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Abstract: Cities in the northern Gulf of Mexico, such as Houston, have experienced one of the fastest
rates of subsidence, with groundwater/hydrocarbon withdrawal being considered the primary cause.
This work reports substantial ground subsidence in a few parts of Greater Houston and adjoining
areas not reported before. Observation of surface deformation using interferometric synthetic aperture
radar (InSAR) data obtained from Sentinel-1A shows total subsidence of up to 9 cm in some areas
from 2016 to 2020. Most of the area within the Houston city limits shows no substantial subsidence,
but growing suburbs around the city, such as Katy in the west, Spring and The Woodlands in the north
and northwest, and Fresno in the south, show subsidence. In this study, we performed emerging hot
spot analysis on InSAR displacement products to identify areas undergoing significant subsidence.
To investigate the contributions of groundwater to subsidence, we apply optimized hot spot analysis
to groundwater level data collected over the past 31 years from over 71,000 water wells and look
at the correlation with fault surface deformation patterns. To evaluate the contribution of oil/gas
pumping, we applied optimized hot spot analysis to known locations of oil and gas wells. The high
rate of water pumping in the suburbs is the main driver of subsidence, but oil/gas withdrawal plays
an important role in areas such as Mont Belvieu. Displacement time series shows that the Clodine,
Hockley, and Woodgate faults are active, whereas the Long Point Fault shows no motion, although it
was once very active.

Keywords: subsidence; SBAS-InSAR; groundwater; oil and gas; faulting; optimized hot spot analysis

1. Introduction

Houston has experienced some of the most considerable subsidence of any megacity
in the USA, losing over 3 m in elevation in certain areas since 1917 [1,2]. Excessive ground-
water withdrawal and sediment compaction were considered to be the main drivers of
subsidence [1,3–5]. For dealing with this acute problem in 1975, the Government of Texas
and United States Geological Survey (USGS) established the Harris-Galveston Subsidence
District (HGSD), followed by subsidence districts in the surrounding counties. HGSD and
USGS installed borehole extensometers. HGSD, in collaboration with the National Geodetic
Survey (NGS), carried out a leveling survey and established a GNSS network [6,7]. USGS
and subsidence districts have also operated a dense groundwater monitoring network since
the 1960s [7].

Due to regulatory efforts, subsidence in this region has been quantified by using
various methods, including Global Navigation Satellite System (GNSS), lidar, etc. [7–9].
Several researchers used InSAR techniques for measuring subsidence in Houston and
its surroundings [10–15]. In these studies, Stork and Sneed [10] processed data from the
European Remote Sensing 1 (ERS-1) and ERS-2 satellite platforms from 1996 to 1999, and
Buckley et al. [11] used ERS-1/2 data from 1993 to 1999. Bawden [8] integrated ERS-1/2
datasets with GNSS data from 1996 to 2010. In our previous work [9], we used persistent
scatterer (PS) InSAR on ERS-1/2 data from 1992 to 2002 and measured subsidence of up to
47 mm/yr in the northwest part of Harris County. Qu et al. [13] suggested a subsidence
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rate of 30 mm/yr over northwest Houston from 2004 to 2011 using ENVISAT and ALOS
PALSAR data. They also used ALOS PALSAR data from 2007 to 2011 to measure displace-
ment of up to 13 mm/yr along faults north of Houston in Montgomery County [14]. Miller
and Shirzaei [15] reported subsidence of up to 49 mm/yr from 2007 to 2011 according to
ALOS PALSAR and 34 mm/yr (December 2015–August 2017) according to Sentinel-1.

The primary purpose of this paper is to track the recent subsidence rates in Greater
Houston—specifically northern and western Harris County, southern Montgomery County,
and western Chambers County—and surrounding areas and determine the causes of
recent subsidence (Figure 1). In addition, this work seeks to correlate aquifer water levels
to subsidence rates statistically and assess the impact of oil/gas extraction and faulting
on subsidence.
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Figure 1. Map of study area showing InSAR coverage area, locations of 71,170 water wells, and
5948 oil/gas wells that were used for optimized hot spot analysis.

2. Geologic Setting

The Houston area experienced substantial subsidence in the last century that has been
primarily attributed to groundwater/hydrocarbon withdrawal. However, the observed
surface deformation is not purely anthropogenic in origin, with many geologic elements,
such as faults and salt domes, playing a contributing role. During the Triassic period, the
Gulf of Mexico experienced extensional rifting, which was followed by seafloor spreading
in the middle Jurassic [16,17]. Large salt deposits also accumulated in this region in the late
Triassic and Jurassic [18]. Then, deposition produced a prograding shelf margin throughout
the Cretaceous and Cenozoic periods. This series of events resulted in multiple growth
faults across the Gulf Coast Region, most of which occurred close to the shelf margin and
divided the area into structural corridors [19]. The Houston area is situated over three
primary growth fault zones: (1) the Hockley–Conroe Fault System, (2) the Addicks Fault
System, and (3) the Long Point–Eureka Heights Fault System (Figure 2). In addition, there
are several normal faults around salt domes [9]. These faults cut through Holocene and
Paleocene sediments and primarily move through aseismic creep, resulting in spatial and
temporal variation [20,21]. The large salt deposits of the past have resulted in modern salt
domes, which, due to their low density, rise to the surface and fracture the surrounding
regions in radial patterns [9].
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3. Data and Methods

The European Space Agency (ESA) launched Sentinel-1A and then launched Sentinel-
1B in 2014 and 2016, respectively. The two Sentinel-1 satellites utilize radar imaging in the C
band to study the land and bodies of water. Sentinel-1 data are widely used for monitoring
ground deformations, such as subsidence [22–25].

We processed Sentinel-1 InSAR data through the Geohazard Thematic Exploitation
Platform (G-TEP), which Terradue operates in collaboration with the European Space
Agency (ESA), utilizing the Small Baseline Subset (SBAS) interferometry technique [26].
Descending orbit data on track 143 for Sentinel-1A satellites were used. The spatial resolu-
tion for Single Look Complex (SLC) images in Interferometric Wide (IW) mode is 5 m by
20 m. Speckle noise was reduced by multi-looking with 5 azimuth and 20 range looks for
all InSAR image products. A Goldstein filter was applied to the data for phase noise reduc-
tion and the temporal coherence threshold was set to 0.85. We processed 89 SLC images
from 2016 to 2020, generating 246 interferograms. The Shuttle Radar Topography Mission
(SRTM) 30-m resolution digital elevation model [27] was used to remove topographic noise.
We used the workflow described in [28,29] to detect the coherent targets, movement rates
in the line of sight, and estimate the time series.

A reference point west of College Station in Milam County, shown as a white circle in
Figure 1, was used to process SBAS data. There are no GNSS stations near this site. The
reference point was selected away from Houston in a place with no known subsidence, oil,
gas, and water wells, and further away from the coast to avoid any possible contamination.
Recently published GNSS data suggest there is minimal horizontal movement (~2 mm/yr)
in most of the Houston area [30]. Moreover, there is no consistent horizontal movement.
Therefore, most of the line-of-sight (LOS) velocity is assumed to be vertical.

To evaluate changes in the water table, this study implemented well-water depth from
71,170 wells from January 1990 to March 2021 from the Advisory Committee on Water
Information (ACWI), Texas Water Development Board (TWDB), the National Ground-Water
Monitoring Network (NGWMN), and the USGS (Figure 1). Most of the wells were operated
sporadically for short time intervals, with very few wells remaining operational for all
31 years. By comparing groundwater and hydrocarbon extraction data, we can directly
observe if subsidence is related to fluid withdrawal. Oil and gas well data were compiled
from ESRI’s Living Atlas, which included 5,948 active and storage wells. We refined and
modified the faults map prepared by [9]. We used DEM, hillshade, and slope maps derived
from lidar data acquired in 2018. The 2018 lidar data are part of the Texas Strategic Mapping
Program (StratMap), titled “Upper Coast Lidar” [31]. This dataset has a horizontal accuracy
of ± 0.20 m and RMSE ≤ 0.1 m for the vertical direction.

Optimized hot spot analysis and emerging hot spot analysis are widely used for
pattern analysis. Getis and Ord [32] describe hot spots and cold spots as patterns generated
by underlying spatial relationships that are not caused by random processes. Emerging
hot spot analysis adds a time dimension to the dataset. In this study, the emerging hot
spot analysis tools in ArcGIS Pro were used to estimate spatial and temporal patterns,
resulting in the discovery of statistically significant clusters of subsidence and groundwater
withdrawal. Optimized hot spot analysis was applied to find significant groups of oil/gas
well locations.

We used emerging hot spot analysis to find the spatiotemporal trend in subsidence in
the study area. Emerging hot spot tools apply Mann–Kendall statistics [33,34], resulting
in the detection and examination of statistically significant trends. The emerging hot spot
tools can output up to 17 unique categories of trends. For this work, we did not include cold
spots (low values) and nonsignificant trends and presented only hot spots (high values).
The following eight hot spot categories represent different temporal states: new, consec-
utive, intensifying, persistent, sporadic, oscillating, diminishing, and historical hot spots
(for details, see ESRI’s help archive [35]). During emerging hot spot analysis, the user can
adjust parameters, such as neighborhood distance, neighborhood time step, and conceptu-
alization of spatial relationships, which have an effect on how the statistical significance of a
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space–time bin is evaluated in the context of its neighbors. Neighborhood distance controls
the maximum distance at which a space–time bin can be considered a spatial neighbor of
another for analysis; neighborhood time step determines the maximum amount of time
between two bins that can be considered temporal neighbors; conceptualization of spatial
relationships limits the number of spatial neighbors within the neighborhood distance to
a value defined by the user. During this particular study, selecting smaller neighborhood
distances resulted in outputs that demonstrated greater detail in the shapes and extents
of hot spot clusters. However, these outputs also tended to have many small, isolated hot
spots, showing a greater susceptibility to random noise due to the analysis considering
only local variations in the InSAR data. Alternatively, choosing larger neighborhood dis-
tances encourages the analysis to consider both local and regional variations, preventing
noise-dominant sections of the data from being misidentified as statistically significant hot
spots. However, the hot spot clusters that remain lose local details in shape and extent,
resulting in a rounder and more bloated appearance. After testing several neighborhood
distance values, the best emerging hot spot analysis results for the InSAR dataset used in
this study were achieved with a distance of 10 km.

Global navigation satellite systems (GNSS) data for selected sites were obtained from
Harris Galveston Subsidence District to validate InSAR results.

4. Results and Analysis
4.1. Ground Deformation Rates

Figures 2 and 3 show results of InSAR data from 2016 to 2020 for Houston and sur-
rounding areas. In some parts of the study area, up to -9 cm of total LOS displacement with
an average LOS velocity of −2 cm/yr is observed. There is no negative LOS displacement
in Houston downtown and surrounding areas, including areas that experienced three
meters of subsidence in the last century. Interestingly, suburbs and small towns adjacent
to Houston show significant negative LOS displacement. For example, Katy, one of the
fastest-growing and most desirable suburbs, displays the highest negative displacement
(Figures 2 and 3). Spring, The Woodlands, and northern and northwestern Houston also
manifest substantial negative displacement, and those areas are rapidly expanding. Several
other small towns further away to the south, southeast, northeast, and northwest show
similar trends.

We conducted emerging hot spot analyses on InSAR data to find areas/clusters
that show statistically significant subsidence (Figure 4). There are four major clusters of
emerging hot spots in the study area. A large area encircling Houston from southeast to
west to north depicts historical, consecutive, and intensifying hot spots. In Figure 4, similar
clusters are located in the east around Mont Belvieu, in the northwest around College
Station (a college town), and in the south around Wharton. There are a few additional
clusters in small rural communities. Intensifying hot spots in Katy, Spring, The Woodlands,
Mont Belvieu, and College Station represent statistically significant hot spots that have
existed 90% of the time during 2016–2020; here, the clustering intensity is also increasing
overall at a statistically significant rate [35]. The appearance of new hot spots during
2020 to the southwest of Katy and to the west of College Station suggests an expansion of
statistically significant subsidence to those areas. Areas with consecutive hot spots at the
margins may need monitoring, since subsidence at those sites could become substantial in
the future.
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To assess the quality of InSAR results, we plotted the subsidence rate measured by
GNSS stations at several key locations (Figure 3b). To monitor subsidence, these locations
have dense GNSS grids with more than 200 GNSS monitoring stations; all processed data
are available to the public via the HGSD web portal [36]. HGSD operates most of the
stations [5]. HGSD also contracted the University of Houston (UH); a local reference,
Houston16, is used to process data utilizing the GAMIT/GLOBK (Version 10.7) package [5].

There are four GNSS stations in the Katy area under the designations P029, P097,
P098, and MRHK (Figure 1). P029 was installed in 2007 and shows an average subsidence
rate of −2.19 cm/yr from 2008 to 2021. When specifically looking at data from 2016 to
2020, this site shows a rate of −1.943 cm/yr. P097 started in 2018 and has shown a rate of
−2.67 cm/yr until 2021. P098 shows a rate of −2.08 cm/yr from 2018 to 2021. The fourth
site, MRHK, was set up by UH in 2014 and recorded a rate of −1.67 cm/yr from 2014 to
2021. Collectively, these four sites show an average subsidence rate of −2.119 cm/yr, which
is very similar to the subsidence rate of approximately −2 cm/yr near Katy according to
the InSAR results.

In the Tomball area northwest of Houston, GNSS station P017 shows vertical displace-
ment rates of −1.24 cm/yr from 2000 to 2021 and −0.6 cm/yr from 2016 to 2020. The
subsidence rate derived from the InSAR displacement product for that area ranges from
−0.65 to −0.85 cm/yr. The GNSS station P047, located north of Houston in the Spring
area, was installed in 2007 and shows a subsidence rate of −1.37 cm/yr from 2007 to 2021.
The InSAR results of this same region yield similar rates, ranging from −0.75 cm/yr to
−1.9 cm/yr. Comparatively, very little differences between the InSAR and GNSS results
can be observed.

4.2. Groundwater Withdrawal

A complex, multilayered groundwater system called the Gulf Coast Aquifer System
stretches across the entire Texas coastline. These deposits of clay, silt, sand, and gravel
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are over 3600 m thick and consist of the following five hydrologic units: the Catahoula
confining system, the Jasper aquifer, the Burkville confining system, the Evangeline aquifer
system, and the Chicot aquifer. The Chicot and Evangeline aquifers provide most of the
water used by cities along the coast [37]. In the early 1900s, ground subsidence first became
apparent [38] and, since then, continuous over-pumping of the Evangeline and Chicot
aquifers by 1977 had led to decreases in the water level in areas of Houston. About three
meters of ground sinking had occurred by 1979 [1]. In most previous studies, groundwater
pumping and the piezometric surfaces of the Evangeline and Chicot aquifers are compared
with subsidence [7,9,39–42]. Unlike previous studies, we have applied emerging hot spot
analysis to groundwater data to find clusters of water decline and compare these clusters
with recent and prior subsidence sites.

Results of emerging hot spot analysis are displayed in Figure 5. The emerging hot
spot analysis for water level uses defined locations, but it relies on a time step interval of
three years. Making the interval any shorter produces more detailed time-series graphs
and hot spot analyses but erases any points associated with wells that do not gauge water
level as frequently as the user-defined interval. As a result, the statistical analysis of the
water level depicted in Figure 5 shows relatively smaller clusters. Most of these clusters
in and around the Houston metroplex show intensifying hot spots, which, as mentioned
before, represent statistically significant hot spots that have existed 90% of the time during
1990–2021, where clustering intensity increases over time [35]; in other words, here, the
water table in Houston has fallen to and remained at an anomalous low compared to
its surroundings and this anomaly is expanding outwards to surrounding areas. In the
northwest of Houston, we see consecutive hot spots, which represent sites where less than
90% of all bins were statistically significant and the bins that became significant only did
so towards the end of the analyzed period. In other words, here is where the water table
had not fallen to an anomalous low until the last few time step intervals (closer to 2021), so
these sites may need to be monitored in the near future.
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4.3. Oil and Gas Well Clusters

Texas is a prominent oil-producing state in the United States. The first oil field, Humble,
was discovered in 1905 while salt domes were being explored there [43]. In 1908, the Goose
Creek Oil Field was found. In the 1930s, oil-productive fields located to the northwest of
Harris County—i.e., Tomball and Hockley—were discovered. As the exploration of new oil
fields continued, Pratt and Johnson [44] recognized subsidence over the Goose Creek area
caused by oil extraction. Holzer [45] reported subsidence from six oil fields and uplift in
four fields in this region from 1910 to 1970. Qu et al. used multi-temporal InSAR data from
1993 to 2011 to map the subsidence of the region; this work identified five oil-producing
fields at Webster, Seabrook, Stratton Ridge, Santa Fe, and North Dayton where subsidence
could be attributed to hydrocarbon production [13].

In this work, we conducted an optimized hot spot analysis of oil/gas well count using
hexagon cells of different sizes. Larger cell sizes are easier to see on a map, though they
tend to lose details related to the size, number, and statistical significance of cold spots,
i.e., areas with fewer wells than others. Ultimately, the cell size for optimized hot spot
analysis of oil/gas well count was set to two kilometers; the resulting output can still
provide useful information (Figure 6). Four hot spots were found near Humble, east of
Missouri City, Mont Belvieu, and south of Mont Belvieu, near Seabrook. Missouri City
shows some subsidence, but Mont Belvieu shows a substantially greater amount, up to
~−2 cm/yr. Subsidence in Mont Belvieu may be caused by oil and gas pumping, though
more work is needed to confirm this. In the past, Seabrook has been suggested as a location
that is potentially undergoing subsidence due to oil and gas pumping [13].
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4.4. Fault Mapping

We used lidar datasets collected in 2018 and 2019 and generated hillshade images
to update the faults map. Several new faults are identified in the southwest. We refined
the location and orientation of other faults. We also added dip direction for these faults
(Figure 7). These are normal faults with steep dip (65◦–70◦) and most of the displacement
happens on the fault’s downthrown side (hanging wall).
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5. Discussion on Causes of Subsidence

This study focused on the fourth-largest city in Texas, Houston, which is located near
the northern coast of the Gulf of Mexico. This megacity is about 80 km from the shoreline.
This region’s sea level rises more than four times higher than the global sea-level rise. As a
result, the surface deformation in this region is quite complicated and is caused by multiple
processes, including:
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1. Groundwater extraction: the primary cause of subsidence in the Gulf of Mexico is
attributed to large-scale groundwater withdrawal since 1906. The area of the “subsi-
dence bowl” (which covers a surface area of approximately 10,000 km2) was identified
to have experienced over 3 m of subsidence [38]. In this area, groundwater was the
main source of water supply for households, industry, and agriculture. In addition,
demand for groundwater sharply increased with rapid population growth [42].

2. Hydrocarbon withdrawal: one of the well-known subsidence incidents attributed
to oil/gas pumping happened in the Goose Creek Oil Field, Houston, exceeding
110 mm/year [44].

3. Active normal faulting: this can be seen in seismic reflection data extending to depths
of 10 km and includes surface scarps. The long-term slip rates along these faults are
unknown, but recent GNSS studies suggest 7–11 mm of vertical displacement per
year along a few faults in the Houston area [9,30]. Similarly, Gagliano interpreted
20–30 years of tide gauge and releveling data and reported substantial vertical move-
ment along growth faults in coastal Louisiana, resulting in considerable loss of land
area to the sea [46]. Fault reactivation in subsiding areas has also been investigated.
For example, fault reactivation by interaction with fluids was studied by several
researchers [47–49]. Geological observations and numerical modeling demonstrated
activation of pre-existing regional faults over areas undergoing subsidence [50–56].
Donnelly summarized several examples of damage and reactivation of faults in the
United Kingdom’s urban areas undergoing subsidence [57]. Paul Segal dedicated a
chapter of the textbook to the physics of poroelastic effects on faulting, as pore-fluid
pressure can change frictional resistance on faults [58]. These and many other studies
of subsidence disagree on the rates and relative contributions of several mechanisms;
these inconsistencies come from these studies’ differences in time scales, depths, and
spatial extent.

4. Sediment compaction: alluvial aquifers in the Gulf Coast region are made up of semi-
consolidated silt, clay, and sand layers. As water levels decrease, the fluid pressure in
the aquifer also drops. The air-filled pores lower the strength of the aquifer skeletal
system and cause subsidence [1,6,59]. Typically, aquifers undergo periodic fluctua-
tions and produce reversible subsidence of a few centimeters [1]. Several researchers
associated increased subsidence rates with increased sediment thickness in the Gulf
Coast region [60,61]. These observations are based on generalized stratigraphy and
are not qualitative. However, based on modeling data in the Netherlands, sediment
compaction may be a minor factor. Kooi and De Vries suggested 0.1 to 1 mm/yr of
subsidence due to Holocene sediment compaction in a relatively similar setting in
the Netherlands [62]. Similarly, Monte Carlo simulations of sediment compaction
in Louisiana, which has the same type of sediments as Houston, found only a few
mm of subsidence on a regional scale [63]. However, sediment compaction could be
significant locally.

5. Salt extraction: subsurface salt withdrawal and migration are linked to normal fault-
ing and sediment loading. Seni and Jackson estimated an approximate uplift of
0.45 mm/year for Texas salt domes during the Cenozoic [64]. They considered these
growth rates to be discontinuous, contrary to prior notions of being cyclic.

6. Water loading during extreme flooding: severe subsidence raises the prospect of flooding
and produces a negative feedback loop. The hefty weight of floodwater from severe
flooding compresses the sediments in the subsurface [1,7,59]. Generally, unconsoli-
dated aquifers are elastic and can rebound after compaction. However, regions that
have subsided lack this ability. Therefore, flooding can contribute to compacting the
soil and drive subsidence [59]. Houston has experienced weather events, such as
Hurricane Harvey, when over 150 cm of rain fell within six days [65]. GNSS data
indicate that post-Hurricane Harvey deformation ranges from subsidence of ~68 mm
to uplift of ~5 mm, with significant subsidence rates in northern and southwestern
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Harris County [66]. Using InSAR, it is estimated that 89% of the areas inundated by
Hurricane Harvey experienced subsidence at rates greater than 3 mm/year [15].

In this work, we further analyzed the impact of long-term groundwater withdrawal
using emerging hot spot analysis. We also analyzed counts of active oil and gas wells and
recent fault activity in the region.

5.1. Groundwater and Subsidence

To determine the nature of displacement and its relation with groundwater and
oil and gas wells, we plotted time series for four selected areas that show the highest
subsidence (Figure 8). The locations selected for time series are shown in Figure 1 as red
stars. Subsidence in Katy and Mont Belvieu shows a linear pattern that progressively
increases from 2016 to 2020. Spring and The Woodlands show a sublinear decline, though,
by September 2019, we see a brief rise followed by progressively slower LOS downward
displacement. The time series for Channelview shows more complex variations over time
but an overall reduction and change in the rate of decrease from October 2018 onwards.
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Emerging hot spot analysis was conducted for groundwater levels to investigate
the relationship between groundwater level change and subsidence rates in Katy, The
Woodlands, Channelview, and Mont Belvieu. Time-series graphs are generated showing
average water level change within 10 km of each city (Figure 9). These graphs allow an
analysis of the water levels closest to subsiding areas. Figure 9A shows a consistent decline
in water level from 1990 to 2021 in the Katy area. The average water level dropped from
66.9 m below the ground surface to 108 m. In the Spring–Woodlands area, water levels
declined from 37.6 m to 44.6 m from 1990 to 1999, after which the decline started slowing
down from 2000 to 2011 before ultimately rebounding in 2014 (Figure 9B). A similar trend
can be seen in Tomball and other surrounding areas, where the water level dropped for
three decades before bouncing back in 2015. This decline and rebound are consistent
with water usage since, starting in 2015, the Lone Star Groundwater Conservation District
restricted groundwater usage and started using surface water from Lake Conroe in this
region [67].

The water levels in Channelview show noticeable fluctuations. First, there was a
three-meter decline in groundwater level from 1990 to 1993, followed by an overall rise by
10 meters, before stabilizing for a decade (Figure 9C). The time series for the average water
level in Mont Belvieu shows a different pattern (Figure 9D); here, the water level rose by
five meters during 1988–1993, declined by around three meters in the next six years, and
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rose again by five meters during 1999–2008. The water level then remained stable from
2008 to 2015, before finally dropping by four meters from 2017 to 2020.
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from the groundwater well analysis from 1990 to 2021 for (A) Katy, (B) the Spring–Woodlands area,
(C) Channelview, and (D) Mont Belvieu.

Water level fluctuations are consistent with subsidence in Katy and, to some extent,
in The Woodlands and Spring. However, groundwater level decline cannot explain the
periods of water fluctuations and stability observed in the data for Channelview and Mont
Belvieu. Channelview shows minor subsidence of less than −0.4 cm/yr. Conversely, Mont
Belvieu shows one of the highest localized subsidence rates.

5.2. Faulting and Subsidence

Hundreds of faults are mapped in the Houston area using field methods [68,69],
lidar [70], aerial photos [55,56], geophysical methods [71–77], and InSAR [14]. Figure 7
shows the updated map. We added the faults’ orientation and refined a few faults’ locations.
These are normal faults. Most of the regional faults are trending northwest to southeast
and dip in the southeast direction. Opposite to the regional faults are antithetic faults
dipping mostly in the northwest direction. There are many small faults related to salt dome
activity, mostly in the southeast. These faults in the Houston area were largely inactive
until the last century, with most acting as fluid barriers. However, as pore pressure is
reduced and sediment is compacted due to groundwater pumping, the differential pressure
is transferred to the surface and the fault is reactivated [45,59,78]. Fault movement is, thus,
highly correlated with aquifer elasticity in the Houston area.

No seismic activity is reported along these faults in Houston. As such, fault move-
ment is suggested to be happening by aseismic creep. However, fault activity is evident
from damages to roads, buildings, and other infrastructure in the vicinity of these faults.
Displacement along these faults is variable both in space and time [75]. Displacement along
some is measured up to 3 cm/yr [11,69]. Long Point Fault was historically very active and
2 cm/yr of movement for 20 years in the last century was observed [1]. Using data from
12 continuous GNSS stations from 2013 to 2018, Liu et al. [79] found less than 1 mm/yr
movement along Long Point Fault and concluded that it was inactive. InSAR data were
analyzed for two L-band PALSAR tracks from 2007 to 2011 using the multi-temporal InSAR
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technique [14]. They found a slip rate of 7–13 mm/yr with a shallow locking depth for the
SW–NE-oriented faults in northwest Houston.

We analyzed InSAR time series data on four major faults to assess fault activity. We
display LOS displacement time series for the upthrown and downthrown sides of the fault
scarps, as well as the difference in displacement between them, for the Long Point, Clodine,
Hockley, and Woodgate faults in Figure 10. We also labeled the maximum downward
displacement of the two blocks for each of these four faults in Figure 7.
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The Long Point Fault was historically very active but now shows an insignificant
movement of −0.31 cm on the downthrown block and 0.30 cm on the upthrown block
(Figure 10A). Clodine Fault shows a maximum movement of −1.12 cm on the downthrown
side and −0.94 cm on the upthrown side; a maximum displacement difference of up to
0.53 cm between the two sides is also demonstrated (Figure 10B). Similarly, the Hock-
ley Fault shows a maximum downward motion of −0.93 cm on the downthrown block
and −0.34 cm on the upthrown block, with a maximum relative difference of 0.87 cm
(Figure 10C). The Woodgate fault, which is in close proximity to George Bush Intercon-
tinental/Houston Airport, manifests a maximum movement of −1.42 cm on the down-
thrown side and −0.72 cm on the upthrown side, with a maximum difference of 1.05 cm
(Figure 10D). This analysis suggests that, as the subsidence decreased in areas surrounding
the Long Point Fault, motion along this fault also ceased. However, relative motion along
the Clodine, Hockley, and Woodgate faults continues. In addition, some sections of the
Hockley Fault show subsidence only along the southeast side of the fault trace, suggesting
the fault may be driving the subsidence (Figure 2b).

6. Conclusions

Cities in the Gulf Coast of the US experienced substantial subsidence. Groundwater
and oil/gas pumping are considered the main drivers. However, many other geologic
factors, such as faults and flooding, may play a contributing role. The Houston area consists
of geologic and anthropogenic elements that can contribute to the subsidence. InSAR data
from 2016 to 2020 show that the Houston area is experiencing subsidence of up to 2 cm/yr
in the west, northwest, and north of downtown, due to excessive groundwater withdrawal.
In addition, oil/gas pumping in and around Mont Belvieu and possibly in the southeast
may be causing subsidence. The Long Point Fault has been determined to be inactive. At
the same time, faults located in subsiding areas in the northwest and north are still active.
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This implies that subsidence may be causing fault movement in this area. If current ground
pumping trends continue, faults in Katy and The Woodlands will likely become reactivated
and/or increase in activity over time. In addition, subsidence from prolonged flooding
and storms in this area, such as those caused by Hurricane Harvey, pose a risk of sediment
compaction and flood-induced subsidence. Such events are likely to become more common
as global climate patterns change.
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