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Abstract: Object counting is an indispensable task in manufacturing and management. Recently, the
development of image-processing techniques and deep learning object detection has achieved excel-
lent performance in object-counting tasks. Accordingly, we propose a novel small-size smart counting
system composed of a low-cost hardware device and a cloud-based object-counting software server
to implement an accurate counting function and overcome the trade-off presented by the computing
power of local hardware. The cloud-based object-counting software consists of a model adapted to
the object-counting task through a novel DBC-NMS (our own technique) and hyperparameter tuning
of deep-learning-based object-detection methods. With the power of DBC-NMS and hyperparameter
tuning, the performance of the cloud-based object-counting software is competitive over commonly
used public datasets (CARPK and SKU110K) and our custom dataset of small pills. Our cloud-based
object-counting software achieves an mean absolute error (MAE) of 1.03 and a root mean squared
error (RMSE) of 1.20 on the Pill dataset. These results demonstrate that the proposed smart counting
system accurately detects and counts densely distributed object scenes. In addition, the proposed
system shows a reasonable and efficient cost–performance ratio by converging low-cost hardware
and cloud-based software.

Keywords: counter; object counting; object detection; deep learning

1. Introduction

The necessity of counters in various manufacturing industries has been highlighted
by mass production [1–3]. Owing to the fact that most of the preceding counters used for
manufacturing usually count only a single type of product, it was necessary to develop a
different counter for each product when dealing with various types of merchandise. Hence,
various studies on general-purpose counters have been conducted over the years. Sensor-
based counters [4] are popular. Sensors are sensitive to external conditions; thus, most
sensor-based counters are designed for a specifically structured environment to achieve high
accuracy. Therefore, these methods are not universal and are not comparable to other methods.

In recent years, owing to the advancements in image-processing techniques, counters
using image sensors have been developed [5–18]. In the early stages, the objects were
counted by extracting their edges. In this case, the condition that the objects should
be clearly distinguished from the background was essential. In contrast, recent deep-
learning-based counters have the advantage of being able to detect objects robustly in any
environment, provided they have been trained by a sufficient amount of data. However,
these object-detection models still have limitations in that they do not perform sufficiently
when the density of objects in the image is high. To overcome this limitation, we propose a
novel counting system by combining the existing object-detection model and our distance
between circles nonmaximum suppression (DBC-NMS) technique.

In addition to software, the corresponding hardware device is just as important to
enable the whole process of counting objects. Mazzia et al. [19] proposed a real-time apple-
detection system. This system utilized YOLO v3-tiny [20], which is a relatively small device,
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to run a deep-learning-based detector on a low-cost embedded platform. Horng et al. [21]
proposed a harvesting system that detected and classified crop ripeness. This system
includes an external server for the object detectors MobileNet2 [22] and SSD [23]. How-
ever, the approach proposed in [19] has the limitation of being hardware-dependent,
and that proposed in [21] is limited by the fact that it detects objects well but is not op-
timized for counting. In summary, a counter that is optimized for object counting and
implemented not only in software but also in hardware has never been proposed.

The main contributions of this paper are summarized as follows:

1. We propose a novel object-counting method by applying our new object-counting
technique (DBC-NMS) to an existing state-of-the-art deep learning object-detection
model (CenterNet2) and hyper-parameter tuning.

2. Our cloud-based deep learning software server showcases consistent performance
regardless of hardware device specifications. This means that many clients can handle
our server at a low cost, and the more that clients use our server, the more our server
becomes specialized for a specific domain through staged fine-tuning processes.

3. We demonstrate the potential of our smart counting system as a general-purpose
counting device by realizing a pipeline of all the processes to the hardware system
that can operate in conjunction with the cloud-based deep learning software server.
Additionally, we propose a semi-automated object-collecting process to assist in the
rapid removal of excessive objects.

The remainder of this paper is organized as follows. Section 2 reviews related works
related to counters as well as deep-learning-based object detection. Section 3 discusses the de-
tails of the object-detection server and local hardware device. In Section 4, the object-detection
models used for the object-detection server are evaluated and the overall performance of the
proposed smart counting system is verified. Finally, Section 5 concludes the paper.

2. Related Works
2.1. Deep-Learning-Based Counting

Deep-learning-based object-counting methods can be roughly classified into four
categories: regression-based, density-map-estimation-based, heatmap-estimation-based,
and object-detection-based methods.

Regression-based methods (Wang et al. [8] and Xue et al. [9].) count objects by mapping
high-dimensional images into a real number space through regression models. Wang et al.
proposed an end-to-end deep convolutional neural network regression model for counting
people in images. Xue et al. proposed a regression model that counted the number of cells
by cropping the image into patches. These methods have difficulties with objects of varying
scales and cluster distributions. This regression-based approach predicts a scalar count for
an input image without explicit object localization information.

Density-map-estimation-based method (Lempitsky et al. [10]) set a milestone for
density-map-estimation-based counting studies by casting the object-counting problem in
an image as a density map estimation, in which the integral of the density map provided
the count of objects within it. Zhang et al. [11] proposed a multi-column neural network
(MCNN) with three columns, each column consisting of CNNs of different kernel sizes,
to estimate density maps for objects of different sizes. Sindagi et al. [12] improved the
MCNN by learning it as a classification problem with density map estimation for the crowd-
counting task, and integrated it into an end-to-end cascading network. Gao et al. [13] pro-
posed ASPDNet, which introduced a feature pyramid network and deformable convolution
network, and integrated the attention mechanism.

Heatmap-estimation-based method (Kilic et al. [14]) is a new CNN model called the
heatmap learner convolutional neural network (HLCNN), which generated heatmaps
for car locations. HLCNN casts the object-counting problem in an image as a heatmap
estimation, which provides the count of objects within the heatmap.

Object-detection-based method employing object-detection networks, such as Faster-
RCNN [24], YOLO [25–28], SSD [23], RetinaNet [29], and CenterNet [30], have shown
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state-of-the-art performance in many object-detection tasks. Counting is completed sponta-
neously after detection by summarizing the number of detection instances. These methods
and variants have shown promising results, such as those reported by Hsieh et al. [15],
Goldman et al. [16], Li et al. [31], and Cai et al. [17], for car counting in aerial images.
Wang et al. [18] proposed a new self-learning approach called crowd-SDNet to estimate
both the centroid and size of a crowded object.

2.2. Object Detectors

A recent deep-learning-based object detector is typically composed of two parts: a
backbone and a head. The backbone of the detector is generally pretrained on ImageNet [32].
VGG [33], ResNet [34], DenseNet [35], ResNeXt [36], and EfficientNet [37] are used as the
backbone. In addition, for detectors running on low-cost hardware, MobileNet [38] or
SqueezeNet [39] can be used as the backbone. The head of the detector is used to predict
the bounding boxes and classes of objects. Depending on the head, the detectors can be
classified into two types: one-stage and two-stage detectors.

In two-stage detectors, the first stage detects potential objects and their locations,
and the second stage classifies these potential objects. During training, the first stage
is designed to maximize the recall, and the second stage is designed to maximize the
classification objective. The regions with convolutional neuron networks features
(R-CNN) series—which includes R-CNN [40], fast R-CNN [41], faster R-CNN [24], and mask
R-CNN [42]—are representative two-stage detectors.

One-stage detectors mainly predict object location and class likelihood and learn
by maximizing the local likelihood of annotated ground truth objects during training.
Well-known one-stage detectors include SSD [23], YOLO [25–28], and RetinaNet [29].
CornerNet [43] and CenterNet [30] are one-stage detectors that use keypoint estimation
for object detection. In YOLOR [44], Wang et al. proposed a unified network for encoding
implicit and explicit knowledge together.

CenterNet2 [45], which a is state-of-the-art, probabilistic, two-stage detector that
complements the limitations of the two-stage detector, mapping the class probability of
the basic one-stage detector and the k bounding boxes taken from the shared head of the
model, such as two-stage detectors. In Section 3.1.1, we analyze each object detector in
more detail to select a model suitable for our system in tackling the object-counting task.

3. The Proposed Smart Counting System
3.1. Object-Detection Configurations for the Object-Counting Task
3.1.1. Analysis of the Object Detectors

Object-detection methods encounter difficulties in detecting heavily compacted scenes.
Therefore, their performance on the COCO test set [46], an object-detection benchmark,
was used to adopt an object-detection model that was suitable for count tasks.

A representative model of a one-stage detector, YOLO [25–28], divides an image into cell
units. This limits its performance when objects are concentrated within the size of a cell unit.
Furthermore, models using many types of anchor boxes [25–28] have a limitation in that an
imbalance occurs between positive and negative anchor boxes. To solve this problem, focal
loss has been added [29], but it requires the optimization of hyper-parameters, such as the
intersection over union (IoU) threshold suitable for dataset tasks, anchor box size, and ratio.

However, CornerNet [43] and CenterNet [30] use key point estimation, which makes
grouping and postprocessing unnecessary. CornerNet predicts a bounding box by detecting
two corners (upper left and lower right) as key points, and CenterNet predicts each object
as a single point by using the center point as a key point. CenterNet2 [45], a probabilistic
two-stage detector, adds a cascade RoI head [47] on top of the first-stage proposal network,
as shown in Figure 1, and is both faster and more accurate than its one- or two-stage
counterparts, that is, CenterNet. Methods using keypoint estimation [30,43,45] show no
degradation in their performance, even in situations where objects are dense (small objects
heavily packed in compact scenes).
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Figure 1. Overview of CenterNet2 architecture.

Cloud-based software supplements computing power beyond the hardware potential
of the system. Therefore, we employ CenterNet2 as the object-detection model of the
proposed system, which shows the best mAP and adequate FPS in the COCO benchmark,
as shown in Table 1, among the competitive object detectors.

Table 1. Performance of object detectors on COCO test-dev. ( ) means the backbone of the model.
Frames per second (FPS) of every detector were measured on a machine with NVIDIA RTX 2080 TI.

Object Detector mAP FPS
(Mean Average Precision) (Frames per Second)

Faster RCNN [24] 39.8 9.4
Tiny YOLO [25] 23.7 33.6
YOLO9000 [26] 21.9 9.5

RetinaNet(ResNet101-FPN) [29] 40.8 5.4
YOLOv3 (Darknet-53) [27] 33.0 20

CornerNet(Hourglass-104) [43] 42.1 4.1
CenterNet(Hourglass-104) [30] 45.1 7.8
YOLOv4 (CSPDarknet-53) [28] 43.5 33
CenterNet2(ResNet101-BiFPN) [45] 56.4 33

Swin-T(cascade mask RCNN) [48] 50.5 5.3
YOLOR [44] 52.6 47.5

3.1.2. DBC-NMS (Distance between Circles—NMS)

Nonmaximum suppression (NMS) is an essential part of an object-detection pipeline.
It helps match a bounding box of each object from the predicted result of an image. The tra-
ditional NMS algorithm calculates the ratio between the intersection and union areas (i.e.,
the IoU) of two bounding boxes and compares it with the previously defined IoU thresh-
old to determine the degree of overlap between the two boxes. However, in this case,
depending on the orientation of the object, the area occupied by the actual object may be
significantly smaller than that of the bounding box. In other words, a large error occurs
in the bounding box. Because of the error, area-based postprocessing causes erroneous
results, as shown in Figure 2. For example, if the threshold of NMS is strictly set as shown
in Figure 2a, then even the correctly predicted box is removed. On the other hand, if the
threshold of NMS is set loosely, as shown in Figure 2b, then it is impossible to remove
the wrongly predicted box. This means that, even if the IoU threshold value is adjusted,
accurate prediction is difficult because of the error introduced by the bounding box.

To address this problem, we propose DBC-NMS, a distance-based postprocessing
method. As shown in Figure 2c, DBC-NMS redefines a circle from the bounding box so
that the degree of overlap can be determined regardless of the orientation of the object.
The circle is defined to have a radius, ri, which is the distance from the center points of the
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bounding box. ri is computed based on the width and height values of the bounding box
and ε, as follows:

ri =
min(bi,width, bi,height)

2
ε. (1)

where ε is a value that adjusts the size of the circle (the effect of ε is examined in Section 4.6).
Using the circles, the degree of overlap between objects is determined as follows:

si =

{
si, Euclidean_Distance(cm, ci) > rm + ri
0, Euclidean_Distance(cm, ci) ≤ rm + ri

. (2)

Raw 

predictions

NMS
with low threshold

(iou_th ≈ 0.4)

NMS
with high threshold

(iou_th ≈ 0.7)

DBC-NMS
(ours)

Type 1

Inputs
Post-processing

Type 2

(a) (b) (c)

Figure 2. Effects of NMS by IoU threshold and DBC-NMS (a) NMS results with low threshold for
raw predictions. (b) NMS results with high threshold for raw predictions. (c) DBC-NMS results for
raw predictions.

Circles in which the Euclidean distance between the center points is less than the sum
of the radii are removed and considered as the same object. Therefore, only the maximum
score between the overlapped circles remains, and the rest are removed. In the converse
case, each circle is considered as an independent object. Figure 3a shows a situation in which
both bounding boxes are maintained as they indicate two different objects, and Figure 3b
shows a situation in which one bounding box with a low score is removed as it is considered
to indicate the same object. The overall DBC-NMS process is shown in Algorithm 1.

𝑟1

𝑟2

𝑐1

𝑐2

(a)

𝑟1

𝑟2

𝑐1

𝑐2

(b)
Figure 3. Schematic of DBC-NMS algorithm. (a) Case of two bounding boxes for independent objects.
(b) Case including the mispredicted bounding box.



Remote Sens. 2022, 14, 3761 6 of 17

Algorithm 1 Pseudo code of DBC-NMS
Input :
B = [b1, · · · bn] . B is the list of initial detection boxes
S = [s1, · · · sn] . S contains corresponding detection scores
ε . ε is the DBC-NMS threshold

1: procedure DBC-NMS(B, S, ε)
2: Pick← {}
3: C = [c1, · · · cn] = Bcenter_point

4: R = [r1, · · · rn] =
min(Bwidth ,Bheight)

2 ε

5: I = argsort S
6: while len(I) > 0 do
7: m← I.pop()
8: Pick← Pick ∪ {m}
9: Keep← [ ]

10: for i in I do
11: if Euclidean_Distance(cm, ci) > rm + ri then
12: Keep.append(i)

13: I← Keep

14: return B[Pick], S[Pick]

3.2. Cloud-Based Software Server
3.2.1. Architecture

The server for object detection uses AWS cloud resources, as shown in Figure 4.
The object-detection model is configured with Docker so that it can be simply deployed on
top of the default AWS Deep Learning AMI environment at an AWS EC2 GPU instance.
In addition, the EC2 instance is created as an auto-scaling group to facilitate expansion
according to the number of users.

AWS Cloud

VPC

Amazon S3

Devices

images

detection 

results

UI
(web 

application)

Images & detection results

Amazon EC2

Auto Scaling

AWS Deep

Learning AMI

⋮

Object Detection Model

EC2 instance contents

Figure 4. Object-detection server architecture based on AWS development stacks.

The cloud-based object-detection server communicates with Raspberry Pi through
a socket connection for fast data transmission and reception. The EC2 instance of the
server receives an image from Raspberry Pi and returns the center coordinates of the items,
according to the request of the user. The returned value is displayed to the client using a
web-based UI. In addition, as the user collects the counted items, the image and prediction
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results are stored as pairs in AWS S3. With the selected model, CenterNet2, the FPS of
the entire pipeline, including all low-cost hardware and cloud-based software, has been
measured as 3.47.

3.2.2. Staged Fine-Tuning

We adopt a stagewise training method to effectively optimize the model to the task
with minimal data annotation. First, a neural network pretrained with the COCO dataset is
fine-tuned on a handful of data, which is manually composed. Subsequently, the fine-tuned
model is served temporarily through the cloud server to obtain more data for further fine-
tuning stages. Then, from AWS S3 storage, the input images and the corresponding model
predictions are obtained and postprocessed for use as the dataset of the next fine-tuning
stage. After a few repetitions of fine-tuning, a task-optimized model is obtained. The stem
and second stage of the backbone model are frozen to prevent overfitting. The experiments
of our stagewise training method are described in Section 4.7.

3.3. Local Hardware Device

The local hardware device is designed using AutoCAD, as described in Figure 5a, and
the entire structure is assembled from aluminum profiles, as shown in Figure 5b. The tray
used for collecting the objects is fabricated using a 3D printer. A low-cost embedded board,
Raspberry Pi 4 model B with 8gb memory, is employed as the main computer of this device.
It receives images from the camera, exchanges data with the cloud-based object detection
server, deploys a web application, highlights the items to be removed by controlling the
beam projector, and collects items by actuating a motor. A mini DLP beam projector SC497
is used as the beam projector, and a Logitech Pro Stream webcam C922 is employed as the
camera. To align the beam projector and the camera angle, the camera is set vertically to
view the tray, as shown in Figure 5c. In addition, the beam projector is adjusted to an angle
of view, which prevents interference with the camera. To collect items, a basic Raspberry Pi
servo motor is used. The rotational motion generated by the motor is converted to linear
motion through a crank, shaft, and connecting rod, as shown in Figure 6. Owing to the
circular bar inserted in the middle of the tray, the converted linear motion is once again
converted into rotational motion, which allows the objects to fall.

Raspberry Pi

Tray

Camera

Beam 

Projector

(a) (b) (c)
Figure 5. Local hardware device. (a) Cad design of the local device. (b) Photo of the local device.
(c) Configuration of the camera and beam projector.
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crank
shaft

servo

motor
tray

Figure 6. Motor system.

3.4. Web-Based UI

We configured a web-based user interface (UI) such that users can easily check the
counted results in the smart counting system. The UI, implemented as a web application,
can be connected through various devices, such as PCs, smartphones, and tablet PCs.
The UI flow is described by Algorithm 2. First, after setting target_qty, the web-based UI
notifies the user whether the quantity is insufficient or excessive by comparing it with
the predicted results of the object-detection server. If target_qty < current_qty, then the
beam projector highlights the items to be removed, and users can easily remove them.
Otherwise, if target_qty > current_qty, then the UI notifies the user that there should be
more items.

Algorithm 2 Smart count system-UI algorithm

1: procedure
2: target_qty← desired object quantity
3: current_qty← predicted object quantity from detection server
4: if target_qty > 0 then
5: while target_qty! = current_qty do
6: if target_qty < current_qty then
7: Remove recommended items
8: else if target_qty > current_qty then
9: Add items to tray

10: if The button ’collect anyway’ is pushed then
11: break
12: if The button ’collect’ is pushed then
13: Collect items
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3.5. Beam Projector Transformation

Owing to the installed angle of the beam projector, the projected image is distorted.
A perspective transform [49] is used to match the exact location of the excessive objects,
as shown in Figure 7. The perspective transformation linearly transforms the distorted
image to match the position of each corner of the tray.

(a) (b)

𝒍𝟏
𝒍𝟐

𝒍𝒊

Sort L = {𝑙1, 𝑙2, … , 𝑙𝑖} &  Pick n items

(c)
Figure 7. Beam projector output transformation. (a) Perspective transformation. (b) Transformed
output from beam projector. (c) Process of selecting excessive items.

3.6. Semi-Automated Counting and Collecting Process

For a faster removal of excessive items, our semi-automated counting process recom-
mends items to be removed. The recommended items are selected from the right side of the
tray, and their positions are calibrated to project a bright circle for each item with the beam
projector, as shown in Figure 7b. In addition, if the user pushes the “collect” button on the
UI, the motor is actuated through PWM control of the Raspberry Pi. The motor adjusts the
angle of the tray to drop items simultaneously. The overall process of the smart counting
system is illustrated in Figure 8. The first step is to place the items on the tray and input
the desired quantity in the UI of the system. The UI is implemented as a web application,
and users can access it using any device, including mobile devices. Then, when the image
taken from the top of the tray is sent to the server, the server-side object-detection software
counts the number of items on the image and notifies the user as to whether the quantity is
insufficient or excessive. If the quantity of items is excessive, then the system recommends
the items to be removed and displays them on the UI screen, simultaneously highlighting
them on the tray using the mounted beam projector, as shown in Figure 7c. Finally, if the
number of items matches the input, then the items are collected using the system actuator.
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𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏
𝑴𝒐𝒅𝒆𝒍

Cloud-based 
Software Server

Docker 
Container

Beam 
Projector

Step 2. Count the objects and match 
the actual quantity and the input

Input the desired quantityStep 1.

Collect the ObjectsStep 3.

Figure 8. The overall process of the proposed system.

4. Experimental Results and Analysis

In this section, we first elaborate on the experimental settings, including the datasets,
evaluation metrics, and implementation details. We also compare our smart counting
system with previous works [14,16,18] on three datasets. Quantitative experiments were
conducted to validate the proposed system.

4.1. Datasets

We evaluated our proposed method using three counting datasets: CARPK [15],
SKU-110K [16], and Pill (our custom dataset). The details of each dataset are as follows.

CARPK [15] is a well-known public benchmark for object counting that is composed
of drone-viewed images of vehicles parked in parking lots. It contains nearly 90,000 cars in
four different parking lots and is split into 989 training and 459 testing datasets. A sample
image of the CARPK dataset is shown in Figure 9a.

SKU-110K [16] is a public counting benchmark that contains images of supermarket
shelves. Each image contains various densely packed products, as shown in Figure 9b.
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It consists of 11,762 images, which are split into 8233 images for training, 588 images for
validation, and 2941 images for testing.

(a) (b)

(c) (d)

Figure 9. Dataset samples: (a) CARPK [15]; (b) SKU-110k [16]; (c,d) Pill dataset.

The Pill dataset is a custom dataset for counting pills, as shown in Figure 9c,d.
We assembled this new labeled dataset to evaluate the counting performance for small and
densely packed objects. It consists of 14,000 images, 12,000 for training and 2000 for testing,
and each image is packed with 1–937 pills. We constructed a dataset containing various
shapes and colors of pills to consider the diversity of pills. All images were captured at a
distance of 2–40 cm from the tray and collected using the hardware device of our system
described in Section 3.3.

4.2. Evaluation Metrics

We adopted commonly used metrics in object-counting tasks: mean absolute error
(MAE) and root mean squared error (RMSE) [12–16,18,50]. The metrics are expressed as
numerical values, and are used to quantify the difference between the ground truths and
predicted results. The value approaches zero as it matches the ground truth. The MAE
indicates the accuracy of the models and is defined as follows:

MAE =
1
n

n

∑
i=1
|NG − NP|, (3)
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where n is the number of images, NG is the number of ground-truth objects, and NP is
the predicted number of objects. The RMSE indicates the robustness of the models and is
formulated as follows:

RMSE =

√
1
n

n

∑
i=1

(NG − NP)2. (4)

4.3. Implementation Details

The basic code for CenterNet2 was based on the official paper code. The CenterNet2 back-
bone, Res2Net-101-DCN-BiFPN, was initialized with pretrained weights of CenterNet2_R2-
101-DCN-BiFPN_4x+4_1560_ST from the official code. For the DBC-NMS parameter, ε is set
to 0.2 in all experiments. The detector was trained on two GPUs with a batch size of eight.
An SGD optimizer was used with a base learning rate of 0.01. All fine-tuning was trained for
30 epochs, and flip augmentation was used with an image size of 640 × 640. All counting
methods were implemented based on the official code of the paper.

4.4. Comparison with Existing Works

Our method was compared with three existing methods [14,16,18] on the CARPK,
SKU-110K, and Pill datasets. These methods have shown the best performance on CARPK
and SKU110k in the previous studies. The experimental results are listed in Table 2.
CARPK consists of frames extracted from videos captured by drones, as shown in Figure 9a.
As data are captured from continuous frames, objects at the edges of the images are
partially visible, and objects under the trees are heavily obscured. Therefore, the heatmap
approach achieves lower MAE and RMSE compared with the object-detection approaches.
Kilicm et al., whose paper proposed an HLCNN that generated heatmaps for car locations,
achieved 2.12 MAE and 3.02 RMSE, which are 1.41 and 1.75 lower than those of our method.
SKU-110K consists of images that contain heavily packed items, and only the items in
the front line among the displayed items are considered objects. In this case, as shown in
Figure 9b, counting objects is a very challenging task. Accordingly, the MAE and RMSE
results of all the methods tend to have high values. Of all the methods, our method
performed best, with an MAE of 12.72 and an RMSE of 21.59. On the Pill dataset, our
method also shows the lowest MAE and RMSE, which is 0.29 and 0.89 lower than the
second lowest one obtained by Wang et al. [18]. Therefore, it is verified that the proposed
method effectively counts objects, even in densely packed tasks with complex backgrounds.

Table 2. Count task comparisons with existing works.

Method
CARPK SKU110k Pill

MAE RMSE MAE RMSE MAE RMSE

Goldman et al. [16] 6.77 8.52 14.52 24.00 11.01 19.29
Wang et al. [18] 4.95 7.09 26.78 40.66 1.32 2.09
Kilic et al. [14] 2.12 3.02 14.74 27.54 6.70 13.37

CenterNet2 [45] 3.53 4.77 12.72 21.59 1.03 1.20+ DBC-NMS (ours)

4.5. The Effectiveness of the DBC-NMS

In this section, to prove the effectiveness of DBC-NMS, we compared it with traditional
NMS and Soft-NMS, which have been widely used, for three methods [16,18,45]. NMS
is a postprocessing process for object-detection results; therefore, only approaches using
object-detection methods were compared. The first block in Table 3 shows the performance
of the reference methods with traditional NMS. The second block shows the performance of
the methods with Soft-NMS [51], and the last block shows the performance of the methods
using the DBC-NMS. DBC-NMS showed better performance than NMS and Soft-NMS in
most experiments. Validated by the results, our DBC-NMS algorithm can filter overlapped
objects and shows potential as a postprocessing method for count tasks.
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Table 3. Performance of DBC-NMS.

Method
CARPK SKU110k Pill

MAE RMSE MAE RMSE MAE RMSE

Goldman et al. [16] + NMS 6.77 12.00 14.52 24.00 11.01 19.29
Wang et al. [18] + NMS 7.28 9.30 27.85 49.96 1.32 2.09
CenterNet2 [45] + NMS 3.72 4.81 13.27 21.99 1.08 1.25

Goldman et al. + Soft-NMS 6.52 10.93 14.28 24.02 6.81 12.10
Wang et al. + Soft-NMS 4.95 7.09 26.78 40.66 1.32 2.09
CenterNet2 + Soft-NMS 3.60 4.78 13.05 21.83 1.04 1.23

Goldman et al. + DBC-NMS 6.22 10.93 14.24 24.00 6.79 12.07
Wang et al. + DBC-NMS 5.64 7.14 22.97 34.19 1.24 1.98
CenterNet2 + DBC-NMS (ours) 3.53 4.77 12.72 21.59 1.03 1.20

4.6. Sensitivity Analysis of Parameter ε for DBC-NMS

To evaluate the performance of DBC-NMS according to epsilon, we conducted exper-
iments with ε values ranging from 0.15 to 0.45 on the Pill dataset. Figure 10 shows the
performance change according to epsilon for the three models compared in Section 4.5.
Goldman et al. showed better performance of 7.024 MAE and 12.307 RMSE for ε = 0.2
compared with other ε values. In the cases of Wang et al. and CenterNet2, ε = 0.35 produced
better results with 1.245 MAE and 1.982 RMSE and 1.05 MAE and 1.202 RMSE, respectively.

Examining the performance change according to the epsilon of the three models, it is
verified that, in general, the results with ε from 0.2 to 0.4 are similar. In other words, the pro-
posed DBC-NMS requires less effort for parameter tuning than the conventional NMS.

0.15 0.2 0.25 0.3 0.35 0.4 0.45
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M
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7.68 7.72 7.75 7.78 7.8

4.23

1.66 1.45 1.48 1.52 1.54 1.58
1.08 1.07 1.06 1.05 1.05 1.05 1.19

Goldman et al. + DBC-NMS Wang et al. + DBC-NMS CenterNet2 + DBC-NMS
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Goldman et al. + DBC-NMS Wang et al. + DBC-NMS CenterNet2 + DBC-NMS

(b)
Figure 10. Sensitivity analysis of parameter ε for DBC-NMS. (a) MAE for various ε values.
(b) RMSE for various ε values.
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4.7. Staged Fine-Tuning

Figure 11 shows the performance of the staged fine-tuning, as mentioned in
Section 3.2.2. The first stage was fine-tuned with a no-base, manually processed dataset,
and the remaining stages were fine-tuned with a preprocessed dataset, which was re-
worked from the prediction of the previous stage’s fine-tuned model. The first stage
achieved 100.508 for the MAE and 128.856 for the RMSE with 100 datasets; therefore,
reworking the predictions of the model requires significant manual effort. The second
stage, fine-tuned with 500 datasets, was 98.829 and 125.632 lower for the MAE and RMSE
than the first stage, respectively. With a considerably low error from the second stage,
the reworking dataset requires significantly less manual effort, and repeated fine-tuning
from the preprocessed dataset, at the fifth stage yields an MAE of 1.05 and an RMSE of
1.202. Therefore, 500 datasets were considered as the minimum for a task-optimized model.
As the number of datasets increases, the range of model improvement decreases, but with
our cloud-based deep learning software server and staged fine-tuning, datasets can be
easily gathered, and less manual effort is required to process the data.

1st
(100)

2nd
(500)

3rd
(1,000)

4th
(6,000)

5th
(12,000)

Fine-tuning stage (Number of Data)

100

101

102 128.856
100.508

3.224

1.679

1.98

1.365
1.447

1.135
1.202

1.05

MAE
RMSE

Figure 11. Staged fine-tuning results.

4.8. Scenario

Figure 12 shows snapshots of the scenarios shown in Table 4. To demonstrate the
capabilities of the web-based UI and smart counting system, a scenario was carried out
assuming that the object was removed excessively. The full video can be viewed through
the following link, https://youtu.be/Ox2XAM5OaR0 (accessed on 1 August 2022). The
video as well as snapshots showed that the proposed smart system successfully counted
the objects not only accurately but also robustly.

Table 4. Our scenario.

Scenario

1. Place object on tray. (a)
2. Write your target quantity and press “Count!” button.
3. Check the current quantity and remove excess items.

(Excess objects are marked with white circles.) (b)
4. Although 11 objects need to be removed, we removed 13 for example.
5. Press “Collect” button.
6. User Warning for target quantity mismatch.
7. Check the current quantity and add insufficient items. (c)
8. Press “Collect” button and collect items through motor control. (d)

https://youtu.be/Ox2XAM5OaR0
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(a) (b)

(c) (d)

Figure 12. The snapshots of the scenario. The sub-figures are matched to the scenario in Table 4.

5. Conclusions

We proposed a novel, small-sized smart counting system with a cloud-based object-
counting software server, consisting of an object-detection model and DBC-NMS. The pro-
posed system overcomes the trade-off of computing power of local hardware and can
count various object types by stagewise fine-tuning the cloud-based object-counting server
with a specific task dataset. Through a web-based UI, the results can be easily verified
using mobile devices. Finally, a semi-automated counting process that matches a desired
quantity faster and more accurately than counting by hand is realized. As a result, our
counter showed competitive performance as a device specializing in counting and collecting
small-sized objects.
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