrid
auto-encoder regression network. The second step firstly evaluates the estimation confi-
dences of the predictive regressed geolocation and the GNSS measurement, respectively,
based on their errors, and then filters the predictive regressed geolocation and the GNSS
measurement to compute the optimal geolocation according to their estimation confidence.

3.1. Stage One: Offline Training the Regression Network

In this stage, we design a regression network which is trained offline. It takes a
stacked auto-encoder as backbone. A stacked auto-encoder is an unsupervised learning
architecture. If the input of a stacked auto-encoder includes information from multiple
sources, the correlation of the sources will be encoded into the compressed feature, and the
noisy information in sources will be filtered out [28]. In our study, the stacked auto-encoder
fuses the relative visual locations with the global GNSS positions and compresses the fused
high dimensional input tensor into 2D GNSS space to regress the geolocation. In addition to
the unsupervised stacked auto-encoder backbone, we also introduce a supervised learning
mechanism into its learning process: the regressed geolocation takes the GNSS position
as the regression label. The hybrid of supervised learning and unsupervised learning,
i.e., hybrid learning, enables the regressed geolocation to firstly approach the GNSS position
by supervised learning, then filter out the noisy information in GNSS data by unsupervised
learning. In this way, the positioning accuracy of the regressed geolocation can be improved.

The framework in Stage One is shown in Figure 3. Firstly, given a sequence of image
training samples, the visual bounding boxes containing the target are cropped using state-
of-the-art target detection and tracking algorithm [27]. An image can provide rich visual
information of the target, including color, texture, location and size. Only the location
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and size are useful for spatial positioning. The location and size of the target can be
accurately predicted using a bounding box. The bounding box in this paper is described
as B= (t, l, w, h), where (t, l) is the pixel coordinate of the top-left corner of the bounding
box, and w, h represent the pixel width and height of the bounding box, respectively. The
longitude and latitude of the target are collected from GNSS sensors. In most occasions, the
real-world spatial area corresponding to the camera view field is small. Its inside longitudes
and latitudes at different locations have tiny differences, which will cause the vanishing
gradient problem in the training process of the regression network. In order to better train
the regression network, we standardize the longitude and latitude by normalizing them
to 0–1 and multiplying a constant to improve their discriminability. The standardized
longitude and latitude are denoted as a vector Z= (long, lat). The visual information and
the longitude-latitude information are aligned by utilizing time stamp. If they have a same
time stamp, they are concatenated as a 6D tensor X = (t, l, w, h, long, lat). X contains both
the accurate location of the target in image space and in longitude-latitude space. Despite
the fact that it has complementary information about targets’ positions compared to single
GNSS or image, it also contains unexpected redundant information. In order to dig the
accurate position information, we design a stacked auto-encoder architecture to refine X.
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The stacked auto-encoder takes the tensor X as input. After feed-forwarding through
the encoder, a 2D regressed vector Ẑ = (lon̂g, lât) is obtained, and after feed-forwarding
through the decoder, a 6D tensor X′= (t′, l′, w′, h′, long′, lat′) is reconstructed. We train the
stacked auto-encoder by minimizing the objective loss function using back propagation.
The objective loss function is as follows:

min L = ωXeX + ωZeZ, (1)

where eX denotes the mean square error (MSE) between the input tensor X and the re-
constructed tensor X′. In our study, it is called “unsupervised reconstruction error” and
computed as following:

eX =
1
n

n

∑
i

(
Xi − X′ i

)2, (2)

where n is the dimension of the input tensor X, namely n = 6.
eZ denotes the MSE between the GNSS measurement Z and the regressed vector Ẑ.

In our study, it is called “supervised regression error” and use the following equation to
compute its value:

eZ =
1
m

m

∑
j

(
Zj − Ẑj

)2, (3)

where m is the dimension of Z, namely m = 2.
Minimizing eX ensures the overall good performance of the encoder and the decoder. It

is an unsupervised learning process. It enables the stacked auto-encoder regression network
to learn the spatial correlation between the visual location B= (t, l, w, h) and the GNSS
position Z= (long, lat). The correlation is latently encoded into the compressed 2D vector
Ẑ. It builds space-to-space mapping relationship between image bounding box tensor space
and GNSS vector space by manifold learning. eZ is a regularization item. Minimizing eZ
enforces the accurate mapping from 6D tensor X to 2D vector Z. It is a supervised learning
process, which builds point-to-point mapping relationship from a bounding box tensor to a
geolocation vector. Appendix A proves that the hybrid auto-encoder with our objective
loss function can yield an optimal solution to our problem.

ωX , ωZ are the weights of eX , eZ, respectively. ωX determines the accuracy of space-to-
space mapping and ωZ determines the accuracy of point-to-point mapping.
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A regression error scale factor is created in our study to evaluate the ratio of the
“supervised regression error” to the “unsupervised reconstruction error”. It can be learned
in the training process as following:

Es =
1
N

N

∑
i

eZ,i

eX,i
, (4)

where N denotes the number of training samples. In practice, if we setup many iteration
epochs in the training process, only the eZ,i and eX,i in the last epoch are used to calculate
Es. In the next fusion stage, the learned error scale factor is used to compute regression
error from reconstruction error.

3.2. Stage Two: Online Fusion and Filtering

Stage Two is processed online at time tk, as shown in Figure 4. It is divided into
two steps. The first step generates the predictive regressed geolocation Ẑ(tk) at time tk.
When the tensor X(tk) is input into the trained hybrid auto-encoder regression network,
the regressed longitude-latitude vector Ẑ(tk) is predicted by the encoder, and X′(tk) is
reconstructed online by the decoder.
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The second step finishes online filtering and optimization. If the online reconstruction error
is computed as eX(tk), then the online regression error at time tk is computed by multiplying
the online reconstruction error with the learned regression error scale factor Es, i.e.,

eẐ(tk) = Es · eX(tk). (5)

After computing the online regression error, we then fuse the predictive regressed
geolocation Ẑ(tk) with the measured GNSS ZGNSS(tk) based on their estimation confidences.
The estimation confidences are evaluated as follows:

γẐ(tk) =
1/eẐ(tk)

1/eGNSS + 1/eẐ(tk)
, (6)

γGNSS(tk) =
1/eGNSS

1/eGNSS + 1/eẐ(tk)
, (7)

where γẐ(tk) denotes the estimation confidence of the predictive regressed geolocation
Ẑ(tk) at time tk, and γGNSS(tk) denotes the estimation confidence of GNSS measurement
at time tk. eGNSS denotes the priorly known GNSS measurement error variance, which is
assumed as a constant intrinsic parameter of GNSS sensor. It is acquired by computing
GNSS’s normal distribution from the statistics of many GNSS values at a fixed point
according to the central-limit theorem.
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The final optimal position at time tk is filtered as follows:

ZFUSE(tk) = γẐ(tk) · Ẑ(tk) + γGNSS(tk) · ZGNSS(tk). (8)

From Equations (6)–(8), we can observe that if an estimation has a smaller MSE, its
estimation confidence is greater, and the result of the fused position will stay closer to it
and thus improve the robustness to sensor errors.

4. Experiments and Results
4.1. Experimental Setup

We did not find any publicly available benchmark datasets which were able to meet
our needs, so we handcrafted datasets covering a simulated scenario and two real-world
scenarios to train and test our proposal. As shown in Figure 5, Scenario 1 simulated an
airport scenario using the advanced virtual reality and digital twin 3D creation engine
“UE4”, where a simulated airplane was taxing along the taxiway. We obtained the longitude
and latitude ground truth positions of the airplane along the taxiway using UE4 and added
position errors to simulate the noisy GNSS measurements of the airplane. In this scenario,
10,000 training samples and 400 test samples containing rendered images and simulated
longitude-latitudes were collected. Scenario 2 and 3 were on a real-world urban square.
A target person appeared in the camera view field with a low-cost cellphone-grade GNSS
receiver. The target person walked back and forth along a polyline as shown in Scenario 3,
and 10,000 training samples containing images and longitude-latitudes were collected. In
Scenario 2, the target person stood still at a fixed point, and 450 test samples containing
images and longitude-latitudes were collected. In Scenario 3, the target person walked
back and forth along a polyline where some occlusions occurred between pedestrians, and
2000 test samples were collected. The ground truth locations in Scenario 2 and the ground
truth line in Scenario 3 were acquired using an industrial-level accurate GNSS receiver.
These three scenarios were cooperating. In Scenario 1, the rendered image block of the
airplane could be tailored very precisely using UE4, thus there was no errors in image
object detection. It could illustrate the performances of our proposal with no interference
of visual noises. By contrast, Scenarios 2 and 3 had visual noises. They illustrated the
performances of our proposal when dealing with a stationary target and a moving target,
respectively, with both visual target detection noises and GNSS noises in real life. The
simulated/real GNSS receivers and camera collected data simultaneously. We collected the
GNSS at a frequency of 1 Hz and captured the video images at a frequency of 25 Hz. We
choose the 13th image frame to pair the GNSS raw data at each second.
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Figure 5. Experimental scenarios. (a) In Scenario 1, the simulated airplane taxed along the taxi-
way (red). (b) In Scenario 2, the target Person 1 stood still at a fix point (red). (c) In Scenario 3, the
target Person 1 walked back and forth along a polyline (red) where some occlusions occurred between
pedestrians. The yellow and orange boxes represent the object detection bounding boxes.
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Although there is no existing literature to fuse the fixed uncalibrated image with GNSS
to directly output geolocation, in theory, the supervised Deep Neural Network (DNN)
method proposed in [16], which is the currently most similar existing method to ours, can
directly output geolocation from the fusion of image bounding box and GNSS. Moreover,
the Interacting Multiple Model−Unscented Kalman Filters (IMM-UKF) [21,29] is a classical
method to increase the GNSS positioning accuracy. In this paper, GNSS, IMM-UKF and the
supervised DNN in [16] are chosen as the baseline methods. We conducted experiments
with our approach, and compared with the three baselines, on a hardware platform of GPU
NVIDIA GeForce 1080 Ti (USA) and CPU Intel Core i7-8700K (USA). By conducting many
groups of tests, we found the best set of hyper-parameters to give the best positioning
results: our stacked auto-encoder had 5 layers, of which encoder had 3 layers and decoder
had 3 layers. The optimizer was Adam, and learning rate was 0.005, ωX = 1, ωZ = 2000.
The DNN in [16] had 5 layers, whose loss function was MSE, optimization algorithm was
Adam, and learning rate was 0.001.

4.2. Experimental Results and Discussions

For description simplicity, the first step fusion in Stage Two is called “one-step fusion”
method, and the combination of the first step and the second step in Stage Two is called
“two-step fusion” method.

4.2.1. Accuracy

The accuracy performances were verified quantitatively in Scenario 1 and 2. The mean
location errors of five methods, namely the GNSS, IMM-UKF, the supervised DNN in [16],
our one-step fusion method and two-step fusion method, are listed in Table 1. It is worth
mentioning that the location accuracy in Scenarios 1 and 2 were very different. This is
because we added large GNSS noises to Scenario 1, on the one hand, to truly simulate
the strong noise interference at large-scale airport in real life, and on the other hand, to
increase the discrimination of each method’s positioning results along the long taxiway
when plotting them in figures.

Table 1. The mean location errors of four methods.

Scenarios GNSS IMM-UKF Supervised DNN One-Step Fusion Two-Step Fusion

Scenario 1 36.95 25.42 27.32 15.95 17.67
Scenario 2 2.72 2.02 3.03 2.00 1.87

From Table 1, we can see that, in Scenario 1, our one-step fusion method achieved
the smallest mean location error. In Scenario 2, our two-step fusion method achieved the
smallest mean location error. From Figure 6, we can also see that, in these two scenarios, the
location errors of our one-step fusion and two-step fusion methods were both smaller than
GNSS, IMM-UKF and supervised DNN. The location errors of GNSS changed drastically,
due to the unavoidable noisy errors coming from various negative factors. The IMM-UKF
decreased the location errors, but still influenced by the drift of GNSS, so it also suffered
from instability. With low-accuracy GNSS training data, the supervised DNN in [16]
was difficult to learn the exact mapping relationship from image to geolocation, so its
location errors were large. By contrast, our one-step and two-step methods outperformed
GNSS, IMM-UKF and supervised DNN in term of accuracy. This is owing to that our
proposed hybrid supervised and unsupervised auto-encoder regression network could
regress geolocations accurately. Comparing with the supervised DNN in [16], our hybrid
regression network can not only learn the accurate mapping relationship from image to
geolocation, but also can dig the accurate position information from both image and GNSS,
filter out noisy information in low-accuracy GNSS training data, therefore, our regressed
geolocation can reach a high accuracy.
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Figure 6. Location error curves. (a). Location error curves in Scenario 1. (b). Location error curves in
Scenario 2.

Besides, we can see from Figure 7 that the maximum location errors of our one-
step fusion and two-step fusion methods were smaller than those of GNSS, IMM-UKF
and supervised DNN, which indicates they are more reliable to avoid false warnings in
applications such as collision warning at airports. The overall performances of our methods
in both Scenarios 1 and 2 were much better than GNSS, IMM-UKF and supervised DNN, as
our methods had obviously lower statistical location error value lines. By comparison, our
one-step fusion method achieved better performance than our two-step fusion method in
decreasing location errors in Scenario 1. This is because in Scenario 1, there was no image
detection errors, so after offline training, our regressor gained capability of regressing
accurate geolocations. In the online fusion stage, the regressed geolocation of one-step
fusion method was not fused with low-accuracy GNSS, while that of the two-step fusion
method was fused with low-accuracy GNSS, so the one-step fusion method achieved more
accurate positioning result than two-step fusion method. In Scenario 2, they achieved
almost the same accuracy performance when more or less image detection errors existed.
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Figure 8 illustrates the cumulative percentage curves of five methods in each location
error range in Scenario 1. We can see that our one-step fusion and two-step fusion methods
had steepest cumulative percentage curves, which meant their location errors clustered
within small error range. Specifically, 76.11%, 71.24% of the location errors of the one-
step fusion, the two-step fusion methods were from 0–20 m. By contrast, only 28.54%,
48.01% and 40.71% of the location errors of GNSS, IMM-UKF and supervised DNN were
from 0–20 m. It explicitly proves our methods outperformed other three baselines. Figure 9
illustrates that our one-step fusion and two-step fusion methods located more densely and
closer to the ground truth than other three baselines in Scenario 1. By comparison, the
one-step fusion method performed better than the two-step fusion method, and it was
located more densely than the two-step fusion method.

Figure 10 also shows that locations in Scenario 2 generated by our one-step fusion
and two-step fusion methods were closer to the ground truth than other three baselines
and distributed much more densely than GNSS and IMM-UKF. This is because although
GNSS positions drifted sharply, the relative locations of the target in images stayed almost
unaltered in Scenario 2, which made the fused location results of our methods became
stable. The supervised DNN could generate the densest location results but were far away
from the ground truth.
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Figure 11 shows that our methods located close to the ground truth line around the
corner of the polyline in Scenario 3, where the two-step fusion method was better than the
one-step fusion method. They both obviously outperformed GNSS and supervised DNN in
term of positioning accuracy around the corner. Interestingly, our methods could respond
correctly to the turning action of the target person, as they both produced correct walking
trajectories with a same turning angle of the ground truth line. By comparison, supervised
DNN had weak response to the turning action, while the trajectory produced by GNSS
looked scattered with nearly no response to the turning action. The trajectory of IMM-UKF
also located close to the ground truth line and responded correctly to the turning action of
the target person. This is due to its well-known advance of locating and tracking a moving
target. Encouragingly, our two-step fusion method achieved the same level of precision
as IMM-UKF.



Remote Sens. 2022, 14, 3877 14 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

by GNSS looked scattered with nearly no response to the turning action. The trajectory of 

IMM-UKF also located close to the ground truth line and responded correctly to the turn-

ing action of the target person. This is due to its well-known advance of locating and 

tracking a moving target. Encouragingly, our two-step fusion method achieved the same 

level of precision as IMM-UKF. 

 

Figure 10. Location distributions in Scenario 2. 

 

Figure 11. Location distributions when the target person walked around a corner in Scenario 3. 

4.2.2. Robustness 

Object detection in images may suffer from negative effects such as illumination var-

iation and occlusion, which brings about positioning errors of the image bounding boxes. 

In order to test the robustness of the methods to the object detection errors in uncalibrated 

images, we manually added positioning errors to the bounding box tensors in the test 

phase in Scenario 2. 10- and 30-pixel errors were, respectively, added to the width and 

height of the bounding boxes and expanded the bounding boxes toward top-left from 

right-bottom. Since IMM-UKF does not use visual information, it is not compared in this 

section. 

Figure 10. Location distributions in Scenario 2.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

by GNSS looked scattered with nearly no response to the turning action. The trajectory of 

IMM-UKF also located close to the ground truth line and responded correctly to the turn-

ing action of the target person. This is due to its well-known advance of locating and 

tracking a moving target. Encouragingly, our two-step fusion method achieved the same 

level of precision as IMM-UKF. 

 

Figure 10. Location distributions in Scenario 2. 

 

Figure 11. Location distributions when the target person walked around a corner in Scenario 3. 

4.2.2. Robustness 

Object detection in images may suffer from negative effects such as illumination var-

iation and occlusion, which brings about positioning errors of the image bounding boxes. 

In order to test the robustness of the methods to the object detection errors in uncalibrated 

images, we manually added positioning errors to the bounding box tensors in the test 

phase in Scenario 2. 10- and 30-pixel errors were, respectively, added to the width and 

height of the bounding boxes and expanded the bounding boxes toward top-left from 

right-bottom. Since IMM-UKF does not use visual information, it is not compared in this 

section. 

Figure 11. Location distributions when the target person walked around a corner in Scenario 3.

4.2.2. Robustness

Object detection in images may suffer from negative effects such as illumination
variation and occlusion, which brings about positioning errors of the image bounding
boxes. In order to test the robustness of the methods to the object detection errors in
uncalibrated images, we manually added positioning errors to the bounding box tensors
in the test phase in Scenario 2. 10- and 30-pixel errors were, respectively, added to the
width and height of the bounding boxes and expanded the bounding boxes toward top-left
from right-bottom. Since IMM-UKF does not use visual information, it is not compared in
this section.

From Figures 10 and 12, we can see that our two-step fusion method had the strongest
robustness to the uncalibrated image object detection errors, as it always located closest to
the ground truth, regardless of how large the uncalibrated image object detection errors
were. By comparison, supervised DNN and our one-step fusion method were sensitive to
the uncalibrated image object detection errors, and their positioning accuracy dramatically
degraded when the uncalibrated image object detection errors grew. This is because the
growing errors in image bounding box tensors changed the inputs of supervised DNN,
leading to its outputs increasingly deviating from the ground truth. In our one-step
fusion method, when the errors of image bounding box tensors grew, the reconstruction
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errors of auto-encoder would increase, leading to the growth of regression errors, thus
the regressed geolocations increasingly deviated from the ground truth. If the regression
error was larger than GNSS error, the fused location result should stay closer to the GNSS
estimation, and vice versa. This is a motivation to design the second step fusion of our
two-step fusion method. Thanks to its online filtering mechanism, both the large regression
errors and large GNSS errors were filtered, thus the fused location results in the two-
step fusion method gaining robustness to image detection errors and GNSS measurement
errors simultaneously.
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Scenario 3 allows us to further analyze the robustness of our methods when the
uncalibrated image detection errors and GNSS measurement errors co-existed in real life.
From Figure 13, we can see that the GNSS locations in Scenario 3 were scattered sharply on
the two sides of the ground truth line. The supervised DNN had the smoothest location
distribution, but the locations were far away from the ground truth line. By comparison,
the location results of our one-step fusion method were much smoother than the ones
of GNSS. The underlying reason is that in the concatenated 6D input of our regression
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network, the smoothly changed 4D image bounding box tensor had greater influences
than the drifted 2D GNSS vector, hence improved the stability of positioning results of our
one-step fusion method. However, because of the existence of the image detection errors
and GNSS measurement errors, the regression network became hard train well, leading to
the regressed geolocations derived from one-step fusion method still deviating from the
ground truth line. The two-step fusion method mitigated the deviation and generated the
closet location results to the ground truth line by fusing the regressed geolocations with
GNSS measurements, but also bringing the GNSS drift errors into the fusion results, which
caused some of the fused location results were drifting. However, the two-step fusion
method achieved good trade-off between accuracy and smoothness, as its location results
were closer to the ground truth line than the ones of the one-step fusion method, and at the
same time were more converged than GNSS positions.
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4.2.3. Generalization

In order to validate the generalization performances of the machine learning methods,
namely the supervised DNN and our methods, we collected completely new test samples
along another different line in Scenario 3 (Red line in the right of Figure 14) which were
dramatically different from the training samples in the training dataset (Collected along
the yellow dash line in the right of Figure 14).

The results in the left of Figure 14 show that the positions of our methods were closer
to the ground truth line than the ones of GNSS and supervised DNN, and located along the
new testing line with correct direction. It infers that our methods successfully built correct
space-to-space mapping relationship between image space and GNSS space, and managed
to learn the spatial correlation between them, so it had the generalization capability to
newly unseen test samples, as long as the unseen test samples were collected from the
same image space and GNSS space of the training samples. The supervised DNN output
completely wrong locations, indicating it had no generalizability, because it’s naive DNN
could only build point-to-point mapping relationship from image training samples to GNSS
training samples, and failed to learn the spatial correlation between the two spaces, thus it
could not deal with completely different test samples.
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4.2.4. Performance in GNSS Denied Environments

In many cases, GNSS is not available due to the lack of GNSS equipment or signal.
In these cases, spatial positioning can rely solely on images, and only our one-step fusion
method and supervised DNN can work. For applications under these conditions, we
removed the GNSS longitude and latitude from the input tensor, decreased the input
dimensions from 6 to 4. The training processes were re-run using a similar hybrid auto-
encoder regression network and DNN neural network described in Section 4.1. Our
retrained regression network and supervised DNN were then tested in Scenario 2.

Figure 15 and Table 2 show that our one-step fusion method achieved better perfor-
mance than supervised DNN in positioning accuracy, as it had much lower location error
mean, variance, and smaller maximum error.
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Table 2. Location error parameters in GNSS denied environments.

Location Error Mean (m) Variance (m2) Maximum (m)

Supervised DNN 3.02 0.01 3.57
Our One-step Fusion 2.40 0.004 2.86

The retrained regression network of our approach and supervised DNN were also
tested in Scenario 3. We can see from Figure 16 that the locations of our approach outper-
formed the ones of supervised DNN, as they located closer to the ground truth polyline,
and could also respond correctly to the turning action of the target. It’s evident that our
proposal performs well in environments where GNSS is denied.
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4.2.5. Convergence Analysis of Regression Error Scale Factor

In order to analyze the convergence of the regression error scale factor Es, the curve of
Es at each training epoch is illustrated in Figure 17. We can see that during the early epochs,
Es was very unstable. This is because at the start of training, our auto-encoder network
was searching for the direction of optimization. After several epochs, it could discover the
optimization direction and achieved the equilibrium of “supervised regression error” and
“unsupervised reconstruction error”. Es converged quickly at the 17th training epoch.
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4.2.6. Comparative Analysis of Different ωX and ωZ

In order to analyze how different values of ωX and ωZ influence the positioning
results, we conducted a lot of comparative experiments with different values of ωX and
ωZ. We can see from Figure 18 that when the ratio of ωX to ωZ is 1:2000, it achieved
the best performance in term of location error. When ωX was larger than ωZ, the errors
became larger than those when ωX was smaller than ωZ. This is because ωX determines
the accuracy of space-to-space mapping and ωZ determines the accuracy of point-to-point
mapping. When ωX was larger than ωZ, our auto-encoder network would focus on the
space-to-space mapping, and decreased the point-to-point mapping accuracy, and vice
versa. When ωX : ωz was 1:2000, it achieved the best combination of space-to-space
mapping and point-to-point mapping to solve our problem.
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5. Conclusions

This paper proposed a two-stage deep learning approach for accurate spatial posi-
tioning of the target in fixed camera images based on the fusion of uncalibrated image
and GNSS. It did not require the selection of representative positioning feature points.
The first stage trained a hybrid supervised and unsupervised auto-encoder regression
network offline and gained capability of regressing geolocation directly from the fusion
of image and GNSS. The second stage finished online fusion and filtering to generate the
optimal geolocation. Elaborate datasets were provided to train and test our approach. The
experimental results in simulated and real scenarios demonstrated the effectiveness of the
proposed approach in terms of positioning accuracy, stability, robustness, generalization,
and performance in GNSS denied environment, much better than GNSS, the classical IMM-
UKF and the state-of-the-art supervised deep learning approach. Although our approach
achieved great success, its performance still can be further improved, especially when the
GNSS training data are of a low accuracy. If the kinematic model-based position prediction
is introduced to firstly filter the GNSS data, then use the filtered GNSS data to train our
hybrid auto-encoder network, the positioning performance of our approach would become
even better. Moreover, this paper fused single image and GNSS data to realize spatial
positioning. If the temporal-spatial information within sequential video images is fully
considered in algorithm, it would benefit our positioning performances. Future work will
focus on these aspects.
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Appendix A. Mathematical Derivation that Our Hybrid Auto-Encoder Can Yield
Optimal Solution to Our Regression Problem

Generally, the model of a discrete system is:
State Model:

zk = f (zk−1) + µk, (A1)

Measurement Model:
Xk = h(zk) + wk, (A2)
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where zk is the system state at time tk, Xk is the measurement at time tk.
In this paper, because we don’t know the exact motion process of the target, so we

don’t know what the exact function f (zk−1) is. However, we know that the state zk is a
function of the measurement Xk, so in our study, we modify the system model as follows:

State Model:
zk = g(Xk) + vk , vk ∼ N(0, Rk). (A3)

Measurement Model:

Xk = h(zk) + wk , wk ∼ N(0, Qk), (A4)

where zk is the system state at time tk, herein is the spatial position of the target. Xk is
the measurement at time tk, herein is the observation of the target’s image bounding box
and GNSS. vk is the state estimation error, wk is the measurement error, and they are both
supposed to follow the Gaussian distribution.

The accurate spatial position of the target can be estimated by maximizing a pos-
terior (MAP) probability P(zk|Xk), namely, given an observation, the optimal spatial
position estimation with the following greatest posterior probability is the spatial position
of the target:

z∗k,MAP = arg max P(zk|Xk). (A5)

According to Bayesian rule,

max P(zk|Xk) = max
P(Xk|zk)P(zk)

P(Xk)
. (A6)

However, the priori probability distribution P(zk) is unknown, so we convert the
objective function from maximizing a posterior probability to maximizing likelihood
estimation, namely:

max P(Xk|zk), (A7)

which means that the optimal spatial position estimation is the position that most probably
to produce the measured observation of the target’s image bounding box and GNSS.
Hence, our goal becomes to compute an optimal spatial position estimation z∗k,MLE which
maximizes the likelihood estimation:

z∗k,MLE = arg max P(Xk|zk). (A8)

Because Xk = h(zk) + wk, wk ∼ N(0, Qk), so

P(Xk|zk) = N(h(zk), Qk). (A9)

For a D-dimensional Gaussian variable X ∼ N(µ, Σ),

P(X) =
1√

(2π)Ddet(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)), (A10)

arg max P(X)
= arg min [−ln P(X)]

= arg min
[

1
2 ln
(
(2π)Ddet(Σ)

)
+ 1

2 (x− µ)TΣ−1(x− µ)
]

= arg min
[

1
2 (x− µ)TΣ−1(x− µ)

] (A11)

Likewise, for our goal with Gaussian distribution P(Xk|zk) = N(h(zk), Qk),

z∗k,MLE = arg max P(Xk|zk) = arg min
1
2
(Xk − h(zk))

TQ−1
k (Xk − h(zk)), (A12)
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where zk = g(Xk) + vk.
We can see that Xk − h(zk) can be described by auto-encoder if we adopt an encoder

to be g(Xk) and adopt a decoder to be h(zk), as derived mathematically in Equation (A13)
and illustrated in Figure A1.

Xk − h(zk) = Xk − h(g(Xk) + vk)
= Xk − decoder(g(Xk) + vk)
= Xk − decoder(encoder + vk)
= Xk − lim

vk→0
decoder(encoder)

(A13)
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So, our regression problem z∗k,MLE = arg max P(Xk|zk) can be solved by auto-encoders,
where we aim to minimize the measurement error wk = Xk − h(zk) = Xk − X′k and the
state estimation error vk = zk − g(Xk) = zk − ẑk. We set the objective function of the
auto-encoders in the overall training process as follows:

J = min
N
∑

k=1
wT

k Q−1
k wk +

N
∑

k=1
vT

k R−1
k vk

= min
N
∑

k=1

(
Xk − X′k

)TQ−1
k
(
Xk − X′k

)
+

N
∑

k=1
(zk − ẑk)

T R−1
k (zk − ẑk)

⇔ min
N
∑

k=1

(
Xk − X′k

)T(Xk − X′k
)
+

N
∑

k=1
(zk − ẑk)

T(zk − ẑk)

⇔ min
N
∑

k=1

1
n‖Xk − X′k‖

2
2 +

N
∑

k=1

1
m‖zk − ẑk‖2

2

, (A14)

where N is the number of training samples, n is the dimension of Xk, m is the dimension of
zk. 1

n‖Xk − X′k‖
2
2 is the reconstruction error of the decoder, and 1

m‖zk − ẑk‖2
2 is the regression

error of the encoder. In order to facilitate auto-encoders learning from observable samples,
we use ‖zk

GNSS − ẑk‖
2
2 to substitute ‖zk − ẑk‖2

2, where zk
GNSS is the measurement of GNSS.

By adding linear weights, the objective loss function of the auto-encoder is set as
follows, which is the same one as described in Section 3:

J = min ωX ·
1
n

n

∑
i

(
Xi − X′i

)2
+ ωz ·

1
m

m

∑
j

(
zGNSS

j − ẑj

)2
. (A15)
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