
Citation: Feng, H.; Tao, H.; Li, Z.;

Yang, G.; Zhao, C. Comparison of

UAV RGB Imagery and

Hyperspectral Remote-Sensing Data

for Monitoring Winter Wheat

Growth. Remote Sens. 2022, 14, 3811.

https://doi.org/10.3390/rs14153811

Academic Editors: Edoardo Pasolli,

Wenjiang Huang, Giovanni Laneve,

Yingying Dong and Chenghai Yang

Received: 13 June 2022

Accepted: 3 August 2022

Published: 8 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Comparison of UAV RGB Imagery and Hyperspectral
Remote-Sensing Data for Monitoring Winter Wheat Growth
Haikuan Feng 1,2,3,4 , Huilin Tao 1,3, Zhenhai Li 1,3,4, Guijun Yang 1,3,4 and Chunjiang Zhao 1,2,*

1 Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs,
Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences,
Beijing 100097, China

2 National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University,
Nanjing 210095, China

3 National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
4 Beijing Engineering Research Center for Agriculture Internet of Things, Beijing 100097, China
* Correspondence: zhaocj@nercita.org.cn

Abstract: Although crop-growth monitoring is important for agricultural managers, it has always
been a difficult research topic. However, unmanned aerial vehicles (UAVs) equipped with RGB and
hyperspectral cameras can now acquire high-resolution remote-sensing images, which facilitates and
accelerates such monitoring. To explore the effect of monitoring a single crop-growth indicator and
multiple indicators, this study combines six growth indicators (plant nitrogen content, above-ground
biomass, plant water content, chlorophyll, leaf area index, and plant height) into the new comprehen-
sive growth index (CGI). We investigate the performance of RGB imagery and hyperspectral data
for monitoring crop growth based on multi-time estimation of the CGI. The CGI is estimated from
the vegetation indices based on UAV hyperspectral data treated by linear, nonlinear, and multiple
linear regression (MLR), partial least squares (PLSR), and random forest (RF). The results are as
follows: (1) The RGB-imagery indices red reflectance (r), the excess-red index (EXR), the vegetation
atmospherically resistant index (VARI), and the modified green-red vegetation index (MGRVI), as
well as the spectral indices consisting of the linear combination index (LCI), the modified simple ratio
index (MSR), the simple ratio vegetation index (SR), and the normalized difference vegetation index
(NDVI), are more strongly correlated with the CGI than a single growth-monitoring indicator. (2) The
CGI estimation model is constructed by comparing a single RGB-imagery index and a spectral index,
and the optimal RGB-imagery index corresponding to each of the four growth stages in order is r, r, r,
EXR; the optimal spectral index is LCI for all four growth stages. (3) The MLR, PLSR, and RF methods
are used to estimate the CGI. The MLR method produces the best estimates. (4) Finally, the CGI is
more accurately estimated using the UAV hyperspectral indices than using the RGB-image indices.

Keywords: comprehensive growth index; vegetation indices; multiple linear regression; partial least
squares; wheat; random forest; precision agriculture

1. Introduction

The characteristics of individual plants or groups of plants can be used to evaluate
crop growth [1] and can reveal various levels of crop growth within regions [2]. However,
in precision agriculture, effective monitoring of growth conditions can provide not only
real-time information for field management but also a basis for estimating crop yield [2–4].
Traditionally, field managers determine crop-growth status by visual inspection, which
is laborious and time-consuming. However, in precision agriculture, remote sensing
technology has become increasingly informative and can now collect spectral information
from the crop canopy over a wide range of electromagnetic bands, which may then be
translated into physiological and biochemical information about the crop canopy [5]. Thus,
field managers may now rely on remote-sensing technology to monitor crop growth.
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Crop growth monitoring mainly traces crop growth status and variations in crop
growth. Although crop growth is affected by many factors and the growth process is quite
complex, it can be estimated using biochemical parameters such as biomass, leaf area index,
and chlorophyll content. The crop canopy spectrum obtained by remote sensing technology
provides further access to crop canopy biochemical information [6]. The crop canopy
spectrum is determined by the leaves, canopy structure, and soil background [7]. Therefore,
the relationship between spectral information and crop parameters can be established for
estimating crop parameters, such as leaf area index (LAI), above-ground biomass, density,
chlorophyll, plant nitrogen content, and photosynthetic pigments [8–12].

Acquiring images from unmanned aerial vehicles (UAV) constitute a remote sens-
ing technology that offers high resolution, high efficiency, rapidity, and low cost, which
lead to more timely and accurate crop monitoring [13,14]. Its spatial resolution exceeds
that of satellite-based remote sensing, and unlike ground remote sensing, it can generate
orthophotos [15–17]. Compared with traditional remote sensing, the flight pattern, time,
maneuverability, and the cost of UAV remote sensing is more advantageous [18]. UAV
remote sensing technologies are increasingly used in agriculture to monitor crop growth
and have achieved good results.

Vegetation indices, which are mathematical constructions involving the reflectance
of different spectral bands, lead to more accurate information about vegetation [8]. With
the widespread application of remote sensing technology in agriculture, vegetation indices
are often used to estimate crop parameters. Chen et al. [19] used vegetation indices and
a neural network algorithm to improve the estimation accuracy of maize leaf area index.
Han et al. [20] used four machine learning algorithms (multiple linear regression, support
vector machine, artificial neural network, and random forest) to invert maize above-ground
biomass (AGB) to improve the inversion effect. Swain et al. [21] obtained high-resolution
images of rice using an unmanned-helicopter, low-altitude, remote sensing platform to
demonstrate that such images work well for estimating rice biomass. Chang et al. [22]
constructed a model to estimate corn chlorophyll content using the spectral vegetation
indices and difference vegetation index. Schirrmann et al. [23] used low-cost UAV images
to monitor the physiological parameters and nitrogen content of wheat. Li et al. [24]
used four methods: partial least squares regression (PLSR), support vector machines
(SVM), stepwise multiple linear regression (SMLR), and back-propagation neural network
(BPN) to estimate the nitrogen content of winter wheat and used partial least squares
and support vector machine to improve estimates. These studies all focused on empirical
models, whereas others have studied semi-empirical models and physical models. For
example, Duan et al. [25] used the PROSAIL model to estimate the LAI of maize, potatoes,
and sunflowers and showed that incorporating the direction information improves the
estimation accuracy. In addition, Li et al. [26] used the PROSPECT + SAIL model to invert
the LAI of multiple crops with high inversion accuracy.

Crop growth is closely related to plant nitrogen content, above-ground biomass, plant
water content, chlorophyll, LAI, plant height, and other factors [15]. Therefore, to monitor
crop growth, many studies use remote-sensing data to estimate a single parameter (e.g.,
LAI, AGB) related to crop growth and thereby determine growth status [15]. The estimation
of crop growth by a single growth parameter has been extensively studied; however, studies
that combine multiple growth parameters to monitor crop growth have not been found.
To explore the use of multiple crop-growth indicators to monitor crop growth, the present
study uses UAV remote sensing data to monitor surface-scale crop growth. Specifically, we
combine plant nitrogen content (PNC), above-ground biomass (AGB), plant water content
(PWC), chlorophyll (CHL), LAI, and plant height (H) into a comprehensive growth index
(CGI). We take into account the different winter wheat growing stages when monitoring
single growth phases versus the entire growth phase. More precisely, we evaluate crop-
growth monitoring from the vegetation index based on UAV digital images and compare
the results with those obtained from the vegetation-index-based UAV hyperspectral multi-
temporal images. In addition, we combine multiple linear regression (MLR), partial least
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squares (PLSR), and random forest (RF) with the vegetation index to estimate the CGI and
map its spatial distribution.

The structure of this paper is as follows:
Section 2 presents the study area, the experimental design, the techniques used for

ground sampling, data acquisition, and the processing of digital and hyperspectral remote-
sensing data from UAVs. In addition, analytical methods, statistical methods, and vegeta-
tion indices are also discussed. Section 3 discusses the selection of indices and how they
affect the accuracy of the resulting CGI. Specifically, we use the vegetation index based
on UAV RGB imagery, the vegetation index based on UAV hyperspectral imagery, and
the PNC, AGB, PWC, CHL, LAI, and H. We also contrast the use of only a single vegeta-
tion index with the use of multiple vegetation indices combined with MLR, PLSR, or RF.
Section 4 analyzes the advantages and disadvantages of the various methods and of the
resulting estimates based on UAV RGB and hyperspectral remote sensing. Finally, Section 5
discusses the potential applications of UAV RGB imagery and hyperspectral imagery in
remote monitoring of agriculture.

2. Materials and Methods
2.1. Survey and Test Design of the Research Area

This study was conducted at the National Precision Agriculture Research and Demon-
stration Base of Xiaotangshan Town, Changping District, Beijing, China. It is located
around in the area of the Yanshan branch vein and plain. The north latitude of this region
is 40◦00′–40◦21′, and the east longitude is 116◦34′–117◦00′. The annual precipitation is
approximately 645 mm. The highest and lowest temperatures can reach +40 and −10 ◦C,
and the average temperature is 11.7 ◦C (from China Meteorological Data Service). The
experimental field held a total of 48 plots. There are two winter wheat varieties, J9843 and
ZM175, and three water treatments: 200, 100 mm, and rainfall. Water irrigation was applied
on 20 October 2014, 9 April 2015, and 30 April 2015. To accentuate the differences in crop
nitrogen content between the experimental plots, different amounts of nitrogen were sup-
plied: each plot was provided with either 0(N1), 195(N2), 390(N3), or 585(N4) kg urea/hm2.
Each treatment scheme was repeated three times, and a total of 48 experimental plots were
constructed. Figure 1 shows the location of the test area and the experimental design.
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Figure 1. Test area location and experimental design: (a) location of Changping District in Beijing
City; (b) design of experimental and images obtained by UAV.

2.2. Acquisition of Ground Data

We collected the PNC, AGB, PWC, CHL, LAI, and H data of winter wheat at (GS 31) (21
April 2015), (GS 47) (26 April 2015), and (GS 65) (13 May 2015). For the PNC, we used Buchi
B-339 (Switzerland) and measured the nitrogen content of each organ (leaves, stems, and
spikes) of 20 samples. We selected 20 plants in each growth period that represent the overall
growth of the plot and investigated the wheat density of the plot to calculate the biomass
of the plot. The dryness and freshness of the spikes in the flowering and filling stages of
winter wheat were also considered. For AGB acquisition, 20 samples were taken from each
growing area (6 × 8 m2), and stems and leaves were separated. The above-ground parts
were heated to 105 ◦C in an oven for 30 min, then dried at 70 ◦C for about 24 h (i.e., until
achieving a constant weight). The result is the dry mass per sampling area, which is the
biomass. We calculated the PWC from the fresh and dry mass of sample stems, leaves,
and ears. The total fresh quality was subtracted from the total dry quality which was
then divided by the total fresh quality. Twenty leaves of different parts of the plant were
randomly selected, and the leaf CHL content was measured by using a Dualex 4 nitrogen
balance. Each leaf was measured five times, and the average value of the 20 leaves was
used as the chlorophyll content of the sampling plot. To measure the LAI, 20 plant stems
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and leaves were separated. The leaf area was measured using a CID-203 Laser Leaf Area
Meter (CID Company, Bethesda, MD, USA) to obtain the leaf area of a single stem. Next, the
number of stems per unit area was determined through field investigation and multiplied
by the total number of stems per unit area to calculate the LAI. Before the winter wheat
began heading, a ruler was used to measure H from the stem base to the flag leaf tip. After
heading, the distance from the stem base to the topmost end was measured.

2.3. UAV RGB-Data Acquisition and Processing

The experimental UAV remote sensing platform consisted of a DJI S1000 UAV (SZ
DJI Technology Co., Ltd., Sham Chun, China) with eight rotors and equipped with two
18,000 mA h (25 V) batteries. It has 30 min of autonomy, its payload capacity is 6 kg, and
its flight speed is 8 m/s. It was equipped with an RGB camera (Sony DSC–QX100, Sony,
Tokyo, Japan) that weighed 0.179 kg and provided images of 5472 × 3648 pixels. The RGB
images obtained were acquired under stable lighting conditions, so the flight time started
after 12 a.m. (21 April 2015, 26 April 2015, and 13 May 2015), and the flight height was 80 m.
The weather was clear with no wind and few clouds. High-resolution digital images were
obtained of winter wheat at (GS 31), (GS 47), (GS 65), with a spatial resolution of 0.013 m.
After obtaining the RGB imagery, we used Agisoft PhotoScan software (Agisoft PhotoScan
Professional Pro, Version 1.1.6, Agisoft LLC, 11 Degtyarniy per., St. Petersburg, Russia,
hereinafter referred to as PhotoScan) to stitch the RGB images. RGB image stitching requires
input POS (position point altitude system) data. The POS data contained longitude, latitude,
altitude, yaw angle, pitch angle, and rotation angle at the moment of image acquisition. To
stitch the UAV RGB imagery, we used the POS data and RGB imagery from the UAV to
restore the spatial attitude at the time of image capture and then generated sparse point
clouds. A spatial grid was established based on the sparse point cloud, and ground control
point information was added to optimize the spatial pose of the image to obtain a sparse
point cloud with spatial information. We built a dense point cloud based on the sparse
point cloud with spatial information to generate a three-dimensional polygon grid and
construct spatial texture. This procedure allowed us to produce a high-definition digital
orthophoto mosaic of the UAV flying area.

2.4. UAV Hyperspectral Data Acquisition and Processing

Hyperspectral data acquisition was carried using the FIREFLEYE imaging spectrom-
eter (also known as UHD185, Germany). The UHD185 weighs 0.47 kg and covers a
wavelength range from 450 to 950 nm. The hyperspectral data were sampled at 4 nm
intervals, producing a 1000 × 1000 pixel image with 125 bands. Before the UAV hyperspec-
tral flight, the UHD185 was calibrated using a black-and-white board. The flight height
was 80 m. The acquired UAV hyperspectral images have a spatial resolution of 0.021 m,
including the gray pixel with a spatial resolution of 0.01 m. The same flight routes were
used to acquire remote-sensing images for the three winter wheat growth stages.

UAV hyperspectral data processing mainly involved image correction, image stitching,
and extraction of reflectance. Image correction of hyperspectral images converts the digital
number (DN) to the ground surface reflectance [27].

The hyperspectral images have rich spectral information but lack texture information.
For the stitching, we used the Cubert Cube-Pilot software (Cube-Pilot, Version 1.4, Cubert
GmbH, Ulm, Baden-Württemberg, Germany) to fuse the hyperspectral images with the
corresponding full-color image acquired at the same time to generate the fused hyperspec-
tral image. We then used Agisoft PhotoScan software with the point cloud data from the
full-color image to complete the stitching. The final spatial resolution of the hyperspectral
image was about 5 cm [28].

2.5. Research Methods

Specifically (see Figure 2), we calculated the vegetation indices from both the UAV RGB
imagery and from the UAV hyperspectral images and analyzed them both by comparison
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with PNC, AGB, PWC, CHL, LAI, H, and CGI. The CGI estimation model was constructed
using MLR, PLSR, and RF, and the maps of the CGI distribution based on the UAV-based
RGB and spectral vegetation indices were generated.
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2.6. Analysis Methods

We analyzed the correlation between the vegetation index and CGI and used multiple
MLR, PLSR, and RF methods to build an estimation model. To estimate the CGI from a
single vegetation index, to deal with multiple variables, we used MLR, PLSR, and RF. MLR
can be used to accurately measure the degree of correlation between various factors and
the degree of regression fitting to improve the prediction equation. The larger the absolute
value of the standardized regression coefficient, the greater the effect of the corresponding
independent variable on the dependent variable.

y = a0 + a1x1n + · · ·+ amxmn + wm (1)

In Equation (1), n is the number of modeling factors and a (= 1, . . . , m) is the coefficient.
PLSR can effectively eliminate collinearity among multiple variables, reduce multiple

variables to fewer unrelated latent variables, maximize covariance between independent
and dependent variables, and then establish regression models [29,30]. RF is based on
the bootstrap sampling method whereby multiple samples are extracted from the original
sample. The number of random forest algorithm trees we use is set to 1000, and the number
of nodes is 50. Each bootstrap sample is modeled using a decision tree, and multiple
decision trees are then combined for prediction. Finally, the prediction is determined by
voting [31,32].
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We used WiMATLAB2018a software (Matrix Laboratory 2014a, MathWorks, Inc.,
Natick, MA, USA) to calibrate and verify the model with the vegetation index as the input
variable and the CGI as the output variable.

2.7. Selection of RGB Imagery Indices and Hyperspectral Indices

The vegetation index combines two or more pieces of spectral information, which
can simply the measurement of vegetation states. The vegetation index is widely used for
monitoring grassland, forest, and drought. To build a model to estimate the CGI, 13 RGB-
imagery-based vegetation indices and 13 hyperspectral-image-based vegetation indices
were selected (Table 1).

Table 1. Indices from RGB imagery and from hyperspectral images.

Type Index Formula References

RGB-imagery-based
vegetation indices

R R = R [15]
G G = G [15]
B B = B [15]
r r = R/(R + G + B) [15]
g g = G/(R + G + B) [15]
b b = B/(R + G + B) [15]

EXR EXR = 1.4 r − g [33]
VARI VARI = (g − r)/(g + r − b) [34]
GRVI GRVI = (g − r)/(g + r) [35]

MGRVI MGRVI = (g2 − r2)/(g2 + r2) [35]
CIVE CIVE = 0.441 r − 0.881 g + 0.385 b + 18.78745 [36]
EXG EXG = 2 g − b − r [37]
GLA GLA = (2G – B − R)/(2G + B + R) [38]

Hyperspectral-imagery-based
vegetation indices

NDVI (R800 − R680)/(R800 + R680) [39]
SR R750/R550 [40]

MSR (R800/R760 − 1)/(R800/R670 + 1)1/2 [41]
MCARI ((R700 − R670) − 0.2 × (R700 − R550))(R700/R670) [42]
TCARI 3[(R700 − R670) − 0.2(R700 − R550)(R700/R670)] [42]
MSAVI 0.5[2R800 + 1 − ((2R800 + 1)2 − 8(R800 − R670))1/2] [43]
OSAVI 1.16 × (R800 − R670)/(R800 + R670 + 0.16) [8]
EVI2 2.5 × (R800 − R670)/(R800 + 2.4 × R670 + 1) [9]
SPVI 0.4[3.7(R800 − R670) − 1.2|R530 − R670|] [44]
LCI (R850 − R710)/(R850 + R680) [45]

RDVI (R800 − R670)/(R800 + R670)1/2 [46]
BGI R460/R560 [47]

NPCI (R670 − R460)/(R670 + R460) [48]

Note: R: red reflectance; G: green reflectance; B: blue reflectance; r: normalized red reflectance; g: normalized green
reflectance; b: normalized blue reflectance; EXR: excess-red index; VARI: vegetation atmospherically resistant
index; GRVI: green-red vegetation index; MGRVI: modified green-red vegetation index; CIVE: color index of
vegetation; EXG: excess-green index; GLA: green leaf algorithm index; NDVI: normalized difference vegetation
index; SR: simple ratio vegetation index; MSR: modified simple ratio index; MCARI: modified chlorophyll
absorption ratio index; TCARI: transformed chlorophyll absorption ratio index; MSAVI: modified soil-adjusted
vegetation index; OSAVI: optimized soil-adjusted vegetation index; EVI2: two-band enhanced VI; SPVI: spectral
polygon vegetation index; LCI: linear combination index; RDVI: renormalized difference vegetation index; BGI:
bare ground index; NPCI: normalized pigment chlorophyll ratio index.

2.8. Construction of Comprehensive Growth Index

In this study, we combine PNC, AGB, PWC, CHL, LAI, and H into a CGI. We take
into account the different winter wheat growth stages when monitoring single growth
phases versus the entire growth phase. In order to combine multiple agronomic parameters
into a new index and provide guidance for future remote sensing yield monitoring, the
PNC, AGB, PWC, CHL, LAI, and H are combined into CGI, which can not only reflect
the growth information of crops but can also be correlated with yield. It is also of great
significance to the monitoring of crops. Each parameter that constructs the CGI contributes
to the construction of the model, so it is calculated in a weighted manner. For the time
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being, the contribution of each factor is the same; that is, the contribution of each factor
to the construction of the model is the same. The PNC, AGB, PWC, CHL, LAI, and H are
normalized separately:

Wt = Xt/max(Xt) (2)

After normalizing PNC, AGB, PWC, CHL, LAI, and H, they are weighted by one-sixth
and summed to form the CGI [15]:

CGI =
1
6

6

∑
t=1

Wt (3)

CGI = a×WPNC + b×WAGB + c×WPWC + d×WCHL + e×WLAI + f ×WH (4)

where t = PNC, AGB, PWC, CHL, LAI, and H; Xt is the value of PNC, AGB, PWC, CHL, LAI,
and H at each the growth stage; max(Xt) is the maximum of PNC, AGB, PWC, CHL, LAI,
and H at each the growth stage; Wt is the normalized value; and a, b, c, d, e, f are each
one-sixth.

2.9. Verification of Accuracy

We took the 48 data from each of the three winter wheat growth stages, used two sets
of data as calibration sets (plant field 1, plant field 2; see Figure 1), and used the remaining
set (plant field 3, Figure 1) as the validation set for constructing the model. The correlation
coefficient was used to evaluate how the vegetation indices were related to the CGI. To
evaluate the performance of the proposed model, we use the coefficient of determination
R2, the root-mean-squared error (RMSE), and the normalized root-mean-squared error
(NRMSE). As a model evaluation standard [15], statistically speaking, higher R2 values and
lower RMSE and NRMSE correspond to a more accurate model. R2, RMSE, and NRMSE
are calculated as follows:

R2 =
∑n

i=1(xi − x)2(yi − y)2

∑n
i=1(xi − x)2 ∑n

i=1(yi − y)2 (5)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(6)

NRMSE =
RMSE

X
× 100% (7)

where xi is the measured CGI for winter wheat, x is the average measured CGI, yi is the
predicted CGI, y is the average predicted CGI, and n is the number of model samples.

3. Results and Analysis
3.1. Correlation Analysis

To construct the proposed CGI and vegetation index, the RGB imagery indices and
spectral indices of (GS 31), (GS 47), (GS 65) and for all three stages were combined with
PNC, AGB, PWC, CHL, LAI, and H. Tables 2 and 3 list the correlation between CGI, RGB
imagery indices, and spectral indices. These results show that the correlation between the
RGB imagery indices and PNC, AGB, PWC, CHL, LAI, and H depends on the growth period,
and most of these correlations are very significant (significance level of 0.01).
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Table 2. Results of correlation analysis between RGB imagery indices and single indicator and
the CGI.

Stages Index
Correlation Coefficient

PNC AGB PWC CHL LAI H CGI

(GS 31)

R −0.56 ** −0.72 ** −0.66 ** −0.65 ** −0.78 ** −0.50 ** −0.85 **
r −0.72 ** −0.61 ** −0.69 ** −0.69 ** −0.65 ** −0.50 ** −0.81 **

EXR −0.64 ** −0.63 ** −0.63 ** −0.65 ** −0.69 ** −0.51 ** −0.81 **
G −0.47 ** −0.72 ** −0.64 ** −0.59 ** −0.78 ** −0.46 ** −0.80 **

VARI 0.63 ** 0.63 ** 0.62 ** 0.64 ** 0.69 ** 0.52 ** 0.80 **
MGRVI 0.63 ** 0.63 ** 0.61 ** 0.64 ** 0.69 ** 0.52 ** 0.80 **
GRVI 0.63 ** 0.63 ** 0.61 ** 0.64 ** 0.69 ** 0.52 ** 0.80 **

B −0.35 * −0.69 ** −0.52 ** −0.50 ** −0.76 ** −0.45 ** −0.73 **
CIVE −0.47 ** −0.61 ** −0.49 ** −0.52 ** −0.69 ** −0.49 ** −0.72 **
GLA 0.45 ** 0.60 ** 0.48 ** 0.51 ** 0.68 ** 0.49 ** 0.71 **
EXG 0.45 ** 0.60 ** 0.48 ** 0.51 ** 0.68 ** 0.49 ** 0.71 **

g 0.45 ** 0.60 ** 0.48 ** 0.51 ** 0.68 ** 0.49 ** 0.71 **
b 0.66 ** 0.23 0.54 ** 0.51 ** 0.18 0.19 0.43 **

(GS 47)

R −0.51 ** −0.68 ** −0.66 ** −0.45 ** −0.63 ** −0.48 ** −0.69 **
r −0.64 ** −0.73 ** −0.68 ** −0.53 ** −0.74 ** −0.70 ** −0.81 **

EXR −0.56 ** −0.71 ** −0.69 ** −0.43 ** −0.72 ** −0.72 ** −0.77 **
G −0.41 ** −0.57 ** −0.56 ** −0.41 ** −0.49 ** −0.23 −0.55 **

VARI 0.55 ** 0.70 ** 0.69 ** 0.42 ** 0.72 ** 0.72 ** 0.76 **
MGRVI 0.53 ** 0.70 ** 0.69 ** 0.40 ** 0.71 ** 0.73 ** 0.75 **
GRVI 0.53 ** 0.70 ** 0.69 ** 0.40 ** 0.71 ** 0.73 ** 0.75 **

B −0.13 −0.40 ** −0.47 ** −0.11 −0.32 −0.13 −0.31 *
CIVE −0.24 −0.53 ** −0.62 ** −0.08 −0.56 ** −0.68 ** −0.52 **
GLA 0.20 0.50 ** 0.60 ** 0.03 0.53 ** 0.66 ** 0.48 **
EXG 0.20 0.50 ** 0.60 ** 0.03 0.53 ** 0.66 ** 0.48 **

g 0.20 0.50 ** 0.60 ** 0.03 0.53 ** 0.66 ** 0.48 **
b 0.76 ** 0.70 ** 0.56 ** 0.72 ** 0.69 ** 0.56 ** 0.83 **

(GS 65)

R −0.40 ** −0.63 ** −0.67 ** −0.41 ** −0.63 ** −0.48 ** −0.79 **
r −0.49 ** −0.71 ** −0.79 ** −0.45 ** −0.74 ** −0.72 ** −0.81 **

EXR −0.37 ** −0.69 ** −0.72 ** −0.35 * −0.68 ** −0.71 ** −0.79 **
G −0.39 ** −0.51 ** −0.55 ** −0.42 ** −0.51 ** −0.20 −0.67 **

VARI 0.37 ** 0.69 ** 0.72 ** 0.35 * 0.69 ** 0.71 ** 0.80 **
MGRVI 0.35 * 0.68 ** 0.71 ** 0.33 * 0.67 ** 0.70 ** 0.79 **
GRVI 0.35 * 0.68 ** 0.71 ** 0.33 * 0.67 ** 0.70 ** 0.79 **

B −0.14 −0.43 ** −0.39 ** −0.20 −0.39 ** −0.22 −0.59 **
CIVE −0.13 −0.59 ** −0.54 ** −0.16 −0.54 ** −0.63 ** −0.69 **
GLA 0.11 0.57 ** 0.52 ** 0.15 0.52 ** 0.62 ** 0.68 **
EXG 0.11 0.57 ** 0.52 ** 0.15 0.52 ** 0.62 ** 0.68 **

g 0.11 0.57 ** 0.52 ** 0.15 0.52 ** 0.62 ** 0.68 **
b 0.78 ** 0.52 ** 0.75 ** 0.64 ** 0.64 ** 0.46 ** 0.56 **

Total for
three stages

R −0.47 ** −0.64 ** −0.63 ** −0.48 ** −0.51 ** −0.50 ** −0.68 **
r −0.64 ** −0.65 ** −0.27 ** −0.45 ** −0.46 ** −0.68 ** −0.71 **

EXR −0.55 ** −0.67 ** −0.42 ** −0.44 ** −0.57 ** −0.67 ** −0.74 **
G −0.36 ** −0.53 ** −0.65 ** −0.42 ** −0.40 ** −0.32 ** −0.55 **

VARI 0.54 ** 0.68 ** 0.42 ** 0.43 ** 0.57 ** 0.68 ** 0.74 **
MGRVI 0.53 ** 0.67 ** 0.44 ** 0.43 ** 0.58 ** 0.66 ** 0.73 **
GRVI 0.53 ** 0.67 ** 0.44 ** 0.43 ** 0.58 ** 0.66 ** 0.73 **

B −0.07 −0.36 ** −0.69 ** −0.24 ** −0.36 * −0.15 −0.36 **
CIVE −0.19 * −0.50 ** −0.59 ** −0.28 ** −0.57 ** −0.44 ** −0.55 **
GLA 0.5 0.47 ** 0.59 ** 0.25 ** 0.55 ** 0.41 ** 0.52 **
EXG 0.15 0.47 ** 0.59 ** 0.25 ** 0.56 ** 0.41 ** 0.52 **

g 0.15 0.47 ** 0.59 ** 0.25 ** 0.56 ** 0.41 ** 0.52 **
b 0.61 ** 0.41 ** −0.11 0.33 ** 0.15 0.48 ** 0.44 **

Note: * indicates a significant correlation at 0.05 level; ** indicates a significant correlation at 0.1 level.
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Table 3. Results of correlation analysis between the spectral indices, single indicator, and the CGI.

Stages Index
Correlation Coefficient

PNC AGB PWC CHL LAI H CGI

(GS 31)

LCI 0.62 ** 0.67 ** 0.65 ** 0.75 ** 0.70 ** 0.48 ** 0.83 **
MSR 0.63 ** 0.64 ** 0.63 ** 0.69 ** 0.66 ** 0.48 ** 0.80 **
SR 0.64 ** 0.63 ** 0.65 ** 0.67 ** 0.65 ** 0.49 ** 0.79 **

NDVI 0.57 ** 0.62 ** 0.57 ** 0.70 ** 0.65 ** 0.45 ** 0.77 **
NPCI −0.68 ** −0.58 ** −0.63 ** −0.67 ** −0.62 ** −0.42 ** −0.77 **

OSAVI 0.52 ** 0.44 ** 0.42 ** 0.66 ** 0.49 ** 0.32 * 0.62 **
BGI 0.57 ** 0.45 ** 0.70 ** 0.49 ** 0.45 ** 0.26 0.58 **

RDVI 0.49 ** 0.37 ** 0.35 * 0.61 ** 0.42 ** 0.27 0.54 **
EVI2 0.45 ** 0.30 * 0.30 * 0.56 ** 0.35 * 0.22 0.47 **

MSAVI 0.45 ** 0.29 * 0.30 * 0.56 ** 0.35 * 0.23 0.47 **
SPVI 0.38 ** 0.20 0.21 0.49 ** 0.25 0.15 0.36 **

TCARI −0.12 −0.31 * −0.42 ** −0.09 −0.28 −0.27 −0.29 *
MCARI 0.19 0.01 −0.07 0.22 0.06 0.02 0.11

(GS 47)

LCI 0.68 ** 0.78 ** 0.64 ** 0.60 ** 0.74 ** 0.69 ** 0.85 **
MSR 0.63 ** 0.76 ** 0.62 ** 0.51 ** 0.73 ** 0.73 ** 0.82 **

NDVI 0.63 ** 0.76 ** 0.58 ** 0.53 ** 0.70 ** 0.74 ** 0.81 **
SR 0.62 ** 0.75 ** 0.63 ** 0.49 ** 0.73 ** 0.72 ** 0.81 **

OSAVI 0.67 ** 0.74 ** 0.46 ** 0.51 ** 0.68 ** 0.79 ** 0.81 **
NPCI −0.61 ** −0.75 ** −0.65 ** −0.49 ** −0.71 ** −0.71 ** −0.80 **
RDVI 0.68 ** 0.70 ** 0.39 ** 0.49 ** 0.66 ** 0.80 ** 0.78 **

MSAVI 0.67 ** 0.70 ** 0.38 ** 0.48 ** 0.65 ** 0.80 ** 0.78 **
EVI2 0.67 ** 0.69 ** 0.36 * 0.47 ** 0.64 ** 0.80 ** 0.77 **
SPVI 0.66 ** 0.63 ** 0.28 0.44 ** 0.60 ** 0.79 ** 0.72 **
BGI 0.58 ** 0.65 ** 0.67 ** 0.54 ** 0.61 ** 0.44 ** 0.71 **

TCARI −0.24 −0.37 ** −0.61 ** −0.38 ** −0.37 ** 0.01 −0.38 **
MCARI 0.06 0.05 −0.26 −0.16 0.01 0.45 ** 0.05

(GS 65)

LCI 0.55 ** 0.77 ** 0.79 ** 0.53 ** 0.78 ** 0.66 ** 0.84 **
MSAVI 0.48 ** 0.80 ** 0.75 ** 0.41 ** 0.77 ** 0.79 ** 0.83 **

SPVI 0.48 ** 0.80 ** 0.74 ** 0.41 ** 0.77 ** 0.80 ** 0.83 **
EVI2 0.48 ** 0.79 ** 0.75 ** 0.42 ** 0.77 ** 0.79 ** 0.82 **
RDVI 0.48 ** 0.78 ** 0.76 ** 0.43 ** 0.76 ** 0.79 ** 0.82 **

SR 0.45 ** 0.81 ** 0.78 ** 0.40 ** 0.80 ** 0.69 ** 0.82 **
MSR 0.46 ** 0.80 ** 0.79 ** 0.42 ** 0.78 ** 0.71 ** 0.82 **

OSAVI 0.48 ** 0.77 ** 0.77 ** 0.44 ** 0.76 ** 0.77 ** 0.82 **
NDVI 0.45 ** 0.73 ** 0.76 ** 0.44 ** 0.72 ** 0.71 ** 0.77 **
BGI 0.61 ** 0.71 ** 0.62 ** 0.61 ** 0.69 ** 0.42 ** 0.77 **

NPCI −0.40 ** −0.75 ** −0.76 ** −0.38 ** −0.72 ** −0.74 ** −0.76 **
MCARI −0.05 0.49 ** 0.45 ** −0.03 0.40 ** 0.81 ** 0.40 **
TCARI −0.20 0.20 0.19 −0.20 0.12 0.72 ** 0.14

Total for
three stages

LCI 0.63 ** 0.74 ** 0.40 ** 0.60 ** 0.65 ** 0.60 ** 0.82 **
MSR 0.58 ** 0.74 ** 0.52 ** 0.52 ** 0.63 ** 0.65 ** 0.80 **
SR 0.58 ** 0.74 ** 0.52 ** 0.50 ** 0.63 ** 0.64 ** 0.80 **

NDVI 0.55 ** 0.69 ** 0.50 ** 0.54 ** 0.59 ** 0.62 ** 0.76 **
OSAVI 0.54 ** 0.63 ** 0.54 ** 0.49 ** 0.48 ** 0.62 ** 0.70 **
NPCI −0.55 ** −0.65 ** −0.51 ** −0.41 ** −0.40 ** −0.67 ** −0.67 **
RDVI 0.52 ** 0.58 ** 0.54 ** 0.46 ** 0.42 ** 0.61 ** 0.65 **

MSAVI 0.50 ** 0.56 ** 0.53 ** 0.43 ** 0.39 ** 0.59 ** 0.62 **
EVI2 0.50 ** 0.55 ** 0.53 ** 0.43 ** 0.38 ** 0.59 ** 0.62 **
SPVI 0.46 ** 0.49 ** 0.51 ** 0.38 ** 0.32 ** 0.55 ** 0.55 **
BGI 0.50 ** 0.49 ** 0.43 ** 0.33 ** 0.15 0.47 ** 0.48 **

TCARI −0.11 −0.13 0.23 ** −0.16 −0.28 ** 0.13 −0.16
MCARI 0.07 0.13 0.39 ** 0.01 −0.05 0.34 ** 0.12

Note: * indicates a significant correlation at 0.05 level; ** indicates a significant correlation at 0.1 level.
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We find that the RGB imagery indices r, EXR, VARI, and MGRVI correlate with the
CGI during different growth stages, and the correlation coefficients are all higher than
those between (i) r, EXR, VARI, MGRVI and (ii) PNC, AGB, PWC, CHL, LAI, and H. Thus,
the correlation coefficients between RGB imagery indices r, EXR, VARI, MGRVI, and the
CGI for the four growth stages are greater than the correlation coefficients between the
individual crop-growth indicators. For the spectral indices, the correlation between the
hyperspectral CGI and PNC, AGB, PWC, CHL, LAI, and H also hovers around 0.01. From
(GS 31) to the total for the three stages, the correlation between the spectral index and
the six crop-growth indicators varies irregularly. However, the spectral indices LCI, MSR,
SR, and NDVI are more strongly correlated with the CGI than with the six crop-growth
indicators. Thus, the CGI provides more accurate estimates of the crop-growth parameters.

3.2. Estimate of CGI Based on RGB Imagery and Spectral Indices

According to the results given in Tables 2 and 3, we select the RGB-imagery indices r,
EXR, VARI, and MGRVI and the spectral indices LCI, MSR, SR, and NDVI to estimate CGI.

The RGB-imagery indices r, EXR, VARI, and MGRVI and the spectral indices LCI,
MSR, SR, and NDVI are taken as factors in (GS 31), (GS 47), (GS 65) and for all three stages,
respectively. We then construct the CGI models based on the RGB-imagery indices r, EXR,
VARI, and MGRVI and on the spectral indices LCI, MSR, SR, and NDVI for the different
growth stages (see Table 4).

Table 4. CGI estimation model for the single index of winter wheat in different stages.

Growth Stages Parameters Equations
Calibration Verification

R2 RMSE NRMSE (%) R2 RMSE NRMSE (%)

(GS 31)

r y = 8.7269 × e−6.874x 0.67 0.05 6.55 0.78 0.04 4.98
EXR y = 1.0729 × e−3.196x 0.65 0.05 6.73 0.73 0.04 5.49
VARI y = 0.6664 × e1.8637x 0.64 0.05 6.78 0.72 0.04 5.58

MGRVI y = 0.6655 × e1.449x 0.64 0.05 6.79 0.71 0.04 5.66
LCI y = 0.3945 × e1.067x 0.72 0.04 5.92 0.74 0.04 5.38
MSR y = 0.5264 × e0.1375x 0.67 0.05 6.48 0.69 0.05 5.93
SR y = 0.5844 × e0.0259x 0.66 0.05 6.65 0.68 0.05 6.03

NDVI y = 0.3222 × e1.0736x 0.63 0.05 6.84 0.65 0.05 6.25

(GS 47)

r y = −5.5464x + 2.6602 0.57 0.06 8.14 0.84 0.04 5.09
EXR y = −2.9535x + 1.0445 0.50 0.07 8.71 0.75 0.05 6.32
VARI y = 1.5784x + 0.615 0.50 0.07 8.74 0.75 0.05 6.36

MGRVI y = 1.3382x + 0.6099 0.49 0.07 8.84 0.73 0.05 6.61
LCI y = 0.2967 × e1.4913x 0.69 0.05 7.04 0.84 0.04 5.50
MSR y = 0.1306x + 0.3858 0.62 0.06 7.67 0.81 0.04 5.63
SR y = 0.0223x + 0.5101 0.60 0.06 7.80 0.80 0.04 5.73

NDVI y = 0.1654 × e1.8498x 0.62 0.06 7.71 0.80 0.04 5.80

(GS 65)

r y = −5.74x + 2.7027 0.55 0.06 7.80 0.70 0.05 7.33
EXR y = −2.5008x + 0.9961 0.45 0.07 8.65 0.59 0.06 8.56
VARI y = 1.3211x + 0.6346 0.46 0.07 8.62 0.59 0.06 8.50

MGRVI y = 1.0881x + 0.6362 0.43 0.07 8.78 0.57 0.06 8.76
LCI y = 0.32 × e1.3239x 0.67 0.05 6.74 0.75 0.05 6.46
MSR y = 01141x + 0.4495 0.62 0.06 7.24 0.72 0.05 7.02
SR y = 0.0209x + 0.5405 0.62 0.06 7.19 0.75 0.05 6.65

NDVI y = 0.2602 × e1.3278x 0.58 0.06 7.50 0.64 0.06 7.83

Total for three
stages

r y = 4.138x + 2.1912 0.54 0.06 8.04 0.62 0.06 7.67
EXR y = −2.4047x + 1.0012 0.57 0.06 7.75 0.52 0.07 8.69
VARI y = 1.3196x + 0.6485 0.57 0.06 7.79 0.52 0.07 8.65

MGRVI y = 1.0988x + 0.6455 0.57 0.06 7.78 0.50 0.07 8.86
LCI y = 0.893x + 0.2007 0.69 0.05 6.64 0.70 0.05 6.84
MSR y = 0.4986 × e0.1513x 0.63 0.06 7.25 0.66 0.06 7.19
SR y = 0.0203x + 0.5462 0.62 0.06 7.31 0.67 0.05 7.17

NDVI y = 0.265 × e1.3008x 0.59 0.06 7.57 0.61 0.06 7.72
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The CGI model based on the RGB imagery indices r, EXR, VARI, and MGRVI generally
performs well for all three growth stages and for the total of the three stages. The best
performance for the RGB imagery index model is for the (GS 31). Overall, R2 is higher and
the RMSE and NMRSE are lower. At the same time, several pairs of RGB imagery–index
calibration sets have the same R2 and RMSE, such as VARI and MGRVI. The effect of the
model becomes apparent only upon comparing NRMSE. The smaller the NRMSE, the
higher the prediction accuracy. Of course, we also need to consider R2, RMSE, and NRMSE
for the validation set. Similarly, the effects of EXR, VARI, and the two RGB imagery indices
used to construct the CGI model during (GS 47) need to be analyzed by NRMSE. The
CGI effect of each growth stage is compared. The best-performing RGB indices are r, r, r,
and EXR.

In the estimation model based on the spectral indices LCI, MSR, SR, and NDVI, evalu-
ating models based on different spectral indices also requires comparing the magnitudes of
R2, RMSE, and NRMSE. We find that the difference between the R2 of different estimation
models is relatively clear. Combining these spectral indices with the results of the valida-
tion model allows us to evaluate the performance of different spectral index models. A
comparison of the results of each model shows that the estimation model based on LCI
gives the most accurate results.

3.3. Using RGB VIs and Spectral VIs with Machine Learning to Estimate CGI

Table 5 shows the modeling analysis based on the four RGB imagery indices, the four
spectral indices, and the CGI estimated by using MLR, PLSR, and RF.

Table 5. Results of using different methods to estimate the CGI for different winter wheat growth stages.

Growth Stages Methods Data R2 RMSE NRMSE (%)

(GS 31)

MLR
RGB, VIs 0.73 0.04 5.69

Spectral, VIs 0.77 0.04 5.29

PLSR
RGB, VIs 0.65 0.05 6.54

Spectral VIs 0.66 0.05 6.40

RF
RGB, VIs 0.53 0.06 7.64

Spectral, VIs 0.64 0.05 6.66

(GS 47)

MLR
RGB, VIs 0.65 0.06 7.37

Spectral, VIs 0.72 0.05 6.57

PLSR
RGB, VIs 0.50 0.07 8.73

Spectral, VIs 0.60 0.06 7.80

RF
RGB, VIs 0.42 0.08 9.65

Spectral, VIs 0.50 0.07 8.76

(GS 65)

MLR
RGB, VIs 0.68 0.05 6.63

Spectral, VIs 0.78 0.04 5.44

PLSR
RGB, VIs 0.62 0.05 6.93

Spectral, VIs 0.65 0.05 5.88

RF
RGB, VIs 0.54 0.06 7.97

Spectral, VIs 0.60 0.06 7.38

Total for three stages

MLR
RGB, VIs 0.58 0.06 7.71

Spectral, VIs 0.69 0.05 6.61

PLSR
RGB, VIs 0.57 0.06 7.77

Spectral, VIs 0.62 0.06 7.30

RF
RGB, VIs 0.48 0.07 8.62

Spectral, VIs 0.57 0.06 7.81

Comparing the estimation of the CGI result based on indices built from RGB imagery
with that based on the spectral indices from the different growth stages, we find that the
latter is superior to the former. In addition, a comparison with different machine learning
methods shows that the CGI estimation model constructed using MLR is the most accurate
of the three methods, followed by the model constructed from PLSR, and finally by the
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model constructed from RF, which shows that MLR method is the index, followed by PLSR,
and finally by RF. We now use the verification set data to verify the RGB-imagery -based
index and spectral-based index combined with the MLR, PLSR, and RF methods to estimate
the CGI. Figures 3 and 4 show the relationship between the measured and predicted values
(y = ax + b, R2, RMSE, NRMSE). The results show that the verification is consistent with the
modeling, and the fit is very good (the fit to the spectral index is better than the fit to the
RGB-imagery index). Comprehensive modeling and verification (see Table 5 and Figures 3
and 4) show that the MLR, PLSR, and RF methods all provide a more accurate estimate of
the CGI than the single RGB-imagery index or the single spectral index (see Tables 4 and 5
and Figures 3 and 4). Thus, these three methods all provide good estimates of the CGI.
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3.4. Map of CGI Distribution

Estimating the CGI by using machine learning and based on RGB-imagery-based
indices and spectral-based indices allows us to select the best estimation model for the
different growth stages. Figures 5 and 6 show the results of applying the MLR estimation
model to the UAV RGB and hyperspectral imagery of (GS 31), (GS 47), and (GS 65).
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From jointing to flowering, the average RGB-based CGI ranges from 0.74 to 0.79
(Figure 5) and hyperspectral-based CGI averages from 0.74 to 0.78 (Figure 6). In addition,
the corresponding CGI map is greener, indicating a higher CGI. The current map also shows
that the CGI has increased during the three growing seasons of winter wheat. These results
are consistent with the actual observations. The CGI distribution based on the RGB and
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hyperspectral UAV images shows the difference between CGI estimation models based on
the two types of data (Figure 7). The predicted CGI values differ, which leads to different
CGI distributions for the same growth stage. However, the results for the three growth
stages show that winter wheat growth is best in plant field 2 and is relatively stable over
the different growth stages. The map of the CGI distribution clearly differentiates between
the better-growing areas and the poorer-growing areas.
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4. Discussion
4.1. Single Growth-Monitoring Indicators and CGI for Winter Wheat

From (GS 31) to the total for the three stages, most of the RGB imagery indices and
hyperspectral indices are significantly correlated with PNC, AGB, PWC, CHL, LAI, H,
and CGI (Tables 2 and 3). The RGB imagery indices R, EXR, VARI, MGRVI, and CGI
are more strongly correlated than r, EXR, VARI, MGRVI and PNC, AGB, PWC, CHL, LAI,
and H, which shows that the four RGB imagery indices for the CGI are very sensitive.
Zhou et al. [49] used EXR and VARI to monitor rice growth and obtained more accurate
predictions. Niu et al. [50] used UAV RGB imagery to show that r and MGRVI can provide
good estimates of the LAI.

Over the four growth stages, the hyperspectral indices LCI, MSR, SR, and NDVI are
more strongly correlated with the CGI than LCI, MSR, SR, and NDVI are with PNC, AGB,
PWC, CHL, LAI, and H. These four spectral indices are more sensitive to the CGI, mainly
because the CGI contains more information about crop growth. Yue et al. [15] found that
the LCI is useful for monitoring the AGB and LAI of winter wheat. Wu et al. [42] explored
the use of the MSR and NDVI to estimate CHL. Liang et al. [51] accurately estimated crop
parameters by using the SR. These studies show that these spectral indices are reliable for
monitoring crop parameters. At present, the monitoring of crop growth focuses on single
indices, which monitor crop growth based on a single growth parameter. Zhu et al. [52]
used several spectral LNC indices to confirm their effectiveness for quantitatively inversing
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the LNC of winter wheat. However, the sensitivities of the RGB imagery, spectral index,
and various growth parameters differ. Some RGB imagery and spectral indices may be
highly sensitive to one growth parameter and less sensitive to another. The proposed CGI
combines six growth-monitoring parameters and considers various combinations of growth
parameters. Based on the correlation between the RGB-imagery and hyperspectral indices
and the CGI, the CGI can be used as an index to monitor crop growth.

4.2. Estimation of CGI Based on a Single Index

The RGB imagery indices r, EXR, VARI, and MGRVI and the spectral indices LCI,
MSR, SR, and NDVI, which are strongly correlated with the CGI, are used to construct the
CGI estimation model. The results show that the models constructed for single growth
stages and multiple growth stages both provide good estimates (Table 4). Moreover, the
findings indicate that the CGI can be accurately estimated from a single RGB imagery index
or from a single hyperspectral index. The optimal CGI models of the RGB imagery index at
(GS 31), (GS 47), (GS 65), and all three stages have different indices that reflect the various
sensitivities of the RGB imagery indices in different growth stages. In addition, the indices
provide CGI predictions of varying accuracy. The performance of the spectral parameters
and RGB imagery indices varies over the four stages. In conclusion, the LCI provides the
best spectral index for estimating the CGI over the different growth stages, and the models
constructed for the four growth stages are the most satisfactory. Therefore, the optimal
estimation of the CGI based on the spectral index is more stable than that based on an RGB
imagery index.

Some RGB imagery and spectral indices saturate the growth parameters. Thus, we
should further investigate how to estimate the growth parameters [53]. The PNC, AGB,
PWC, CHL, LAI, and H from the (GS 31) to the (GS 65) of winter wheat all change to varying
degrees, and these changes modify the CGI in the different growth stages. At (GS 31)
and (GS 47), the photosynthates are mainly stored in stems and leaves, whereas, at the
flowering stage, they are stored in flowers and in the wheat ear. Thus, using a visible-light
vegetation index is not recommended for estimating AGB [15]. Although the RGB-image
and hyperspectral indices at various growth stages are related to six growth parameters,
the vegetation index monitoring crop growth effect is related to dry matter and pigment [6],
which means that the sensitivity of an index to the CGI also depends on the winter wheat’s
growth stage. For instance, the LCI is highly sensitive to the four growth stages of winter
wheat. Therefore, the optimal predictive factor for estimating CGI should be determined.

4.3. Estimation of CGI Based on Multiple Indices Combined with Machine Learning

Machine learning methods are increasingly used to estimate parameters to monitor
crop growth. The results of this study show that machine-learning estimates of growth
parameters based on multiple RGB imagery or spectral indices are more accurate than
single-index estimates. Yue et al. [54] used the PLSR to obtain better estimates of the AGB
than is possible by using a single vegetation index. Han et al. [20] used multiple linear
regression, partial least squares regression, artificial neural networks, and the random forest
algorithm to improve the accuracy of estimates of AGB. Better estimates of crop parameters
can be obtained by using machine learning methods, which is consistent with the research
results presented herein. The CGI estimation model constructed by MLR is better than a
model based on a single RGB imagery index or a single spectral index. Estimates made
using the PLSR or RF models are also better than most (but not all) single RGB imagery
index or spectral index models (see Tables 4 and 5 and Figures 3 and 4), which may be
related to the number of variables involved in the construction of these models. According
to Yue et al. [15], given sufficient input variables, the models constructed by PLSR and RF
provide better estimation.

The MLR model based on RGB imagery and spectral indices is superior to the PLSR
and RF models over the different growth stages (see Table 5 and Figures 3 and 4), which
we attribute to one of the three following reasons: (i) An index that is strongly correlated
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with the CGI is preferable for the construction of the model. (ii) A model made from a
linear estimate by a single index provides good results. The sensitivity of multiple indices
is combined with the CGI, resulting in an abundant amount of information. (iii) RF is
suitable for processing large amounts of data but is disadvantaged for processing small
data sets. Han et al. [20] and Ozlem et al. [55] used large sample data and the RF algorithm
to improve the prediction the model.

In addition, since this paper uses empirical models, although Zhou et al. [49],
Niu et al. [50], Yue et al. [15], Wu et al. [42], and Liang et al. [51] used the vegetation index
from the estimation model used herein, the crop parameters were estimated by using empir-
ical methods. However, to estimate crop canopy variables, one must consider confounding
factors that also affect the estimation, such as leaf or canopy structure and the understory
in multiple-scattering processes, soil parameters, and some external parameters [56–61]. To
determine how canopy structure affects estimates of crop parameters, Bendig et al. [62]
used UAV RGB imagery to obtain crop surface models, extract crop heights, and use the
extracted crop heights to estimate biomass, which improved the accuracy of the estimates.
In the next step, we further study how to estimate crop parameters based on crop height to
explore how various sensors affect estimates.

4.4. CGI Estimation Based on Different Sensors

The results of this study show that using a single index versus multiple indices
combined with machine learning to estimate CGI produces different results. This research
shows that an RGB camera mounted on a UAV can be used to accurately estimate crop-
growth parameters, assess the data of cameras mounted on UAVs are reliable [63], but
the accuracy of such estimates based on UAV hyperspectral data estimation is higher.
Yue et al. [15] monitored crop LAI and AGB and found that the monitoring by using UAV
hyperspectral cameras is better than by using UAV RGB cameras. The results are consistent
with the performance of the two sensors and with the two estimated CGIs. The CGI
model estimated by the UAV hyperspectral data is superior to that estimated by the UAV
RGB imagery. Therefore, hyperspectral sensors are preferred for monitoring crop growth.
The results of the RGB camera are close to the results of using a hyperspectral sensor,
considering the cost issue, and the simpler data processing of RGB, it is recommended to
use an RGB sensor on the UAV.

Note that this study still has several shortcomings. The research area is limited to
Changping District, Beijing, China. The growth of winter wheat in other regions, as well as
other varieties of wheat grown in different years, should be further investigated to verify
the findings of this research. In addition, the CGI calculates the average weight of the
growth indicators at different growth stages, so the weight of the growth index should be
distributed on the basis of growth stages to improve the results. At present, we use UAV
to carry RGB cameras and hyperspectral cameras for experiments. In the future, we can
use multispectral or lidar sensors to conduct experiments to explore the impact of different
sensors on the experimental results. At the same time, in the future, different weight ratios
will be assigned to the contribution of different factors in the model construction to explore
the estimation effect of the model under different ratios.

5. Conclusions

Six growth indicators were used to construct a new CGI index. The CGI of winter wheat
at different growth stages was estimated by using UAV RGB imagery and hyperspectral
data. The linear, nonlinear, MLR, PLSR, and RF models were further developed. The main
conclusions are as follows: The RGB imagery indices r, EXR, VARI, and MGRVI are more
strongly correlated with the CGI for the growth stages than are PNC, AGB, PWC, CHL, LAI,
and H. The spectral indices LCI, MSR, SR, and NDVI are more strongly correlated with the
CGI than the single growth-monitoring index for the four stages, which indicates that the
CGI can be used to monitor crop growth. On the one hand, the CGI model from a single
RGB imagery index has different optimal indices at different growth stages. On the other
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hand, the model constructed by using a single spectral index has the best index in each
growth stage, all of which are in terms of the LCI. By combining multiple RGB imagery
indices and spectral indices with MLR, PLSR, and RF to estimate the CGI, the MLR model
is optimal for different growth stages, the PLSR model is second best, and the RF model is
the worst. The best model based on RGB-imagery indices gives R2, RMSE, and NRMSE
of 0.73, 0.04, 5.69%, and the best model based on hyperspectral data gives an R2, RMSE,
and NRMSE of 0.78, 0.04, and 5.29%, respectively. The CGI can be accurately estimated
by using UAV RGB imagery and hyperspectral data. Both methods can estimate the CGI.
However, the hyperspectral data lead to more accurate estimates of the CGI than the RGB
imagery, which demonstrates that UAV hyperspectral imaging provides more accurate
results. Currently, developments are underway for UAV payloads, including hyperspectral,
LIDAR, synthetic aperture radars, and thermal infrared sensors. Fully comparing the
advantages of each sensor type requires further study.
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UAVs unnamed aerial vehicles
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MLR multiple linear regression
PLSR partial least squares
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PNC plant nitrogen content
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PWC plant water content
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