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Abstract: High-resolution remote sensing images with rich land surface structure can provide data
support for accurately understanding more detailed change information of land cover and land use
(LCLU) at different times. In this study, we present a novel scene change understanding framework
for remote sensing which includes scene classification and change detection. To enhance the feature
representation of images in scene classification, a robust label semantic relation learning (LSRL)
network based on EfficientNet is presented for scene classification. It consists of a semantic relation
learning module based on graph convolutional networks and a joint expression learning framework
based on similarity. Since the bi-temporal remote sensing image pairs include spectral information in
both temporal and spatial dimensions, land cover and land use change monitoring can be improved
by using the relationship between different spatial and temporal locations. Therefore, a change
detection method based on swin transformer blocks (STB-CD) is presented to obtain contextual
relationships between targets. The experimental results on the LEVIR-CD, NWPU-RESISC45, and
AID datasets demonstrate the superiority of LSRL and STB-CD over other state-of-the-art methods.

Keywords: high-resolution remote sensing images; LCLU; scene change understanding; label
semantic relation; change detection; transformer

1. Introduction

Remote sensing high-resolution (HR) imagery [1] is capable of providing richly de-
tailed structures of the land surface, which has unique advantages for detecting changes
of fine land cover and land use (LCLU), and can also mine semantic level information
according to the geometrical structures and spatial patterns of ground objects. However,
the changes of simple ground objects cannot directly reflect the changes of scene semantics
in the area [2]. In Figure 1, the new construction of houses in residential areas is not directly
equivalent to the semantic changes of residential areas, so there is also a semantic gap
between the changes of ground objects and the changes of scene semantics. Fueled by a
variety of practical applications in the remote sensing community, we intend to effectively
describe the changes of scene semantics while obtaining the change of the ground object,
i.e., scene change understanding.

Currently, there is very little theory and research on the subject of scene change
understanding, only a few works based on different scene tasks. Ref. [2] investigated the
changes in spatial equity of greenery around residents in Guangdong, Hong Kong, and
Macao’s Greater Bay Area by studying time series of remote sensing images from 1997 to
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2017. Ref. [3] presents an end-to-end scene change understanding framework that observes
the variation between two time-points using different types of input images (i.e., depth,
RGB, and point cloud images). Meanwhile, Ref. [4] proposed two challenging task types:
scene change detection and semantic simultaneous localisation and mapping. It is crucial to
investigate the environment and comprehend the position and nature of every thing in it for
indoor robotic systems that must interact intimately with humans. A new framework [5] is
proposed that detects and describes changes occurring in 3D scenes observed from multiple
perspectives with natural language text. In this paper, our scene change understanding is
mainly based on the following two processes: (i) Scene classification: the purpose of this
process is to output the most similar semantic label to each image to distinguish different
scene categories [6]. (ii) Change detection: this process discriminates the changes of areas
or phenomena in the same geographical area at different times [7,8].

Bareland Industrial

Residential Residential

land use/land 
cover change

Semantic Change

Semantic Change

land use/land 
cover change

Figure 1. Scene semantic change and land use/land cover change.

In general, compared with natural scenes, remote sensing scenes are more complex
and face more difficulties in terms of classification and detection tasks, for example, small
inter-class dissimilarity, large intraclass variations, and smaller and more separated objects.
In particular, remote sensing systems are affected by the changes in the solar position and
ground target geometry during image acquisition, which cause different types of brightness
and shadows in the same scene area.

To overcome these problems, we propose a novel framework for scene change under-
standing based on bi-temporal remote sensing images. The following are the contributions
of this work:

1. Based on EfficientNet, a robust LSRL network for scene classification is proposed.
It consists of a semantic relation learning module based on graph convolutional
networks and a joint expression learning framework based on similarity.

2. Simultaneously, we propose STB-CD for change detection on remote sensing im-
ages. STB-CD makes full use of the spatial and contextual relationships of the swin
transformer blocks to identify areas of variation in buildings and green spaces of
various scales.

3. The experiment results on the LEVIR-CD, NWPU-RESISC45, and AID datasets demon-
strate the superiority of the two methods over state-of-the-art.

The rest of this paper is structured as follows. Section 1 is a description of related work.
Section 2 describes the proposed framework for scene change understanding. Section 3
further describes the experimental details and results. Finally, the paper is summarized in
Section 4.
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2. Related Works

Our work builds on prior work in two domains: scene classification and change detection.

2.1. Scene Classification on Remote Sensing Images

Scene classification aims to accurately identify the high-level semantic labels to which
different scenes belong according to their content. In recent decades, many studies have
been conducted in military and civilian applications. Remote sensing scene classification
relies heavily on the ability to efficiently and swiftly extract additional discriminative fea-
ture representations. Past methods mainly use manually designed feature descriptors, such
as colour histograms [9], scale-invariant feature transform [10], and directional gradient
histograms [11], to obtain the features representation of images. However, these methods
rely heavily on the quality of the feature design and are unable to communicate high-level
semantic data. As deep learning evolves, more and more models based on convolutional
neural networks [6,12] have been used for scene classification, and by designing a series of
network structures, the classification accuracy can be effectively improved. However, due
to the increasing resolution of remote sensing images, the scenes contain more feature infor-
mation and more complex spatial distribution, and the interclass similarity and intraclass
diversity among different scenes increases the difficulty of scene classification. Therefore, to
examine deconvolution networks for remote sensing scene classification, Ref. [6] proposed
an unsupervised representation learning approach.

2.2. Change Detection on Remote Sensing Images

During the last few decades, many change detection methods have been proposed
for gathering data on land cover change. Most methods in remote sensing rely on the
difference between intensity. Ref. [13] proposed deep change vector analysis (DCVA) to
generate robust feature vectors to model the spatial background information of remote
sensing images. Lv et al. designed an object-oriented calculation of key point distances to
measure the degree of variation between remote sensing images [14]. In order to generate
difference images with a good separability for remote sensing images, Ref. [7] adopted a
Fuzzy C-Means classifier to generate a similarity matrix between image a pair of geometric
corrections. Ref. [15] presented three different types of fully convolutional neural networks
(FC-Siam-conc, FC-Siam-diff, and FC-early fusion), which contain two skip-connection
methods (connection and difference) and a pair of co-registered images. Deep learning-
based algorithms are particularly suitable for effectively discriminating between real and
complex irrelevant changes because these algorithms are robust (i.e., invariant) against
differences in viewpoints and illumination conditions. However, these approaches still
fail when dealing with targets of widely varying shape, size, and position in remotely
sensed images. Therefore, some works fusing attention mechanisms (e.g., spatial attention,
self-attention) to simulate the semantic connections between image pairings, such as the
deep supervised attention metric network (DSAMNet) [16], have shown robustness and
accuracy in promising results have been achieved.

3. Methodology

This section describes a robust scene change understanding framework using dual
spatiotemporal remote sensing images. It has two main components: scene classification
method (LSRL) and change detection method (STB-CD). The proposed framework is
summarized in the latter part of this section.

3.1. Scene Classification of Remote Sensing Images

How to effectively learn the semantic relations between labels of remote sensing scene
categories to obtain more discriminative scene features is crucial for accurate classification.
In this section, we detail the proposed label semantic relation learning (LSRL) network,
which consists of a semantic relation learning module based on graph convolutional
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networks and a joint expression learning framework based on similarity. The overall
framework model is shown in Figure 2.
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Figure 2. Scene classification on remote sensing images based on label semantic relation learning
(LSRL) network.

Image representation learning. As an efficient convolutional neural network, effi-
cientNet has achieved outstanding results in image classification. We directly apply this
model as our backbone network. Specifically, given a remote sensing image, we use effi-
cientNet to extract a feature map of size W × H × D. Then, a global level pooling (GAP) is
applied to obtain the D-dimensional image features f ∈ RD.

Semantic relationship learning. To learn semantic relations between category labels,
we use graph structures to model the association between labels. For the learning process,
the input data is defined as a graph G = 〈V, A〉, where the graph nodes V = {vi}C

i=1 are
represented as de ∈ RC dimensional word embeddings of the category labels correspond-
ing to the C scene categories. The adjacency matrix A describes the potential semantic
relationships between different scene categories, and the operation can be written as

Aij =

{
1, i f ∃î j
0, otherwise

(1)

where î j denotes the existence of a semantic relationship between category i and category j.
In our experiments, the adjacency matrix A is predefined for different datasets. Then, we
learn to convey information about the potential semantic relationships between different
categories with the help of graph convolutional networks (GCN). For the l + 1-layer GCN,
both the node features H(l) of the previous layer and the adjacency matrix A are taken
as input, and new node information is generated H(l+1). The node features at l = 0 are
initialized by the word embeddings of the input. Thus, the basic cyclic process can be
formulated as

H(0) = vH(l+1) = σ
(

AH(l)W(l)
)

(2)

where W(l) is the matrix of learnable weights for each layer, σ(·) represents the nonlinear
function. Eventually, the learned category label features are represented as f v = GCN(v, A).

Joint expression learning. Instead of the simple summation operation, we propose
a cosine similarity-based joint expression learning framework. Specifically, the similarity
coefficients wi of image features f and each category label feature f v

i ∈ RD are first
computed to obtain the coefficient vector w by

w =

{
wi =

dot
(

f , f v
i
)

‖ f ‖2 ·
∥∥ f v

i

∥∥
2

}C

i=1

(3)

where dot(·) is the vector dot product, ‖·‖2 denoted as vector two-parametric operation.
Then, in order to reduce the number of operations and avoid the interference of redundant
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features, we keep only the top k (k = 4) large similarity coefficients and set the rest to 0.
Based on the different similarity coefficients, the category label vectors are fused into the
image features, which can be expressed as

f ′ = f +
C

∑
i=1

wi f v
i (4)

A simple fully connected layer is finally used to the feature vector to compute the
classification score vector s of the input image.

3.2. Change Detection on Remote Sensing Images

Three components make up the proposed network (STB-CD): multiscale feature ex-
traction learning, spatial relations learning, and a new loss function. To extract distinctive
features of all scale ground objects, multiscale features are extracted automatically from
bi-temporal inputs by the feature extractor. Subsequently, spatial relations learning is
constructed for improving the global and local relationship between the ground objects.
Moreover, the losses for optimization are calculated by comparison with the ground truth.
Figure 3 illustrates the overall flow of our STB-CD.
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Figure 3. Change Detection based on swin transformer block on remote sensing images.

Multiscale feature extraction learning. The image pair Ît1 and Ît2 is input to ResNet18
to extract features, and all obtain a set of multi-scale features Ft ( f1, f2, f3 and f4), t = t1, t2.

Spatial and temporal relations learning. Since the bi–temporal remote sensing image
pair is composed of spatial spectral information and temporal spectral information, the
performance of the CD method can be improved by using the relationship between them.
First, multiscale features F

′
t1 and F

′
t2 are partitioned into non-overlapping patches, and we

view each patch as a “token”. Subsequently, a linear input layer for each feature sends
it to any dimension (expressed as C). Meanwhile, the method applies swin transformer
to the tokens independently, which are made up of a shifted-window-mechanism-based
multi-head local self attention ((S)W-MSA) and multi-layer perceptron blocks. The strength
of (S)W-MSA is that it can be concerned with inputs for several windows at different spatial
locations at the same time. We divide the feature map f

′
uniformly into 7× 7 windows.

Therefore, the attention matrix is calculated by self-attention mechanism in each window,
which is expressed as:

Att(Q, K, V) = σ(
QKT
√

d
+ B)V (5)

where σ(·) and B ∈ <p2×p2
are a nonlinear function and a learnable deviation [17], respec-

tively. Generally, Q, K, V ∈ <p2×d are the attention information,
√

d and p2 denote the
channel dimension and the number of patches, respectively.
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Thereafter, we resize the two features F
′′
t (m = t1, t2) to the equivalent size of the

incoming image through bilinear interpolation and compute the euclidean distance Dist
between the features, according to the following formula:

Dist =
√
(F′′t1 − F′′t2)× (F′′t1 − F′′t2)

T (6)

where F
′′
t1 and F

′′
t2 denote the resized feature map of t1 and t2, respectively.

Loss function. To create the contrast loss required for optimization, Dist is compared
to the ground truth during training. Suppose that Îb

t1
∈ <B×3×H×W and Îb

t2
∈ <B×3×H×W

are regarded as a batch bi_temporal image pairs (Mgt, Mp), where Mgt denotes a set of
Ground Truth binary label mappings, Mp is generated using our model. Considering the
positive–negative label imbalance of our samples at the beginning of training, the loss
function is defined as

Lbcl(Mp, Mgt) =
1
2

1
Nc

∑
b,h,w

Mgt
b,h,w Max(0, m−Mp

b,h,w)

+
1
2

1
Nuc

∑
b,h,w

(1−Mgt
b,h,w)Mp

b,h,w

(7)

where b, 1 ≤ b ≤ B denote the index of B, w, h are width and height of image, 0 and 1
indicate unchanged and changed state. Pairs of changing pixels with distance greater
than m(m = 2) have no effect on the loss function. Nuc and Nc represent the quantity of
unchanged and changed pixel pairs, calculated as:

Nuc = ∑
b,h,w

(1−Mgt
b,h,w) (8)

Nc = ∑
b,h,w

Mgt
b,h,w (9)

4. Experiments

In this subsection, we experimentally verify the feasibility of our proposed framework.
We will begin with our experimental settings and then present the implmentation details and
benchmark the state-of-the-art models. Finally, we present a detailed performance analysis.

4.1. Datasets

In our experiments, in order to achieve the theoretical goal of scene change under-
standing and simultaneously examine the feasibility of the proposed scene classification
and change detection methods, we selected change detection and scene classification
datasets with similar ground objects and resolutions, and carried out validation experiments
(Algorithm 1).

• NWPU-RESISC45 dataset [18] is the most widely used benchmark for remote sens-
ing scene classification at the moment. It is made up of 31,500 images, covering
45 scene categories: mountain, runway, sea ice, ship, stadium, airplane, desert, circular
farmland, basketball court, forest, meadow, airport, baseball diamond, bridge, beach,
mobile home park, overpass, palace, river, roundabout, snow berg, harbor, storage
tank, church, cloud, lake, commercial area, railway, intersection, railway station, in-
dustrial area, rectangular farmland, tennis court, chaparral, dense residential, freeway,
sparse residential, terrace, thermal power station, island, wetland, golf course, ground
track field, and medium residential. There are 700 images in each category, each
having a resolution of 256× 256 pixels. When conducting evaluation experiments, a
wide range of training and test set ratios are used: 1:9 and 2:8.

• Aerial Image Dataset (AID) [19] is a multi-source aerial scene classification dataset
captured with different sensors. 10,000 photos of a 600× 600 pixel size are included,
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consisting of 30 scene categories, including mountain, park, desert, farmland, for-
est, industrial, river, school, sparse residential, square, airport, bare land, baseball
field, railway station, resort, stadium, beach, bridge, center, church, parking, play-
ground, pond, commercial, dense residential, meadow, port, storage tanks, viaduct,
and medium residential. Each category has 220 to 420 images. When conducting
evaluation experiments, a wide range of training and test set ratios are used: 2:8
and 5:5.

• LEVIR-CD [20] is a public large scale building change detection dataset, which con-
tains 637 pairs of very high-resolution (0.5 m/pixel) remote sesing images of size
1024× 1024 pixels. LEVIR-CD includes different types of buildings, such as small
garages, large warehouses, villa residences, and tall apartments. We follow its default
dataset segmentation rules. In addition, the image is cut into 256× 256 small pieces
without overlap. Finally, 7120/1024/2048 patch pairs were obtained for training,
validation, and testing, respectively.

Algorithm 1: Scene Changes Understanding Framework based on Graph Con-
volutional Networks and Swin Transformer Blocks for Monitoring LCLU using
High-Resolution Remote Sensing Images.

Input: A pair of images of size W × H × C taken at time t1 and t2, respectively.
Output: Semantic changes and distance map Dist.
B Scene classification on remote sensing images (LSRL).

(i) Image representation learning:
extract a feature map of size W × H × D via EfficientNet;
obtain the D-dimensional image features f ∈ RD.

(ii) Semantic relationship learning:
compute the adjacency matrix A between different scene categories by Equation (1);
learn to convey information about the potential semantic relationships between

different categories using graph GCN.
(iii) Joint expression learning:

obtain the coefficient vector w by Equation (3);
Then, to reduce the amount of operations and avoid the interference of

redundant features, the category label vectors are calculated by Equation (4).
B Change detection on remote sensing images (STB-CD).

(i) Multiscale feature extraction learning.
extract multiscale features Ft1 and Ft2 via ResNet 18;

(ii) Spatial relations learning:
compute a distance map D between reconstructed features F

′′
t1 and F

′′
t2 by

Equation (6);
(iii) Loss function:

calculate loss of a batch bi_temporal images by Equations (7)–(9).

4.2. Evaluation Criteria

The F1 score, precision, recall, and IoU are applied to evaluate the improvement of our
method. In addition, we employed the two most generally used quantitative assessment
criteria in scene classification to assess the validity of the design approach, in terms of the
confusion matrix (CM) and the overall accuracy (OA). The OA of the classification network
is determined by dividing the number of successfully categorized pictures by the total
number of images. This is a direct reflection of the overall effect of the network. The CM is
calculated as the direct relationship between the true and predicted labels of each category.
The confusion matrix focuses on analyzing the misclassification of each category to assess
the robustness of the model. The corresponding equations are as follows:

F1 =
2

Precision−1 + Recall−1 (10)
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Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

where TP, FP, and TP + FN denote the number of true positives, the false positives, and
all ground truths, respectively.

4.3. Implementation Details

LSRL and STB-CD were implemented using PyTorch library. As for the LSRL, the
optimizer adopts stochastic gradient descent (SGD), momentum set to 0.9. 30 training
epochs and 8 batch sizes are used. The learning rate was initially set at 0.01. Moreover, to
make the experimental outcomes more reliable, we repeat the training ten times with the
identical parameter values. Then we compute the mean value and standard deviation. As
for the STB-CD, we use Adam solver as the optimizer with an initial learning rate of 0.0001
on LEVIR-CD dataset, and a batch size of 4 sample pars was adopted to train the model.
All of our experiments were conducted on a workstation consisting of an Nvidia GeForce
Titan Xp GPU with 12 GB of video memory and an Intel(R) Core(TM) i7-7700K CPU with
32 GB of memory.

4.4. Comparisons of Scene Classification

Eight cutting-edge scene classification techniques are put up against the suggested
LSRL approach in this comparison: MDFR (Multi-scale Deep Feature Representation) [21],
VGG19 [22], SAFF (Self-attention-based Deep Feature Fusion) [23], EfficientNetB3-Attn-
2 [24], H-GCN (High-order Graph Convolutional Network) [25], DMA (Dual-Model Ar-
chitecture) [12], SEMSDNet (Multiscale Dense Networks with Squeeze and Excitation
Attention) [26], and LCNN-CMGF (Lightweight Convolutional Neural Network based on
Channel Multi-Group Fusion) [27]. For the AID dataset, as shown in Table 1, LSRL achieves
96.44% and 97.36% overall accuracy at 20% and 50% training ratios, respectively, showing
the best classification performance. For NWPU-RESISC45, the complete experimental
results are shown in Table 2, where our method achieves an overall accuracy of 94.27%
when the training ratio is 20%. A training ratio of 10% achieves an OA of 93.45%, and both
are superior to the other approaches.

Table 1. The OA(%) of different methods on AID dataset.

Methods 20% Training Ratio 50% Training Ratio

MDFR [21] 90.62 ± 0.27 93.37 ± 0.29
VGG19 [22] 87.73 ± 0.25 91.71 ± 0.24
SAFF [23] 90.25 ± 0.29 93.83 ± 0.28
EfficientNetB3-Attn-2 [24] 92.48 ± 0.76 95.39 ± 0.43
H-GCN [25] 93.06 ± 0.26 95.78 ± 0.37
DMA [12] 94.05 ± 0.10 96.12 ± 0.14
LSRL (ours) 96.44 ± 0.10 97.36 ± 0.21

Table 2. The OA(%) of different methods on NWPU-RESISC45 dataset.

Methods 10% Training Ratio 20% Training Ratio

MDFR [21] 83.37 ± 0.26 86.89 ± 0.17
VGG19 [22] 81.34 ± 0.32 83.57 ± 0.37
SAFF [23] 84.38 ± 0.19 87.86 ± 0.14
H-GCN [25] 91.39 ± 0.19 93.62 ± 0.28
SEMSDNet [26] 91.68 ± 0.39 93.89 ± 0.63
LCNN-CMGF [27] 92.53 ± 0.56 94.18 ± 0.35
LSRL (ours) 93.45 ± 0.16 94.27 ± 0.44
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In addition, Figures 4 and 5 show the confusion matrices in the AID when the training
ratio is 20% and in the NWPU-RESISC45 dataset when the training ratio is 20%, respectively.
In NWPU-RESISC45, the categories of palace and church produce greater confusion, with
10% of the palaces being misclassified as churches. The possible reason for the analysis is
that because we designed the adjacency matrix to associate the palace and church classes
and considered them to have a strong semantic relationship. However, all other classes
achieved high classification accuracy and proved the effectiveness of the proposed method.

Figure 4. Confusion matrix in AID using LSRL at training ratio of 20%.



Remote Sens. 2022, 14, 3709 10 of 13

Figure 5. Confusion matrix in NWPU-RESISC45 using LSRL at training ratio of 20%.

4.5. Comparisons of Change Detection

On the LEVIR-CD dataset, we contrast the efficiency of our proposed change detection
method (STB-CD) with that of four cutting-edge approaches: FC-EF [15], FC-Siam-diff [15],
FC-Siam-conc [15], and STANet (Spatial–temporal Attention Neural Network) [20]. FC-
Siam-diff and FC-Siam-conc are an extension of FC-EF. Experimental comparison results of
all methods are listed in Table 3. From the data in Table 3, the proposed method significantly
outperformes other change detection methods, achieving the best performance (F1: 87.38%,
IoU: 77.60%). The STANet yield obtains more integral change areas in most cases (F1 and
IOU: 87.26% and 77.40%). Moreover, FC-Siam-diff outperforms FC-EF and FC-Siam-diff,
with 86.31% F1 and 75.92% IoU, respectively.

We visualize the experimental results of the proposed framework to demonstrate the
entire execution flow of the proposed framework more intuitively. According to Figure 6,
the proposed method achieved satisfactory results.
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Table 3. Experimental Results on LEVIR-CD Dataset.

Methods Pre (%) Rec (%) F1 (%) IOU (%)

FC-EF [15] 86.91 80.17 83.40 71.53
FC-Siam-diff [15] 89.53 83.31 86.31 75.92
FC-Siam-conc [15] 91.99 76.77 83.69 71.96

STANet [20] 83.81 91.00 87.26 77.40
STB-CD (ours) 86.51 88.27 87.38 77.60
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Figure 6. Visualization results of scene changes understanding (a,b).

5. Conclusions

We have introduced a novel scene changes understanding framework for monitoring
LCLU changes by applying HR remote sensing images, which consists of two steps: scene
classification (LSRL) and change detection (STB-CD). LSRL adopts a semantic-relation-
learning module based on graph convolutional networks and a joint-expression-learning-
framework-based similarity. Meanwhile, STB-CD for change detection is introduced. It fully
applies the spatial and context relationship of swin transformer blocks to detect changes in
different buildings and green space areas. The results on the LEVIR-CD, NWPU-RESISC45,
and AID datasets show the two designed methods have advantages over other state-of-the-
art methods (Scene Classification Methods: MDFR, VGG19, SAFF, EfficientNetB3-Attn-2,
H-GCN, DMA, SEMSDNet, and LCNN-CMGF; Change Detection Methods: FC-EF, FC-
Siam-diff, FC-Siam-conc, and STANet). In our experiments, we mainly choose remote
sensing images with a resolution of 0.5 m/pixel. In future work, we will carry out further
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related research on remote sensing images of different resolutions. In addition, we will
conduct further research on scattered scenes and targets (e.g., aircraft) to meet the dynamic
monitoring of different types of remote sensing scenes.
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Abbreviations

The following abbreviations are used in this manuscript:
CD Change Detection
LCLU Land Cover and Land Use
LSRL The Label Semantic Relation Learning
DCVA The Deep Change Vector Analysis
GCN Graph Convolutional Networks
MDFR Multi-scale Deep Feature Representation
SAFF Self-attention-based Deep Feature Fusion
H-GCN High-order Graph Convolutional Network
DMA The Dual-Model Architecture
SEMSDNet Multiscale Dense Networks with Squeeze and Excitation Attention

LCNN-CMGF
Lightweight Convolutional Neural Network based on Channel
Multi-Group Fusion

DSAMNet Deep Supervised Attention Metric Network
FC-Siam-conc,

Three Different Types of Fully Convolutional Neural NetworksFC-Siam-diff, and
FC-early fusion
STANet Spatial–temporal Attention Neural Network

References
1. Zhang, X.; Xiao, P.; Feng, X.; Yuan, M. Separate segmentation of multi-temporal high-resolution remote sensing images for object-based

change detection in urban area. Remote Sens. Environ. 2017, 201, 243–255. [CrossRef]
2. Yang, G.; Zhao, Y.; Xing, H.; Fu, Y.; Liu, G.; Kang, X.; Mai, X. Understanding the changes in spatial fairness of urban greenery

using time-series remote sensing images: A case study of Guangdong-Hong Kong-Macao Greater Bay. Sci. Total Environ. 2020,
715, 136763. [CrossRef] [PubMed]

3. Qiu, Y.; Satoh, Y.; Suzuki, R.; Iwata, K.; Kataoka, H. Indoor scene change captioning based on multimodality data. Sensors 2020,
20, 4761. [CrossRef] [PubMed]

4. Qiu, Y.; Satoh, Y.; Suzuki, R.; Iwata, K.; Kataoka, H. 3d-aware scene change captioning from multiview images. IEEE Robot.
Autom. Lett. 2020, 5, 4743–4750. [CrossRef]

5. Hall, D.; Talbot, B.; Bista, S.R.; Zhang, H.; Smith, R.; Dayoub, F.; Sünderhauf, N. The robotic vision scene understanding challenge.
arXiv 2020, arXiv:2009.05246.

https://justchenhao.github.io/LEVIR/
http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
http:// www.lmars.whu.edu.cn/xia/AID-project.html
http://doi.org/10.1016/j.rse.2017.09.022
http://dx.doi.org/10.1016/j.scitotenv.2020.136763
http://www.ncbi.nlm.nih.gov/pubmed/32007872
http://dx.doi.org/10.3390/s20174761
http://www.ncbi.nlm.nih.gov/pubmed/32842516
http://dx.doi.org/10.1109/LRA.2020.3003290


Remote Sens. 2022, 14, 3709 13 of 13

6. Lu, X.; Zheng, X.; Yuan, Y. Remote sensing scene classification by unsupervised representation learning. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 5148–5157. [CrossRef]

7. Song, F.; Yang, Z.; Gao, X.; Dan, T.; Yang, Y.; Zhao, W.; Yu, R. Multi-scale feature based land cover change detection in mountainous
terrain using multi-temporal and multi-sensor remote sensing images. IEEE Access 2018, 6, 77494–77508. [CrossRef]

8. Song, F.; Zhang, S.; Lei, T.; Song, Y.; Peng, Z. MSTDSNet-CD: Multiscale Swin Transformer and Deeply Supervised Network for
Change Detection of the Fast-Growing Urban Regions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6508505. [CrossRef]

9. Swain, M.J.; Ballard, D.H. Color indexing. Int. J. Comput. Vis. 1991, 7, 11–32. [CrossRef]
10. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
11. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE computer society

conference on computer vision and pattern recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 886–893.
12. Shen, J.; Zhang, T.; Wang, Y.; Wang, R.; Wang, Q.; Qi, M. A Dual-Model Architecture with Grouping-Attention-Fusion for Remote

Sensing Scene Classification. Remote Sens. 2021, 13, 433. [CrossRef]
13. Saha, S.; Bovolo, F.; Bruzzone, L. Unsupervised deep change vector analysis for multiple-change detection in VHR images. IEEE

Trans. Geosci. Remote Sens. 2019, 57, 3677–3693. [CrossRef]
14. Lv, Z.; Liu, T.; Benediktsson, J.A. Object-oriented key point vector distance for binary land cover change detection using VHR

remote sensing images. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6524–6533. [CrossRef]
15. Daudt, R.C.; Le Saux, B.; Boulch, A. Fully convolutional siamese networks for change detection. In Proceedings of the 2018 25th

IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4063–4067.
16. Shi, Q.; Liu, M.; Li, S.; Liu, X.; Wang, F.; Zhang, L. A deeply supervised attention metric-Based network and an open aerial image

dataset for remote sensing change detection. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5604816. [CrossRef]
17. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. arXiv 2021, arXiv:2103.14030.
18. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017,

105, 1865–1883. [CrossRef]
19. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of

aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [CrossRef]
20. Chen, H.; Shi, Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection.

Remote Sens. 2020, 12, 1662. [CrossRef]
21. Zhang, J.; Zhang, M.; Shi, L.; Yan, W.; Pan, B. A multi-scale approach for remote sensing scene classification based on feature

maps selection and region representation. Remote Sens. 2019, 11, 2504. [CrossRef]
22. Li, W.; Wang, Z.; Wang, Y.; Wu, J.; Wang, J.; Jia, Y.; Gui, G. Classification of high-spatial-resolution remote sensing scenes method

using transfer learning and deep convolutional neural network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1986–1995.
[CrossRef]

23. Cao, R.; Fang, L.; Lu, T.; He, N. Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci.
Remote Sens. Lett. 2020, 18, 43–47. [CrossRef]

24. Alhichri, H.; Alswayed, A.S.; Bazi, Y.; Ammour, N.; Alajlan, N.A. Classification of remote sensing images using EfficientNet-B3
CNN model with attention. IEEE Access 2021, 9, 14078–14094. [CrossRef]

25. Gao, Y.; Shi, J.; Li, J.; Wang, R. Remote sensing scene classification based on high-order graph convolutional network. Eur. J.
Remote Sens. 2021, 54, 141–155. [CrossRef]

26. Tian, T.; Li, L.; Chen, W.; Zhou, H. SEMSDNet: A multiscale dense network with attention for remote sensing scene classification.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 5501–5514. [CrossRef]

27. Shi, C.; Zhang, X.; Wang, L. A Lightweight Convolutional Neural Network Based on Channel Multi-Group Fusion for Remote
Sensing Scene Classification. Remote Sens. 2021, 14, 9. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2017.2702596
http://dx.doi.org/10.1109/ACCESS.2018.2883254
http://dx.doi.org/10.1109/LGRS.2022.3165885
http://dx.doi.org/10.1007/BF00130487
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.3390/rs13030433
http://dx.doi.org/10.1109/TGRS.2018.2886643
http://dx.doi.org/10.1109/TGRS.2020.2977248
http://dx.doi.org/10.1109/TGRS.2021.3085870
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1109/TGRS.2017.2685945
http://dx.doi.org/10.3390/rs12101662
http://dx.doi.org/10.3390/rs11212504
http://dx.doi.org/10.1109/JSTARS.2020.2988477
http://dx.doi.org/10.1109/LGRS.2020.2968550
http://dx.doi.org/10.1109/ACCESS.2021.3051085
http://dx.doi.org/10.1080/22797254.2020.1868273
http://dx.doi.org/10.1109/JSTARS.2021.3074508
http://dx.doi.org/10.3390/rs14010009

	Introduction
	Related Works
	 Scene Classification on Remote Sensing Images
	 Change Detection on Remote Sensing Images

	Methodology
	Scene Classification of Remote Sensing Images
	Change Detection on Remote Sensing Images

	Experiments
	Datasets
	Evaluation Criteria
	Implementation Details
	Comparisons of Scene Classification
	Comparisons of Change Detection

	Conclusions
	References

