
Citation: Yu, C.; Huo, J.; Li, C.;

Zhang, Y. Landslide Displacement

Prediction Based on a Two-Stage

Combined Deep Learning Model

under Small Sample Condition.

Remote Sens. 2022, 14, 3732. https://

doi.org/10.3390/rs14153732

Academic Editors: Federico Raspini,

Simon Plank, Matteo Del Soldato,

Pierluigi Confuorto, Chiara

Cappadonia and Mariano Di Napoli

Received: 5 July 2022

Accepted: 1 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Landslide Displacement Prediction Based on a Two-Stage
Combined Deep Learning Model under Small
Sample Condition
Chunxiao Yu 1, Jiuyuan Huo 1,2,3,* , Chaojie Li 1 and Yaonan Zhang 2

1 School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 National Cryosphere Desert Data Center (NCDC), Lanzhou 730070, China
3 Lanzhou Ruizhiyuan Information Technology Co., Ltd., Lanzhou 730070, China
* Correspondence: huojy@mail.lzjtu.cn; Tel.: +86-0931-4955743

Abstract: The widely distributed “Step-type” landslides in the Three Gorges Reservoir (TGR) area
have caused serious casualties and heavy economic losses. The prediction research of landslide
displacement will be beneficial to the establishment of local geological hazard early warning systems
for the realization of scientific disaster prevention and mitigation. However, the number of observed
data like landslide displacement, rainfall, and reservoir water level in this area is very small, which
results in difficulties for the training of advanced deep learning model to obtain more accurate
prediction results. To solve the above problems, a Two-stage Combined Deep Learning Dynamic
Prediction Model (TC-DLDPM) for predicting the typical “Step-type” landslides in the TGR area
under the condition of small samples is proposed. The establishment process of this method is as
follows: (1) the Dynamic Time warping (DTW) method is used to enhance the small samples of
cumulative displacement data obtained by the Global Positioning System (GPS); (2) A Difference
Decomposition Method (DDM) based on sequence difference is proposed, which decomposes the
cumulative displacement into trend displacement and periodic displacement, and then the cubic
polynomial fitting method is used to predict the trend displacement; (3) the periodic displacement
component is predicted by the proposed TC-DLDPM model combined with external environmental
factors such as rainfall and reservoir water level. The TC-DLDPM model combines the advantages
of Convolutional Neural Network (CNN), Attention mechanism, and Long Short-term Memory
network (LSTM) to carry out two-stage learning and parameter transfer, which can effectively
realize the construction of a deep learning model for high-precision under the condition of small
samples. A variety of advanced prediction models are compared with the TC-DLDPM model, and
it is verified that the proposed method can accurately predict landslide displacement, especially
in the case of drastic changes in external factors. The TC-DLDPM model can capture the spatio-
temporal characteristics and dynamic evolution characteristics of landslide displacement, reduce the
complexity of the model, and the number of model training calculations. Therefore, it provides a
better solution and exploration idea for the prediction of landslide displacement under the condition
of small samples.

Keywords: “Step-type” landslide displacement prediction; small sample learning; data enhancement;
two-stage combined deep learning model; parameters transfer

1. Introduction
1.1. Background

Landslides are severe geological disasters that directly cause casualties, house de-
struction, transportation network damage, etc., as well as a large number of secondary
hazards such as debris flow caused by river blockage [1]. There are a number of landslide
disaster-prone areas in China. Each year, landslide disasters have a massive impact on
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human life and property, which are responsible for significant loss of life and injury to
people and their livestock, as well as damage to infrastructure, agricultural lands, and
housing. Early identification, prediction, and early warning research based on remote
sensing (RS) and the global position system (GPS) of landslides can effectively prevent
geological disasters and avoid many casualties and property losses [2].

The Three Gorges Reservoir (TGR) is one of China’s most important water conser-
vancy facilities. It not only undertakes the function of power generation but also plays an
important role in flood control, shipping, and water supply [3]. “Step-type” landslides are
widely distributed in this region, which all show a curve form of stepwise displacement [4].
However, the samples of GPS stations used to monitor landslide displacement in the TGR
area are small in monthly units, so the internal mechanism of landslide displacement analy-
sis cannot be fully excavated. This paper will propose a reliable and accurate displacement
prediction method under the condition of small samples of observation data.

1.2. Related Work

The traditional extraction and prediction method of landslide disaster mainly rely
on artificial visual interpretation. This method relies heavily on the accuracy of man-
ual measurement methods and the experience of landslide prediction experts, which is
time-consuming and labor-intensive and has significant limitations [5]. Researchers have
proposed some predictive analysis methods based on physical and data models in recent
years [6,7]. Among them, it is very challenging to establish a fully representative physical
model in the research because the displacement process and corresponding mechanism
process of landslide disasters are very complex.

The landslide displacement prediction method based on the data model mainly an-
alyzes the curve of time vs. landslide displacement and the monitoring information of
various external factors such as rainfall, reservoir water level, etc. Firstly, the nonlinear
relationship between external influencing factors and landslide displacement is captured to
invert the inherent nonlinear dynamic evolution process of landslide. Then, the evolution
trend of landslides can be predicted by extrapolation [8]. The models established in this
way do not need to pay too much attention to the mechanical process of landslides, but they
have the advantage of higher prediction accuracy. Therefore, prediction methods based
on data models have gradually become the main focus of current research on landslides
and other geological disasters. Traditional landslide displacement prediction methods
based on data models mainly include the Verhulst model [9], grey model [10], exponential
smoothing model [11], etc. Nandi et al. selected a variety of landslide instability-inducing
factors, including landslide angle, nearby water flow, soil type, and soil erodibility, etc.,
and then analyzed the multivariate statistical relationship between landslide displacement
and instability factors by logistic regression method and established the correlation be-
tween factors and landslide displacement changes [12]. However, in these studies, due
to the non-linear relationship between various instability-inducing factors and landslide
displacement changes, the data-based prediction model cannot accurately describe the
causal relationship between variables. Therefore, these models can only be effective for
landslide prediction with similar deformation characteristics under specific conditions, but
they have significant limitations in predicting widespread and scattered landslides.

In recent years, with the further development and application of Machine Learn-
ing algorithms, landslide displacement prediction modeling based on machine learning
methods has been widely studied and applied. Zhu et al. used a Back Propagation (BP)
neural network optimized by Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) algorithm to assess geological hazard risk [13]. Fan et al. predicted landslide dis-
placement of the Baishuihe River by variational modal decomposition and AMPSO-SVM
coupling model [14,15]. Based on the response analysis of impact factors, Bui et al. used
the translation index method to decompose the cumulative landslide displacement into
different components and then built an Artificial Neural Network (ANN) model to predict
the components [16]. The models based on Support Vector Machine (SVM) and Neural
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Network (NN) used in these studies are static models. The static models ignore the im-
portant feature that landslide evolution is a complex dynamic evolution process and treat
it as a simple static regression problem. Therefore, when the data of the key influencing
factor changes dramatically, the model cannot capture the evolution characteristics of the
influencing factor over time, which results in the model’s prediction accuracy being heavily
limited [17].

Compared with the limitations of static models in prediction, the dynamic deep learn-
ing model can better reflect the dynamic evolution process of landslides and improve the
prediction accuracy of landslide displacement [18]. Prediction models based on Recurrent
Neural Networks (RNNs) are different from traditional Artificial Neural Network (ANN)
methods in that they can use internal memory units to process arbitrary input sequences to
learn and understand the features of time series. The internal nodes of the RNN model are
connected recursively so that the current node can remember the historical information and
realize the state feedback of the network [19]. Long Short-Term Memory (LSTM) network
is a variant of the RNN network, and its unique RNN network structure can well control
the proportion of long-time memory and short-time memory through gating and solve
the problems of gradient disappearance and the explosion of RNN, so it is favored by
many researchers [20]. In landslide displacement prediction, LSTM also achieves higher
prediction accuracy than SVM, Elman, and other models [21].

Although Deep Learning methods have been applied in many fields and achieved
many excellent research results, these methods require a large number of or even massive
sample data in the process of training and modeling. A small amount of training data
cannot build a robust and accurate deep learning model, so it cannot reflect the models’
advantages in prediction application. To enable the model to acquire the ability to learn
and generalization as much as possible from a small number of samples, researchers
proposed a small sample learning method, which can solve the problem of insufficient
model training due to a small number of samples by using prior knowledge in data, model
and algorithm [22]. In terms of data, prior knowledge can be used to enhance supervisory
information. For instance, Schwartz et al. set up a series of autoencoders for learning in
similar categories and then added the learned changes to the original sample as a new
sample [23]. Kwitt et al. used the attribute strength regressor learned from large-scale
data to transform a single sample into several samples while keeping the original labels
unchanged [24]. Wu et al. used a progressive strategy to select valuable unlabeled samples
and assign a false label to them for CNN network training [25]. Le et al. proposed window
slices to randomly extract sub-samples of continuous slices from the original time series
to generate new time-series data [26]. Hassan et al. enhanced the data of sequential data
through the center-weighted average method based on the Dynamic Time Warping (DTW)
algorithm and finally achieved better results in the classification of sequential data [27].
In terms of the model, prior knowledge can be used to reduce the size of the hypothesis
space. For example, Zhang et al. made the networks of the two tasks share the parameters
of the first several layers to extract general information, and the last layers of the network
learned and updated parameters respectively to adapt to different outputs [28]. Motiian
et al. trained a variant autoencoder from the source task and copied it to the target task,
where the two autoencoders shared some layers for capturing general information, and the
target task only updated its proprietary layer parameters [29].

1.3. Article Arrangement

The above-mentioned small sample learning methods have made significant progress
in the field of computer vision, such as image classification, object detection, case segmen-
tation, etc. However, there are still few applications in research on time series prediction,
landslide susceptibility analysis, and landslide displacement prediction based on small
samples of GPS monitoring data. Therefore, the main contributions of this paper are
as follows:
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1. A decomposition method based on first-order and second-order difference DDM (Dif-
ference decomposition method) is proposed for landslide displacement decomposition.

2. A data enhancement method based on DTW (Dynamic Time Warping) method is
proposed to enhance the few-shots GPS samples.

3. A model enhancement method based on a two-stage CNN-attention-LSTM combined
deep learning model named TC-DLDPM was built to extract the high non-linearity
and complexity of spatial and temporal correlations in landslide displacement.

The rest of this paper is organized as follows. Section 2 describes the suggested
materials and methodology. The study area and dataset are described in Section 3. The
model implementation is introduced in Section 4. The comparative experiments and
correlation analysis are discussed in Section 5, and finally, the conclusions and potential
future works can be obtained in Section 6.

2. Materials and Methods

In this paper, a Two-stage Combined Deep Learning Dynamic Prediction Model (TC-
DLDPM) is proposed for the prediction of cumulative landslide displacement under small
samples condition. The overall prediction flow chart is shown in Figure 1, and the specific
process is as follows:

(1) According to the Difference Decomposition Method (DDM), the cumulative landslide dis-
placement is decomposed into trend displacement and periodic displacement components.

(2) For the trend displacement component, the cubic curve fitting method is adopted for fit-
ting and modeling in this paper to realize the trend prediction model of the displacement.

(3) For the periodic displacement component, firstly, through analysis and evaluation
of the related external factors which induced landslides, the displacement data of
the monitoring station similar to the target dataset is fused together. Then, the data
enhancement method DTW algorithm in the small sample learning is used to enhance
the base dataset and the target datasets, respectively, to build an extensive base dataset.

(4) Train the TC-DLDPM prediction model on the base and target datasets, and fi-
nally obtain the prediction result of periodic displacement components on the target
testing dataset.

(5) The predicted values of the trend displacement component and periodic displacement
component are superimposed, and finally, the cumulative displacement prediction
result can be obtained.

(6) Compare and analyze the cumulative displacement prediction results with the ob-
served data to evaluate the efficiency and performance of the model.
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Figure 1. Flow chart of cumulative landslide displacement prediction.

2.1. Difference Decomposition Method (DDM) for Landslide Displacement Decomposition

The formation and occurrence of landslide is a very complex evolutionary process,
which is affected by the internal factors of the slope body, such as stratum lithology,
landslide fluid pressure in pores, gravity stress, etc., and external trigger factors such as
rainfall, earthquake, human activities, vegetation coverage, water level fluctuation, etc.
The landslide displacement under the effect of internal factors of the slope body presents
an approximately monotonic increasing curve, which is called trend term displacement.
The landslide displacement affected by external trigger factors is periodic, which is called
periodic term displacement. Therefore, the cumulative landslide displacement can be
regarded as the superposition of the trend term displacement component and the periodic
term displacement component. Formula (1) is the cumulative landslide displacement
decomposition mode [30].

S(t) = ∅(t) + η(t) (1)

In which, S(t) represents the cumulative landslide displacement time-series, ∅(t),
denotes the displacement component of the trend term that is influenced by the slope itself,
and η(t) represents the displacement component of the periodic term affected by external
factors such as rainfall and reservoir water level change.

This study uses the difference decomposition method to decompose the cumulative
landslide displacement into trend term displacement and periodic term displacement
components. The difference decomposition method selects the “key” points of the trend
term displacement according to the first-order and second-order difference values of the
cumulative landslide displacement data. These “key” points are the step mutation points of
the “Step-type” landslide, and their physical meaning is the critical point of the change of
the slope body’s own geological conditions. After finding these key points, the cubic spline
interpolation method is used to complement the entire trend displacement component, and
finally, the trend displacement component sequence is obtained. The periodic displacement
component value equals the cumulative component displacement value minus the trend
displacement component value.
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The specific implementation process of the difference decomposition method is as
follows: firstly, the first-order difference sequence V and second-order difference sequence
A of cumulative landslide displacement data are calculated. The calculation formulations
of V and A are shown in Formulas (2) and (3), respectively.

V = {v1, v2, . . . , vn|v(t) = s(t)− s(t− 1)} (2)

A = {a1, a2, . . . , an|a(t) = v(t)− v(t− 1)} (3)

In which, S(t) represents the cumulative landslide displacement value at the current
moment, V(t) represents the first-order difference value of the displacement at the current
moment, and A(t) represents the second-order difference value of the displacement at the
current moment.

According to the V(t) and A(t) of the landslide, the “key” points of the trend displace-
ment component are selected, which can make the trend term displacement component
behave as an approximately monotonic increasing function with a large time scale, and the
periodic term displacement component presents a periodic curve. Therefore, the displace-
ment component of the trend item can fully reflect the long-term change trend of the slope
under its own geological conditions.

The flow chart of the DDM method of the displacement decomposition is shown in
Figure 2. When Vi at time t is both smaller than that at time t − 1 and t + 1, or Vi at time t
is less than 0 and the Ai is greater than zero, indicating that time t is the critical point for
the step change of landslide displacement. The critical points of these step changes are
extracted as the “key” points of the trend displacement component, and the value of all
time is completed by the cubic spline interpolation method; then, the trend displacement
component with an approximate monotone increasing curve can be obtained. These “key”
points show that when the slope’s geological conditions change, it will lead to the step
mutation of landslide displacement. The displacement component value of the periodic
term is the cumulative landslide displacement value minus the trend term component value.
The displacement component value of the periodic term shows reasonable periodicity by
eliminating the step mutation caused by the slope’s own geological conditions.
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Therefore, the differential decomposition method can decompose the cumulative land-
slide displacement well, and the monotone increasing trend term and the periodic term
displacement component can be obtained. Compared with Empirical Mode Decomposition
(EMD) [31] and Moving Average (MA) [32], the displacement component of trend term
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decomposed by this method contains step mutation points under its own geological condi-
tions. It is more consistent with the physical meaning of the displacement component of
the trend term and can get the displacement component of the periodic term with stronger
periodicity, which is conducive to the subsequent mining of the inner evolution rule of the
periodic displacement component, thus improving the prediction accuracy.

2.2. Enhancement Method Based on DTW of GPS Data

To learn the general Spatial-temporal characteristics of the “Step-type” landslide
displacement, the deep learning model first needs to be trained on a large dataset that is
similar to the characteristics of the small sample dataset, and after training the parameters
of the migration to the small sample data, thus narrow the hypothesis space and achieve
a more accurate capture of the input-output relationship of the target dataset. Therefore,
before building the dynamic prediction model, it is necessary to construct a base dataset
with a large sample size so that the dynamic prediction model can be fully trained on this
dataset. Then, the general characteristic parameters of the “Step-type” landslide learned
from the base dataset are transferred to the training of the target dataset to solve the
problem of insufficient model training due to the small sample size of the target data set
to a certain extent. To ensure that the universal feature parameters trained on the base
dataset can be successfully transferred to the target dataset and the prediction accuracy
can be improved, there should be a high degree of similarity between the base dataset and
the target dataset. In this paper, data from multiple monitoring stations that are similar in
geographic environment to the target dataset and their monitor landslides of the same type
as “Step-type” landslides are selected for fusion to construct a large base dataset.

Data enhancement on a small sample dataset is a relatively simple and effective
solution. Data enhancement is also called data augmentation, which refers to adding new
data to the original small sample dataset with the help of auxiliary data or transformation
rules to generate a more extensive dataset and prevent the problem of over-fitting in model
training. In this paper, the center-weighted average method based on Dynamic Time
Warping (DTW) [33] is used to enhance the stability and robustness of the base dataset
and target dataset, respectively. DTW algorithm is essentially a dynamic programming
algorithm for calculating the similarity of two-time series. It is mainly used for time series
data enhancement, including isolated word speech recognition, gesture recognition, data
mining, and information retrieval. The algorithm first needs to define template sequence C
and query sequence Q with lengths m and n, respectively, where C = c1, c2, . . . , cj, . . . , cm,
Q = q1, q2, . . . , qi, . . . , qn. Then a matrix of size n×m is constructed, and the matrix element
(i, j) represents the cumulative distance γ(i, j) from the origin (Q1, C1) to (Qi, Ci). The
DTW algorithm can find the shortest path γ(n, m) from the origin (Q1, C1) to the endpoint
(Qn, Cm) of two sequences. The shortest path γ(n, m) is the similarity S between sequence
Q and sequence C. The calculation process of using the DTW algorithm to obtain the
cumulative distance γ(i, j) of the point (Qi, Ci) is shown in Formulas (4)–(7) [34].

γ(0, 0) = d(0, 0) (4)

γ(i, 0) = d(i, 0) + γ(i− 1, 0); i ≥ 1, j = 0 (5)

γ(0, j) = d(0, j) + γ(0, j− 1); i = 0, j ≥ 1 (6)

γ(i, j) = d(i, j) + min{γ(i− 1, j), γ(i, j− 1), γ(i− 1, j− 1)}; i ≥ 1, j ≥ 1 (7)

where Formula (4) represents the cumulative distance of the origin, Formula (5) represents
the cumulative distance of the elements in the first column of the matrix, Formula (6)
represents the cumulative distance of the elements in the first row of the matrix, and
Formula (7) represents the calculation formula of the cumulative distance of other elements
in the matrix. The distance between the two points of the sequence Q and C can be
calculated by d(i, j) =

(
Qi − Cj

)2, that is, the Euclidean distance between the two points.
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The new sample generation process based on the DTW algorithm is shown in Figure 3.
Firstly, a sample is randomly selected from the original data set as the template sequence C.
Then, 30 samples were selected as query sequences, and the DTW algorithm was used to
screen out 5 query sequences Q1 −Q5 with the highest similarity to template sequences.
According to the rules shown in Figure 2, different weights were allocated for samples
C, Q1, Q2, Q3, Q4, and Q5. Finally, a new sample was generated through weighted
summation and added to the original data set.
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Figure 3. Data enhancement process based on the DTW algorithm.

By weighting and averaging time series samples with high similarity to generate
new time series samples, the data enhancement method based on the DTW algorithm
can make the enhanced and expanded data set have better stability and robustness. At
the same time, the prediction model based on deep learning can be more thoroughly
trained on the enhanced data set and better dig out the relationship between the input and
output to obtain higher prediction accuracy on the small data set that originally shows an
over-fitting problem.

2.3. Two-Stage Combined Deep Learning Prediction Model TC-DLDPM

The specific structure of the basic model of TC-DLDPM is shown in Figure 4. The
model supports long input sequences and splits the input sequences into timestep-based
sub-sequences. One-dimensional convolution and pooling operations on each sub-sequence
can effectively reduce the scale of features, thereby extracting valid information and improv-
ing computational efficiency; then assigning different attention to the timing association
and influencing factor association, respectively, through the Timestep-Features Attention
block, and stitching the computed subsequence as the input of the LSTM network. Finally,
through the LSTM network training, accurate predictions are obtained. The TC-DLDPM



Remote Sens. 2022, 14, 3732 9 of 29

model can capture the spatio-temporal characteristics and dynamic evolution character-
istics of landslide displacement, reduce the complexity of the model, and the number
of model training calculations, and at the same time, this paper introduces an attention
mechanism to learn and adjust the heterogeneity parameters of spatio-temporal features,
so that the model pays different degrees of attention to each input feature at different times.
The working principles and functions of each network layer are described as follows:
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1. CNN neural network

The CNN neural network can extract significant Spatio-temporal features from the
input data while reducing the number of network parameters and reducing the number of
model calculations [35]. CNN neural network is mainly divided into convolution layer and
pooling layer, which realize convolution operation and pooling operation on input data,
respectively. The calculation formula of the one-dimensional convolution layer is shown in
Equation (8) [36]:

yc = σ(Wc ⊗ X + bc) (8)

In which, yc represents the output sequence of the convolution layer, Wc represents the
weight value of one-dimensional convolution kernel, bc is the bias vector, ⊗ is convolution
operation. σ(.) the activation function of the convolution layer and the ReLU(.) function is
taken in this paper.

To further reduce the complexity of the model and the amount of calculation, the
output sequence yc which after the convolution operation needs to be taken as the input
of the maximum pooling layer. The calculation formula of the maximum pooling layer is
shown in Formula (9).

yp = max
r∈R

yi×T+r (9)

In which T represents the pooling step, R represents the size of the pooling window,
and r represents the offset within the pooling window.

2. Attention layer

The main function of the Attention Mechanism is to allocate computing resources to
more important training tasks when computing power is limited. The attention mechanism
can selectively allocate more attention to important information and ignore most of the
less important information by imitating people’s way of perception [37]. In processing a
large amount of input information by the neural network model, the attention mechanism
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can be used to select only some key input information for processing, and the most con-
cerned information at the current time step can be obtained by assigning weights weighted
summation. The calculation steps of the attention value are: (1) Calculate the attention
distribution on all input information; (2) Calculate the weighted average of the input infor-
mation according to the attention distribution. The definition of attention weight value is
shown in Formula (10).

W =
(

W1, W2, . . . , WL
)

(10)

Based on the attention weight value, the importance of the input data sequence can be
sampled. The sampling formula is shown in Formula (11). By sampling the significance
of the input data sequence, the network can assign different attention degrees to each
input data.

X̃t =
(

x1
t W1, x2

t W2, . . . , xL
t WL

)
(11)

In which, Xt =
(
x1

t , x2
t , . . . , xL

t
)

represents the input time series data at time t.

X̃ =
(

X̃1, X̃2, . . . ,̃ XT

)
represents the sequence data weighted by the attention weight value.

In this paper, the timing correlation and environmental characteristic association of
the input data are calculated separately. As shown in the network details of the Timestep-
Features Attention block in Figure 3, the model assigns an initial weight vector WT
(WT = {wt1, wt2,...,wtn}) to each sub-sequence based on the time step split firstly, and
obtains the correlation between these sub-sequences through training; then transposes
the sub-sequence and assigns the initial weight vector WF (WF = {wf1, wf2,...,wtm}) to
different environmental features in the sequence, different correlations between features
are obtained through attention calculation. The above method focuses on the important
information from the two dimensions of timing and environmental characteristics, which
makes the extraction of effective information more detailed and accurate.

3. Long and Short-Term Memory (LSTM) neural network

LSTM is a variant RNN network, and its network structure is shown in Figure 5. In this
model, mechanisms such as memory cell, input gate, forget gate, and out gate are added
based on the RNN network. Compared with the RNN network, cell state c is newly added
to the LSTM model to store the long-term state. LSTM uses an input gate and a forget gate
to control the contents of cell state C. The input gate determines the amount of information
that the current network input xt saves to the unit state ct, the forget gate determines the
amount of information saved in the cell state ct−1 at the previous step in the cell state ct.
The output gate controls the amount of information output from the cell state ct to the
current output ht of the LSTM. By adding the above-mentioned gate control mechanism,
LSTM can control the proportion of long-term memory and short-term memory and solve
the problems of gradient disappearance and gradient explosion of RNN.
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The corresponding functions of input gate, forgetting gate, and output gate mecha-
nisms are shown in Formulas (12)–(14), respectively [38].

It = σ(Wi1xt + Wi2ht−1 + bi) (12)

ft = σ
(

W f 1xt + W f 2ht−1 + b f

)
(13)

Ot = σ(WO1xt + WO2ht−1 + bO) (14)

where It, ft, and Ot, respectively represent the values of input gate, forget gate, and output
gate of LSTM neural network at time t. xt represents the input at time t, ht−1 represents the
output of the LSTM network at time t − 1. W1 is the connection weight between the input
node and the hidden layer node, W2 represents the connection weight between nodes of
the hidden layer and output nodes. bi, b f , and bo are the offset items corresponding to the
input gate, forget gate, and output gate, respectively.

As shown in Figure 6, the TC-DLDPM realizes the learning and training of the base
dataset in stage 1 (Basic training) to obtain the base displacement prediction model. Then,
the CNN and LSTM layers’ parameters in stage 1 are retained in stage 2 (Small sample
fine-tuning) to realize the learning and training of the target dataset. The displacement
prediction model of the real target dataset is established. The model training process is
divided into two stages, basic training and small sample fine-tuning, to achieve accurate
landslide displacement prediction under the condition of a small sample. The specific
process steps are as follows:

Figure 6. The training process of the TC-DLDPM model.

The base dataset and the target dataset are, respectively, enhanced by the center-
weighted average method based on the Dynamic Time Warping (DTW) algorithm to
construct a base dataset with a large sample size. After the base data set is preprocessed, it
is input into the combined deep learning model.

Based on the CNN network, LSTM network, and attention mechanism, the stage 1
learning and training on the base dataset are studied and trained, and the base displacement
prediction model is constructed. In addition, the base model has obtained the network
parameters of each layer and the prediction capability.

Migrate the parameters of the base model to the target dataset under the condition
of small samples, freeze the LSTM and CNN layers’ parameters in the network, then
fine-tune the Time-step&features Attention-block layers’ parameters at the 1/20 learning
rate of the original base model in stage 2, finally obtain the TC-DLDPM with better stability
and accuracy.
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2.4. Evaluation Indicators of Model Performance

The indicators of Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and correlation coefficient (R) are selected to evaluate the predictive performance of the
proposed TC-DLDPM. At the same time, absolute error, relative error, and model prediction
time are also taken as the analysis indicators of prediction results.

The calculation formulas of RMSE, MAE, and R are shown in Formulas (15)–(17),
respectively.

RMSE =

√
∑n

i=1(xi − x̂i)
2

N
(15)

MAE =
∑n

i=1(xi − x̂i)
2

N
(16)

R =
∑n

i=1(xi − x)
(
x̂i − x̂

)√
∑n

i=1(xi − x)2
√

∑n
i=1(xi − x̂i)

2
(17)

In which, xi and x̂i represent the real value and predicted value, and x and x̂ represents
the average value of the real and predicted landslide displacement values, respectively. N
is the number of samples.

3. Study Area and the Landslide Displacement Data Set

The TGR area is a narrow, steeply sloped area that runs along the middle reaches
of the Yangtze River and flows through large swaths of limestone mountains. With the
impaction of the impoundment and the surrounding human activities, it has been one
of the most landslide-prone areas in China. This paper mainly focuses on Baishuihe and
Bazimen, two serious landslide sites in this area, and collects displacement, rainfall, and
reservoir water level data from the above two monitoring stations for the composition of
subsequent experimental data sets.

3.1. Study Area

The study area of this paper is the Three Gorges Reservoir area of China. The Three
Gorges Reservoir area stretches from Wanzhou District of Chongqing Municipality in
the west to Yichang City of Hubei Province in the east, about 380 km in length. The
reservoir area is characterized by numerous mountains, steep terrain, ravines, and rivers.
The reservoir flows through large limestone mountains, providing physical conditions for
the formation of landslides, thus leading to frequent geological disasters in this area [39].
According to the geological report of the Three Gorges Region released by the China
Geological Survey in 2019, there are about 7926 geological disasters occurred in the area,
including landslides, collapse, debris flow, and ground collapse. Among them, 6814
landslides (2 giant ones, 88 super large ones, and 1094 large ones) are mainly distributed
on the slopes of the Yangtze River and its tributaries with an elevation of 200 m to 100 m
and are primarily developed on the slope areas with weak geological conditions such as
clastic rocks, intense human engineering activities, river intersection and intense geological
tectonic activities [40]. Therefore, landslides have become the most serious geological
disaster in the Three Gorges Reservoir area. At the same time, the periodic rise and fall of
the water level of the Three Gorges Reservoir and the periodic changes in rainfall have also
triggered a series of new landslide disasters, which brought substantial economic losses
and casualties. In 2003, the Qianjiangping landslide in the Three Gorges Reservoir area
caused 24 deaths, destroyed 4 factories and 129 houses, overturned ships, blocked the river,
and caused heavy losses [41]. Therefore, it is of great significance to carry out landslide
prediction and control in the Three Gorges area.

There are a wide range of “Step-type” landslides in the Three Gorges Reservoir area,
which exhibits a curve form of displacement step by step. As shown in Figure 7, this paper
conducts displacement prediction research on such “Step-type” landslides, focusing on
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the analysis of landslide displacement data in the Baishuihe area and the Bazimen area
in the Three Gorges reservoir area. Among them, the Bazimen landslide is located at the
mouth of the right bank of the Xiangxi River, a tributary of the Yangtze River in Guizhou
Town, Zigui County, Hubei Province, 31 km away from the Three Gorges Dam. The
geographical coordinates of the landslide are 110◦45′30′′ Longitude and 30◦58′16′′ Latitude.
The landslide belongs to the accumulation layer landslide, and the distribution elevation
of its body is from 139 m to 280 m. The landslide is 350 m in length, 350–500 m in width,
30 m in average thickness, and about 4 million m3 in volume. Four Global Positioning
System (GPS) deformation monitoring stations (ZG111, ZG110, ZG112, and ZG109) are
deployed in the Bazimen area. Another landslide, the Baishuihe landslide, is located in
Zigui County of the Three Gorges Reservoir area, 56 km away from the Three Gorges
Dam. The geographical coordinates are 110◦32′09′′ Longitude and 31◦01′34′′ Latitude. The
landslide is located in the broad valley section of the Yangtze River, and the monocline
bedding slope is high in the south and low in the north, spreading towards the Yangtze
River in a ladder shape. Its length from north to south is 600 m, and its width from east
to west is 700 m. The average thickness of the slide body is about 30 m, and the volume
is 1260 × 104 m3. It belongs to the type of large accumulation landslide. According
to the topography, geological conditions, deformation characteristics, and observation
accessibility of the landslide, 11 GPS deformation monitoring stations (XD01, XD02, XD03,
XD04, ZG91, ZG92, ZG93, ZG94, ZG118, ZG119, ZG120) have been deployed by relevant
experts in Baishuihe Area, which is shown in Figure 8 [42].
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Figure 8. The Deployment location of GPS monitoring points.

The deformation of geological disasters in the Three Gorges Reservoir area is mainly
divided into oscillation, linear, and step types. The step type is the main deformation form
of geological disasters with obvious deformation and relatively obvious deformation, which
is the key type of geological disaster deformation in the reservoir area that needs to be
monitored. As shown in Figure 9, the step type indicates that the cumulative displacement-
time curve has an obvious step in a certain period of time, showing the characteristics of
step rise. The Baijiaobao landslide and Baishuihe landslide in Zigui County belong to this
kind of step landslide, with annual deformation generally ranging from tens of millimeters
to hundreds of millimeters, and in the state of deformation or obvious deformation, or even
greater or unstable failure damage [43].
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3.2. Landslide Displacement Dataset

To evaluate the effectiveness of the landslide displacement prediction method pro-
posed in this paper, the long-term monitoring dataset of the “Step-type” landslide defor-
mation monitoring stations in the Three Gorges Reservoir area provided by the National
Cryosphere Desert Data Center (NCDC) was used to conduct experimental comparative
analysis [44,45]. The dataset of the monitoring stations contains cumulative landslide
displacement values of the monitored area, rainfall, and reservoir water level values of the
Three Gorges Reservoir area. The monitoring GPS data is obtained from the monitoring
stations DX01, DX02, DX03, DX04, ZG93, ZG111, and ZG120 in the Baishuihe and Bazimen
areas of Zigui County in the Three Gorges Reservoir. The data collection time is from
1 January 2007 to 31 December 2012, in which the time interval of cumulative displace-
ment data collection is one month, and the time interval of rainfall and reservoir water
level collection is one day. It has a high missing rate for the rainfall data in the dataset.
Therefore, to build a more accurate prediction model, the missing rainfall data is filled
by taking the mean value of adjacent data. Through the gray correlation analysis of the
pre-processed data set, it can be found that the rainfall data after the data complementation
has a higher correlation degree with the periodic displacement component, which is helpful
in improving the training accuracy of the prediction model.

It can be seen that the size of these datasets is very small, and it is difficult to fully
train the deep learning model through these basic monitoring data. Other methods or
mechanisms must be adopted to solve the problems of big data required for the training of
the deep learning model under the condition of small sample sets.

4. Model Implementation
4.1. Decomposition of Landslide Displacement

In this paper, the DDM mentioned in Section 2.1 is used to decompose the cumu-
lative displacement of the landslide, which is divided into the trend term displacement
component and periodic term displacement component.

As shown in Figure 10, taking the monitoring data of the ZG110 monitoring station as
an example, this paper compares the DDM with the traditional cumulative displacement
decomposition method, the Empirical Mode Decomposition (EMD) method. Figure 10a,b
respectively show the extraction results of cumulative displacement via two methods. It
can be clearly seen that the trend displacement component obtained by the DDM can better
capture the physical characteristics of the displacement trend change, which is more in line
with the trend changes of cumulative displacement. At the same time, the periodicity of
the periodic displacement component obtained by the difference decomposition method is
more significant, which is conducive to constructing the prediction model of the periodic
component of the landslide in the later stage.
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This paper decomposes the cumulative displacement of DX01, DX02, DX03, DX04,
ZG93, ZG111, and ZG120 by DDM to obtain several samples (≤72) of each monitoring
station. The trend components and periodic components of the above GPS stations obtained
by DDM are shown in Figure 11. Figure 11a shows the trend displacements of all stations,
and Figure 11b shows the period displacements. We can see that with the passage of
time, the trend displacement of all nodes increases gradually and generally has an obvious
upward trend from June to August each year, while the periodic term displacement of all
stations shows a strong periodic curve, and the fluctuation frequencies of all nodes are
almost the same. Therefore, in the subsequent data enhancement step, there will be more
valid data to choose from.
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4.2. Selection of the Inducing Factors of the Periodic Displacement

Since the external inducing factors or influence factors are very important to the
prediction accuracy of landslide displacement periodic components, it is necessary to screen
out the influencing factors that strongly correlate with the periodic displacement component
as the input of the displacement prediction model. Studies show that the influencing factors
leading to periodic deformation mainly include rainfall, periodic reservoir water level
fluctuations, and landslide deformation state [46].

Among them, rainfall is an important factor causing landslide deformation. On the
one hand, rainfall changes the structure of the slope body by scouring the slope surface;
on the other hand, the bulk density of the slope body, the strength parameters of sliding
zone soil, and hydrostatic pressure are changed through infiltration [47]. Since the change
of slope structure by rainfall is a relatively slow process, the impact of current effective
rainfall on landslide displacement may lag. Therefore, in this paper, four candidate factors
are selected: the cumulative rainfall of the current month f1; the maximum rainfall of the
current month f2; the cumulative rainfall of the previous two months f3 and the cumulative
rainfall of the previous quarter f4.

For the influence factor of periodic reservoir water level fluctuations, on the one
hand, the rise and fall of the reservoir water level will affect the physical and mechanical
properties of the rock and soil through the loading and unloading effects of the dry and
wet cycle of the slope. On the other hand, it will affect the slope’s internal and external
mechanical outcomes by changing the seepage field inside the slope [48]. Therefore, the
average water level of the reservoir in the current month f5, the monthly variation of
reservoir water level f6, the variation of the previous two months f7 and the variation of the
reservoir in the previous quarter f8 are selected as candidate influencing factors.

Under the same external conditions, the displacement responses of landslides in
different deformation states are different. When the landslide is in a stable state, the drastic
change in the external environment will not cause large-scale changes in the landslide
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displacement. When the landslide is in a critical state, a slight disturbance of external factors
may destroy the original balance of the landslide system, resulting in abrupt changes in
landslide displacement [5]. Therefore, the cumulative displacement of the previous month
f9, the displacement increment of the previous month f10, the displacement increment of
the first two months f11, and the displacement increment of the previous quarter f12 are
selected as the candidate factors that affect the periodic displacement component.

In this paper, the correlation degree between the above candidate influencing factors
f1~f12 and the displacement of the landslide period term is calculated by the grey correlation
analysis method, and the grey correlation values of each feature are shown in Figure 12. The
coefficient threshold is taken as 0.7; that is, when the gray correlation degree exceeds 0.7, it
is determined that the correlation between the influence factors and the displacement of the
periodic term is relatively high. The environmental impact factors with a high correlation
with periodic displacement can be obtained through screening: current month rainfall f1,
previous two-months cumulative rainfall f3, current month reservoir water level variation
f6, two-months reservoir water level variation f7, last month’s displacement change f10 and
the displacement increment of the first two months f11. The specific correlation values of
the candidate impact factors are shown in Table 1. It can be seen that the greatest impact
on periodic displacement is the cumulative displacement change in the first two months,
and the correlation coefficient is 0.81. And whether it is rainfall, reservoir level changes, or
cumulative displacement changes, the correlation between the cumulative values of the
two months is a little higher.
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Table 1. Grey correlation values between candidate influence factors and displacement components
of the periodic term.

Influencing
Factor

Rainfall of the
Current Month

(f1)

Rainfall of the
Previous Two

Months
(f3)

Reservoir of
the Current

Month
(f6)

Reservoir of
the Previous
Two Months

(f7)

Displacement
Change of

Current Month
(f10)

Displacement
Change of

Previous Two
Months (f11)

Correlation
value 0.76 0.77 0.76 0.78 0.76 0.81

Figure 13 shows the relationship between influencing factors of rainfall (a), reservoir
water level (b), landslide deformation characteristic (c), and landslide displacement of the
periodic term. Among them, the rainfall factors include the cumulative rainfall values of
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the current month and the previous two months, the influencing factors of reservoir water
level change include water level change values of the current month and the previous two
months, and the deformation characteristics of landslide include cumulative displacement
increment values of the current month and the previous two months. It can be seen
from Figure 13a that rainfall factors, especially the two-month cumulative rainfall, are
highly similar to the fluctuation rule of periodic displacement. From Figure 13b, it can
be drawn that the changes in the two-month cumulative reservoir water level lead to
periodic displacement changes. In addition, from Figure 13c that monthly and two-month
cumulative displacement increments are basically consistent with the variation trend of the
periodic displacement component.
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The fluctuation rules of the above influencing factors are similar to that of the periodic
displacement component, and the grey correlation degree value exceeds 0.7. Therefore, in
this study, these six factors are selected for the prediction modeling of landslide periodic
term displacement. Complete and abundant multivariate influence factors can effectively
improve the prediction accuracy of the periodic displacement component prediction model.

4.3. Feature Engineering of Periodic Displacement Based on Supervised Learning

In this paper, the dataset of the periodic prediction model is constructed due to the
supervised learning method. For the whole data of all GPS stations, the influence factors
selected by 4.2 are taken as the feature data, and the corresponding periodic displacement
components are used as tags to get the feature-label data. Furthermore, to pay more
attention to the time series correlation of periodic displacement, the time sliding window
is 12. That is, the influence characteristics and labels of the first 12 steps affect the periodic
displacement at the current time.

Figure 14 is the correlation relationship calculated by the Grey Correlation analysis
method between the historical periodic displacement and the current periodic displacement
of target dataset ZG110, and it can be seen from the figure that the longer the historical
interval, the smaller the periodic displacement correlation. Therefore, choosing a historical
step of 12 in this paper can learn the periodic displacement timing dependencies in the past
year well while excluding unnecessary interfering information.
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4.4. Data Preparation

Based on the data set selection, component partition, external influence factor selection,
and periodic component feature engineering mentioned above, data enhancement is carried
out to enhance the training accuracy and universality of the small sample model. the process
of data enhancement is as follows:

1. Construction of original base dataset and target dataset

To fully train the prediction model of “Step-type” landslides, this paper needs to
construct a base dataset with a relatively large amount of samples by data supplement,
and the enriched base pre-training dataset needs to have similar physical properties to
the target predicting dataset to mine much about the spatial-temporal correlations of the
similar “Step-type” landslides.

The Baishuihe landslide, Bazimen landslide, and Xintan landslide of the Three Gorges
Reservoir area adopted in this paper belong to the same “Step-type” landslide deformation.
This paper chooses ZG110 as the target predicting dataset and the other stations like DX01,
DX02, DX03, DX04, ZG93, ZG111, and ZG120 are selected as similar candidate datasets to
do the further base dataset enhancement.

2. Enhance Robustness of original base and target datasets

To enhance the stability and robustness of the base dataset and target dataset obtained
by the fusion processing, a data enhancement algorithm based on the DTW algorithm
is used to do further enhancement. The parameters of the DTW algorithm are selected
as follows:

The number of selecting epochs T = 4 ∗ shape (for example, when the shape of the base
dataset is 359, then the epochs TBase = 1436, and if the sample size of the target dataset is
66, then TTarget = 264). The size of query sequence m = 30, the nearest neighbor sequence
number n = 5. Weights allocated to the Sequence are wc = 0.5, w1 = 0.15, w2 = 0.15,
w3 + w4 + w5 = 0.2. Where, wc is the weight value assigned to the central sequence, w1 to
w5 are the weight values of screened-out sequences of the five nearest neighbors.

The samples of the base dataset after enhancement based on the DTW algorithm
are expanded to 1795 and the samples of the target dataset are expanded to 330. Due to
the dataset expansion based on the observation station data with similar landslide type
characteristics in the same area and the use of the DTW algorithm for dataset enhancement,
the dataset after the data expansion and enhancement not only dramatically expands in
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sample size but also has higher stability, which can make prediction model fully trained
during the training process and obtain better prediction results.

To eliminate the influence of data dimension, the base and target datasets of the
periodic term are normalized to [0, 1]. Then, the 1795 base datasets are divided into three
parts: training set, validation set, and test set. Among them, the ratio of training set data to
validation set data is approximately 5:1; that is, the amount of the training dataset is 1257,
the amount of the validation dataset is 526, and the amount of the testing dataset is 12. At
the same time, the 330 target data set are also divided into the same three-part, the sample
number of the training set is 318, the sample size of the validation set is 20% of the training
set, and the sample number of the testing set is 12.

5. Discussion
5.1. Prediction of Trend Displacement Component on ZG110

Given the landslide trend component data obtained by DDM, the trend displacement
samples from January 2007 to December 2011 of the target dataset ZG110 are used as the
model training dataset, and the monitoring data from January 2012 to December 2012 of
ZG110 are used as the prediction data. The cubic function fitting method is used to model
the training dataset, and the fitted cubic function model is used to predict the future trend
data. The cubic function fitting method is shown in Formula (18), where a1, a2, a3, and a4
are the coefficients of the fitting function, and y is the predicted value of trend displacement.
Figure 15 shows the fitting and prediction process of the displacement trend component of
ZG110 monitoring point data.

y = a1x3 + a2x2 + a3x + a4 (18)
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After the cubic fitting calculation of the displacement trend component of the ZG110
monitoring point data, the cubic fitting parameters’ values of a1, a2, a3, and a4 are as follows
Formula (19), and the correlation coefficient (R2) of the fitting result is 0.98.

y = 0.00075x3 + 0.021x2 + 7.234x + 313.31 (19)

Then, the cubic fitting function obtained by Formula (19) is applied to the prediction
of the landslide displacement trend component during the period from January 2012 to
December 2012 at the ZG110 monitoring station, and the prediction results are shown in
Figure 16. After calculation, it can be obtained that the average absolute error of the trend
displacement component prediction result is 8.358 mm, the standard deviation is 4.48 mm,
the minimum error value is only 1.13 mm, and the maximum error value is 11.86 mm. The
prediction experiment results show that the trend displacement component obtained by the
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difference decomposition method has a high degree of matching with the cubic function
curve, and the changing trend is more predictable, so more accurate prediction results can
be obtained.
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5.2. Prediction of Periodic Displacement Component on ZG110

The periodic component displacement can be obtained by removing the trend compo-
nent displacement from the cumulative landslide displacement. The calculation equation
of periodic component displacement component η(t) is shown in Formula (20).

η(t) = S(t)−∅(t) (20)

where S(t) represents the cumulative landslide displacement and ∅(t) represents the trend
displacement component. The periodic displacement component of the ZG110 monitoring
station obtained by the DDM is shown in Figure 17. It can be seen that the obtained
periodic displacement component has relatively stable periodic characteristics. In this
paper, the periodic displacement data from January 2007 to December 2011 are used as
training data, and the data from January 2012 to December 2012 are used as testing data for
comparative analysis.
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1. Experimental environment and parameter selection of the TC-DLDPM model

The whole experimental environment of this paper is as follows: the CPU is AMD
Ryzen7 5800H, the number of cores is 8, the logical processor is 16, and the GPU is the
NVIDIA GeForce RTX 3050 Laptop (4096 MB). The programming language is Python,
while the deep learning framework is Keras with Tensorflow2.0 (Google, America) as the
back end.

Each sample in the dataset is divided into 12 sub-sequences according to historical time
steps. For each sub-sequence, set the convolutional dimension size of the CNN network to
12; the convolutional kernel size to 2; the maximum pooled kernel size to 2; the number of
hidden layer neurons in the LSTM network to 200; the loss function of the model to MAE;
the learning rate to 0.001; the model training rounds are initially set to 500, and the early
stop function is set when the loss obtained by the model on the validation set data does not
drop in 20 times. The whole training and prediction process of the model was repeated
50 times. Finally, the average prediction results and the average error index of the model
were compared and analyzed with other methods.

2. Comparison and analysis of the prediction results of the periodic term displacement
components

Firstly, the base dataset is thoroughly learned and trained based on TC_DLDPM in
stage 1 (basic training), and the corresponding model parameters of each layer are obtained
to establish the base displacement prediction model. Then, the parameters of each network
layer obtained in the first stage are migrated to the small sample fine-tuning modeling
process based on the target dataset in the second stage. The parameters of layers 4 to 9 of
the model, that is, Time-step&features Attention Block layers’ parameters, are updated on
the training set of the target dataset with 1/20 of the original learning rate (i.e., 5 × 10−5).
Finally, the displacement component data of periodic term of ZG110 monitoring station
test set from January 2012 to December 2012 are predicted, and the prediction results of
periodic displacement component are obtained.

The displacement prediction result of the period term of the ZG110 test set and its
absolute error are shown in Figure 18. (1) From January to March 2012, the absolute errors
of the predicted displacement component of the periodic term are relatively small, and the
predicted results are highly consistent with the real displacement values. Among them,
the prediction error of February is relatively large, which is 5.76 mm. (2) From March
to May, the displacement of the periodic term showed a slow downward trend, and the
displacement error gradually increased. It rose from 2.30 mm in March to 8.89 mm in
May. (3) In the landslide disaster-prone period from May to July, the reservoir’s water
level decreases to 146.90 m, and the landslide displacement of the periodic term rises in
Step-type due to the sudden increase in the monthly rainfall and accumulated rainfall. The
minimum error occurred in June, and the error value was 6.67 mm. The maximum error
occurred in July, and the error value was 14.50 mm. It shows that the prediction model
still has a strong prediction ability when the external influence factors change rapidly, and
the comprehensive prediction effect is ideal. (4) From August to December, the reservoir’s
water level rose to 174.13 m, the rainfall gradually decreased, and the displacement value of
the period term steadily decreased. During this period, the prediction error of the model is
tiny, very close to the actual value, the maximum error is 8.56 mm, and the minimum error
is 0.16 mm. During the entire test period, the mean absolute error (MAE) and correlation
coefficient R2 of the prediction model are 5.66 mm and 0.95, respectively, indicating that
the dataset with data expansion and enhancement not only greatly expands the sample
size but also has higher stability, which can enable the prediction model to be fully trained
during the training process, and the overall prediction accuracy has been improved.
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To verify the performance of the TC-DLDPM model, the Random Forest (RF) model,
Support Vector Regression (SVR) model, error Back Propagation (BP) network, Long and
Short-Term Memory (LSTM) network, Gate Recurrent Unit (GRU), Bi-directional long-short
term memory (Bi-LSTM) [49] and the CEEMDAN model [50], which are applied to the
field of landslide displacement prediction are selected to compare the prediction accuracy
in this study. The target datasets of all algorithm models are the periodic displacement
data obtained by the ZG110 monitoring station of the Bazimen landslide displacement in
the Three Gorges Reservoir area and the periodic displacement data from January 2012 to
December 2012 are used as the test data. The network parameters of the comparison model
are described as following Table 2:

Table 2. Parameter settings of the different prediction models.

Models Parameters Values Models Parameters Values

RF

Number of trees 100

GRU

hidden layers 100
maximum tree depth 3 Time-sliding window size 12

minimum number of samples 20 learning rate 0.001
minimum number of leaf nodes 5 batch_size 64
maximum number of features 10 training epochs 500

SVR
penalty factor C 5.3

Bi-LSTM

hidden layers 100
kernel function parameter Gamma 0.01 Time-sliding window size 12

BP
hidden layers 160 learning rate 0.01
learning rate 0.001 batch_size 64

training epochs 100 training epochs 500

LSTM

hidden layers 200

CEEMDAN

hidden layers 128
Time-sliding window size 12 Time-sliding window size 12

learning rate 0.001 learning rate 0.001
batch_size 64 batch_size 64

training epochs 500 training epochs 500
Note: The training loss function of the above model is set to ‘MAE,’ and the training process adopts the same early
stop function as TC-DLDPM. All models use GridSearchCV methods to find the best parameters for prediction.

The prediction values of the periodic term displacements of the ZG110 dataset from
January 2012 to December 2012 are shown in Table 3 and the monthly absolute error
values’ heatmap of the test data set is shown in Figure 19. It can be seen in Figure 19
that the experimental results of shallow learning network RF, SVR, and BP networks for
periodic displacement prediction are not ideal, especially when the environmental factors
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like rainfall (June, July, August) change violently, the prediction error is relatively large;
the prediction error of LSTM and GRU networks is smaller than that of shallow neural
networks, but the model does not better fit the periodic displacement evolution trend when
the environmental factors change greatly; the combined deep learning models Bi-LSTM
and CEEMDAN which are specifically targeted for the “Step-type” landslide prediction
can fit the evolution of periodic displacement well and have a better prediction. However,
the TC-DLDPM proposed in this paper can perform more detailed and accurate training
based on pre-training, so the prediction result error is smaller and the coherence coefficient
(R2) of the model is greater.

Table 3. Comparison of the prediction accuracy and the error of periodic term displacement by the
different prediction models.

Time Step Real Data RF SVR BP LSTM GRU Bi-LSTM CEEMDAN TC-DLDPM
2012/1 24.42 23.84 20.01 12.54 25.84 24.44 21.43 19.92 21.74
2012/2 0.00 8.43 19.96 17.57 6.75 4.35 0.68 4.20 5.76
2012/3 4.72 −0.47 14.43 9.45 12.88 7.04 6.81 0.72 2.30
2012/4 −4.36 −0.27 14.17 12.48 5.19 1.75 −9.51 −1.16 4.26
2012/5 −12.44 2.37 15.76 4.97 −1.00 −1.59 −17.11 −9.34 −3.55
2012/6 −7.42 6.28 24.37 0.71 5.78 4.63 −5.25 13.90 −0.76
2012/7 84.50 31.30 62.46 32.90 82.44 76.25 70.66 72.00 70.00
2012/8 61.12 58.20 62.53 64.70 68.16 64.01 86.30 54.00 66.42
2012/9 50.64 58.16 54.09 61.37 62.07 58.06 72.27 54.64 50.25
2012/10 41.96 54.64 44.78 42.22 51.33 50.31 58.50 44.86 42.13
2012/11 11.38 44.61 30.57 53.22 36.85 30.64 17.90 8.18 19.94
2012/12 0.00 9.55 25.73 26.45 27.00 23.27 0.46 10.10 3.92

MAE/MM 13.82 15.60 17.59 11.07 8.76 8.49 6.68 5.66
R2 0.56 0.61 0.61 0.80 0.87 0.91 0.93 0.95
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By comparing the simple deep learning model Bi-LSTM and the combined deep
learning model CEEMDAN which have better prediction precision than the TC-DLDPM
model proposed in this paper on the ZG110 testing set, the prediction fitting results can
be seen in Figure 20. Among the three prediction methods, the fitting result of Bi-LSTM
is the worst. Combined with the error analysis in Table 3, the MAE error of the Bi-LSTM
is 8.49 mm; the prediction results fit well with the real data from January to June 2012,
but from July to October, when the rainfall and reservoir water level change greatly, the
prediction error effect is very poor, and the maximum absolute error occurs in August
which reaches to 25.18 mm. In addition, there is a lag in the prediction of the fluctuation
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trend of periodic landslide displacement, which indicates that a single Bi-LSTM model is
still greatly influenced by the external environment when predicting the complex nonlinear
evolution process of landslide displacement. In addition, because RNN iterates in time
order, the error of Bi-LSTM will be superimposed gradually, resulting in a large fitting
deviation. While the fitting result of the CEEMDAN combination model is relatively better
and the average error of the prediction for the whole year of 2012 is only 6.68 mm, which
is better fitted with the real data, and the fluctuation trend of periodic displacement is
also well fitted, but similarly, there is still a large error in the rainy season from June to
August 2012, the maximum prediction error occurs in June which is 21.32 mm. The TC-
DLDPM model proposed in this paper achieves much better results in both the fitting of
the fluctuation trend and the prediction of monthly displacement. The overall MAE error
is only 5.66 mm, and it has a better prediction effect no matter how the external factors
such as rainfall and reservoir water level change. It is because this method has learned the
common characteristics of a large number of landslides of the same type in advance and
then focuses more on the characteristics of their own time series and environmental factors,
so it has better prediction accuracy.
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5.3. Prediction Experiments of the Landslide Cumulative Displacement

According to the time series decomposition principle of DDM mentioned in Section 2.1,
the predicted values of trend displacement and periodic displacement are added together
to obtain the predicted value of the cumulative landslide displacement. The cumulative
displacement prediction experiment of the ZG110 monitoring station during the test period,
i.e., January 2012 to December 2012, was carried out. The prediction accuracy and error
analysis of cumulative displacement are shown in Table 4 and Figure 21 shows the accuracy
comparison results between the predicted value of the cumulative displacement and the
actual observed value. It can be seen from the figure that the predicted value of cumulative
landslide displacement is highly fitted with the actual value, and the average error of
prediction is 8.92 mm. Due to the sudden change in rainfall which is a key external
influence factor, the maximum error occurred in July 2012, with an error value of 19.71 mm.
In general, the prediction accuracy of cumulative landslide displacement is relatively high,
and the step trend of the cumulative landslide displacement can be well predicted.
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Table 4. Prediction value and error analysis results of the ZG110 cumulative displacement.

Time Step
Trend

Predicted
Value (mm)

Periodic
Predicted

Value (mm)

Cumulative
Predicted

Value (mm)

Cumulative
Real

Value (mm)

Absolute Error
(mm)

Relative Error
(%)

2012/1 979.60 21.74 1001.34 994.30 7.04 0.71
2012/2 998.10 5.76 1003.86 986.60 17.26 1.75
2012/3 1016.97 2.30 1019.27 1014.30 4.97 0.49
2012/4 1036.22 4.26 1040.47 1028.20 12.27 1.19
2012/5 1055.85 −3.55 1052.30 1043.10 9.20 0.88
2012/6 1075.87 −0.76 1075.11 1071.10 4.01 0.37
2012/7 1096.29 70.00 1166.28 1186.00 19.72 1.66
2012/8 1117.11 66.42 1183.53 1185.60 2.07 0.18
2012/9 1138.34 50.25 1188.59 1198.10 9.51 0.79
2012/10 1159.98 42.13 1202.11 1212.40 10.29 0.85
2012/11 1182.05 19.94 1201.99 1204.80 2.81 0.23
2012/12 1204.54 3.92 1208.46 1216.40 7.94 0.65

Maximum error 19.72 mm
Minimum error 2.07 mm
Average error 8.93 m
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6. Conclusions

Aiming at the in-depth research and analysis of landslide displacement under the
condition of small samples, a two-stage combined depth learning dynamic prediction
model TC-DLDPM is proposed in this paper to realize the comprehensive prediction task
of landslide displacement.

The dataset was expanded through the DTW algorithm according to the similarity
of multiple stations monitoring data, the geographical environment, and the Step-type of
landslides. Then, the TC-DLDPM model captures the common law between input and
output and realizes transfer learning on small sample data through the two combined
stages of Basic model learning and Small sample fine-tunning. The proposed model has
been applied to Bazimen and Baishuihe landslides in the Three Gorges Reservoir, and the
experimental results demonstrated it could adapt well to the condition of a small sample
in the application area. The TC-DLDPM model also has been proved that can shorten the
prediction time and improve the prediction accuracy. Thus, the study of the TC-DLDPM
model provides a better solution and exploration idea for landslide displacement prediction
under the condition of small samples.

In future work, the time series InSAR data and other multi-source monitoring remote
sensing data will be introduced to analyze the landslide, and the actual observation of
GPS data will be verified and analyzed to construct a more stable, accurate, and efficient
landslide deformation warning model.
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