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Abstract: Safe operation of tailings reservoirs is essential to protect downstream life and property,
but current monitoring methods are inadequate in scale and refinement, and most reservoirs are built
in low coherence areas far from cities. Use of polarization data to monitor deformation may improve
area coherence and thus point selection density. With the example of the Kafang tailings reservoir
and dual-polarization Sentinel-1 data from 9 August 2020 to 24 May 2021, homogeneous points of
different polarization channels were identified with the hypothesis test of the confidence interval
method. Results were fused, and BEST, sub-optimum scattering mechanism (SOM), and equal
scattering mechanism (ESM) methods were used to optimize phase quality of persistent scatterer
(PS) and distributed scatterer (DS) pixels and obtain more detailed deformation information on the
area with time series processing. The fusion of homogeneous point sets obtained from different
polarization intensity data increased the number of homogeneous points, which was 3.86% and 8.45%
higher than that of VH and VV polarization images, respectively. The three polarization optimization
methods improved point selection density. Compared with the VV polarization image, the high
coherence point density increased by 1.83 (BEST), 3.66 (SOM), and 5.76 (ESM) times, whereas it
increased by 1.17 (BEST), 1.84 (SOM), and 2.04 (ESM) times in the tailings reservoir. The consistency
and reliability of different methods were good. By comparing the monitoring results of the three
methods using polarization data, the hypothesis test of the confidence interval (HTCI) algorithm,
and the polarization optimization method will effectively increase the point selection number of the
study area, and the ESM method can show the deformation of tailings area more comprehensively.
Monitoring indicated deformation of the tailings reservoir tended to diffuse outward from the area
with the largest deformation and was relatively stable.

Keywords: dual-polarized Sentinel-1 data; polarization time series technique; point selection density;
tailings reservoir; deformation monitoring

1. Introduction

Tremendous amounts of tailings which cannot be reused and cleaned in the short
term usually accumulate in tailings reservoirs. According to incomplete statistics, global
production exceeds 10 billion tonnes of tailings per year [1], and with development of the
mining industry, tailings output is expected to increase further. However, accumulations of
tailings have high gravitational potential energy [2]. When an accidental dam break occurs,
debris flows form easily and seriously damage the environment surrounding a mining
area. In the past decade, several accidental dam breaks of tailings reservoirs have occurred
worldwide. For example, in 2008, the dam holding the Xinta mine tailings reservoir in
Xiangfen County, Shanxi Province, China, broke, and the resulting debris flow instantly
flooded the downstream, causing 281 deaths and 33 injuries [3]. In 2014, the Canadian Matt
Poligin tailings reservoir accident dumped approximately 25 billion liters of tailings into
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Polly Lake, Bonzi Creek, and Quesnel Lake, seriously damaging the local environment [4].
In 2019, Vale’s tailings reservoir in Brumadinho City, Brazil collapsed, and approximately
12 million cubic meters of tailings poured into the Paraopeba River, causing more than
240 deaths and unknown economic losses [5]. Therefore, it is particularly important to
monitor deformation of tailings reservoirs as well as surrounding surfaces.

In most current research, the level, total station, global navigation satellite system, and
sensors are used to obtain the deformation of some points on a tailings reservoir. However,
it is difficult to obtain high-precision and fine-scale deformation monitoring of tailings reser-
voirs with high efficiency. With the development of time series interferometric synthetic
aperture (InSAR) technology, persistent scatterers InSAR (PS-InSAR) [6], small baseline sub-
set InSAR (SBAS-InSAR) [7], and temporary coherent point InSAR (TCP-InSAR) [8] have
been widely used to monitor various types of surface deformation. Iannacone et al. [9] used
Sentinel-1 satellite images with differential InSAR (D-InSAR) and Multi-Temporal InSAR
to monitor the deformation of a tailings reservoir in Chile and found 80 mm of deformation
from October 2014 to January 2018. Gamma et al. [10] used PS-InSAR and SBAS to monitor
deformation of the Brumadinho tailings reservoir and analyzed the causes of deformation
in combination with local precipitation data. Mazzanti et al. [11] used D-InSAR to monitor
deformation of the Zelazny Most tailings reservoir and found a maximum deformation rate
of−30 mm/year. The authors used relevant literature to analyze causes of deformation. Al-
though previous studies demonstrated approaches to improve deformation monitoring of
tailings reservoirs, it is impossible to obtain more comprehensive and detailed information
on deformation of tailings reservoirs because of insufficient density of monitoring points.

Both traditional time series InSAR and distributed scatterers InSAR (DS-InSAR) [12]
use only the intensity and phase information of SAR images, and the polarization informa-
tion is often ignored. Because different ground objects reflect different radar electromagnetic
waves, single polarization can only indicate the reflection information of some ground
objects. Therefore, fusion of different polarization information can increase the amount of
surface information obtained. Applying fused polarization information to monitor time
series surfaces and man-made structures can increase the density of monitoring points
and obtain more detailed deformation information. Navarro et al. [13] showed that using
polarimetric capabilities improves the selection density and phase quality of stable pixels in
PS-InSAR. Iglesias et al. [14] used amplitude dispersion (DA) and coherence (γ) as the phase
quality metric, and three different polarization optimization methods were used to monitor
landslides and deformation in Barcelona City. Sadeghi et al. [15] proposed a method to
increase the number of PS points using time coherence polarization optimization of PS
points in a polarimetric Stanford method for persistent scatterers (PolStaMPS) technology,
which successfully applied polarization information to surface deformation monitoring
of the Tehran Basin. Mullissa et al. [16] proposed a polarization time series method based
on distributed targets and found that the method could significantly increase the point
selection density in the monitoring area, with the increase nearly eight times higher than
that with the single-polarization channel. Zhao et al. [17] employed the amplitude disper-
sion index (PolPSI-ADI) and coherence (PolPSI-COH) as the phase quality metric and took
adaptive optimization strategies for different kinds of SAR pixels (PolPSI-AOS) to conduct
experiments based on dual polarization Sentinel data in Beijing, Fukang, and Xinjiang and
XiaoLangDi, respectively, which are three areas with different land cover, and described in
detail the advantages and disadvantages of each according to the comparison results.

However, tailings reservoirs are mostly built far from cities, and therefore, loss of
coherence can easily occur in SAR images. As a result, there is relatively low point selection
density in a traditional time series InSAR method, which affects the accuracy and detail of
deformation monitoring. Therefore, to obtain more detailed deformation information on
a tailings reservoir, polarization information was introduced into the processing of time
series InSAR data, and PS and DS pixels were combined in this study. The approach will
provide a new level of technical support for the safe operation of tailings reservoirs.
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After the introduction, the Section 2 of the paper introduces the research area. The
Section 3 introduces the basic principles of the homogeneous point identification method
and the three polarization optimization methods of BEST, SOM, and ESM. In the Section 4,
optimization results are evaluated, and monitoring results of a tailings reservoir are ana-
lyzed. The Sections 5 and 6 are discussion and conclusions, respectively.

2. Experimental Area and Data
2.1. Experimental Area

The mining industry has a long history in Gejiu City, Yunnan Province, China, that
began more than 2000 years ago [18]. The region is rich in mineral resources, and discovered
reserves of tin, copper, zinc, and other ores are estimated at 6.5 Mt. In particular, reserves
of tin are as high as 0.9 Mt, accounting for approximately 33.3% of total tin reserves in
China [19]. The area produces the most tin in China and was the earliest tin production site
worldwide [20]. After years of ore mining, many tailings reservoirs have been built in the
area. The focus in this paper was the Kafang tailings reservoir with geographic coordinates
of 103.05◦–103.40◦ E, 23.12◦–23.28◦ N operated and managed by the Yunxi Kafang branch
(Figure 1).
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Figure 1. Location of the study area: (a) map of Yunnan, China; (b) location of the study area in
Yunnan Province; (c) satellite image of the study area and tailings reservoir.

The Kafang tailings reservoir is a flat, third-class tailings reservoir, which is at the
junction of the central Yunnan fold belt, Yangzi platform, and Simao block [21]. The
reservoir is formed by the merger of Yuanxiniu Pond and Yangmei Mountain and Yueya
Pond tailings reservoirs. The mining area covers 913,000 m2, and the design storage
capacity is 18.53 million m3. By 2020, 10 million tons of tailings had accumulated in the
tailings reservoir [22]. After years of ore mining in the area, a total of eight sub-dams
have been built in the Kafang tailings reservoir area to form a circular tailings reservoir.
Tailings accumulated in the reservoir are discharged into the tailings reservoir along the
crest of the surrounding stacking dams, forming a circular alternating ore drawing mode. In
addition, the downstream of the tailings reservoir is adjacent to the plant area of the Kafang
branch of the Yunnan Tin Group and Kafang Town. It is a typical “overhead reservoir” [23].
When a dam break accident occurs, the high gravitational potential energy of tailings in
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a tailings reservoir is converted into kinetic energy, causing a major debris flow disaster
with tremendous damage to the environment and people in its path. Therefore, it is vital to
realize large-scale, accurate, and reliable deformation monitoring of tailings reservoirs to
ensure safe operation.

2.2. Experimental Data

The Sentinel-1 earth observation satellite launched by the European Space Agency
Copernicus program provides users with dual-polarization (VV-VH, HH-HV) or single
polarization data (HH, VV) free of charge. In this paper, the experimental data were 25 dual-
polarization, C-band Sentinel-1 SAR images covering the Kafang tailings reservoir, and
the time span was from 9 August 2020 to 24 May 2021. Satellite images adopted terrain
observation with progressive scans SAR (TOPSAR) imaging mode, VV-VH polarization,
incident angle of 43.98◦, and range and azimuth pixel sizes of 2.33 and 13.95 m, respectively,
and the image time resolution was 12 days.

In addition, the external digital elevation model used the 30-m resolution Shuttle
Radar Topography Mission (SRTM) provided by the National Aeronautics and Space
Administration and the National Imagery and Mapping Agency to remove the terrain
phase in the interference phase.

3. Method
3.1. Statistically Homogeneous Point (SHP) Identification

Although fast statistically homogeneous pixel selection (FaSHPS) [24] overcomes the
problem that the traditional hypothesis test is inefficient in identifying homogeneous points
to some extent, the algorithm does not effectively reject nonhomogeneous pixels. Therefore,
Jiang et al. [25,26] improved the FaSHPS algorithm on the basis of sample characteristics
of homogeneous points and proposed using the intensity mean of homogeneous pixels
in the local window to determine a more accurate confidence interval. The HTCI method
increases the efficiency of homogeneous point recognition.

Suppose there is a SAR image set (S1, S2, · · · , SN) with N scenes subject to a complex
circular Gaussian distribution, whose variance is σ2/2, and the intensity of any pixel
(I1, I2, · · · , LN) in the time dimension follows an exponential distribution:

f (I) =
1
σ2 e−

I
σ2 , I ≥ 0 (1)

Under the assumption of a complex circular Gaussian distribution, whether the refer-
ence pixel (q) and the pixel to be estimated (p) are homogeneous points can be expressed
by Equation (2).

H0 : σ2
p = σ2

q = σ2, H1 : σ2
p 6= σ2

q (2)

where H0 and H1 are the null hypothesis and the alternative hypothesis, respectively. The
algorithm first replaces the intensity of the reference pixel with the mean intensity of the
reference pixel in the time dimension (Iq).

Because a likelihood ratio test (LRT) can effectively control the first type of error of a
hypothesis test, the initial set of homogeneous points of reference pixels can be identified
by this method in a small window. Then, under the condition of 2N degrees of freedom,
the following Equation (3) can be obtained according to the relation between exponential
and chi-square distributions (χ2):

σ2
q Ip

σ2
p Iq

=
χ2

2Np
/2Np

χ2
2Nq

/2Nq
∼ F2N ,2N ⇒

Ip

Iq

H0∼ F2N,2N (3)

Therefore, when the reference pixel and the pixel to be estimated belong to the ho-
mogeneous point, that is, it is true, the ratio of the average intensity of the reference pixel



Remote Sens. 2022, 14, 3655 5 of 19

and the pixel to be estimated obeys the F distribution, and its confidence interval is the
following:

P

{
fα/2;2N <

Iq

Ip
< f1−α/2;2N

}
= 1− α (4)

The initial set of homogeneous points of the reference pixel is obtained by Equation (4),
and the average intensity of all homogeneous points in the set is used to replace the average
intensity estimation of the reference pixel ( Ĩq). Because SAR image intensity is subject
to a gamma distribution, a more accurate confidence interval for homogeneous point
recognition can be obtained under a given confidence level using Equation (5):

P
{

gα/2;N · σ2/N < σ < g1−α/2;N · σ2/N
}
= 1− α (5)

where gα/2;N is the quantile of gamma distribution, σ is replaced by the average intensity
estimation of the reference pixel, σ is replaced by the average intensity of the pixel to be
estimated, and N is the number of SAR images. When the average intensity of the pixel
to be estimated falls within the confidence interval, it is recognized as a homogeneous
point. Otherwise, it is a heterogeneous point. This method successfully applies an LRT
test to identify homogeneous points. On the basis of controlling the first type of error,
the influence of the second type of error on the identification of homogeneous points is
reduced.

3.2. Polarimetric Interferometry

Because dual-polarization (VV-VH) Sentinel-1 polarization data were used in this
paper, SVH = SHV [27] under the condition of backscattering reciprocity, so the scattering
matrix can be expressed by Equation (6):

S =

[
0 SVH

SVH SVV

]
(6)

where SVV and SVH are vertical copolar and cross-polar channels, respectively. By using the
unitary transformation [28], the scattering matrix S can be transformed into the scattering
matrix on any elliptic orthogonal basis Sab.

Sab =

[
Saa Sab
Sab Sbb

]
= UTSU (7)

where T is transpose operator, and U is the transformation matrix. The transformation
matrix U can be obtained from Equation (8):

U =

[
cos ψ − sin ψ
sin ψ cos ψ

][
cos χ j sin χ
j sin χ cos χ

][
e+jφ0 0

0 e−jφ0

]
(8)

where ψ and χ are the orientation and ellipticity angles of the polarization ellipse, respec-
tively, and φ0 is the absolute phase, which is irrelevant from the interferometric point of
view and is generally set to 0.

The scattering vector k can be obtained by decomposing the scattering matrix S
according to the Pauli basis [29]:

k = [SVV , 2SVH ]
T (9)

With two different scattering vectors k1 and k2, the polarimetric SAR interferometry
(PolInSAR) vector K can be obtained as follows [29]:

K = [k1, k2]
T (10)
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Under the assumption of spatial uniformity and ergodicity, the PolInSAR coherency
matrix T [30] can be obtained according to Equation (11):

T = K ∗ KH =

[
T11 Ω12
Ω21 T22

]
(11)

where H is the conjugate transpose, T11 and T22 are the coherency matrix of each polarimetric
SAR (PolSAR) data set, and Ω12 and Ω21 are the PolInSAR coherency matrices. The
normalized complex projection vector ω [31] is used to project the scattering vector as
follows:

ω =

[
cos(α)

sin(α)ejψ

]
,
{

0 ≤ α ≤ π/2
−π ≤ ψ < π

(12)

where α is the scattering mechanism, and ψ is the phase relation of the scatterer. Equa-
tion (13) is used to project the dual-polarization SAR image as follows:

µi = ωi
† · ki, i= 1, 2 (13)

where † is the conjugate transpose, and µi is the scattering coefficient. When the normalized
complex projection vector is determined, the interference phase generated by any two
scattering vectors can be obtained by Equation (14) [32].

φ= arg(µ1µH
2 ) (14)

where arg () is the phase operator.

3.3. Polarimetric Optimization

To apply polarization information to deformation monitoring, BEST, ESM, and SOM
polarization optimization methods were used to optimize PS and DS pixels to improve the
phase quality, phase unwrapping accuracy, and monitoring point selection density.

3.3.1. BEST

The BEST method is based on the selected polarization channel, and it provides the
highest coherence for each pixel of an interferogram [33]. After DS pixels are identified by
the HTCI method, on the basis of BEST, the polarization of PS and DS pixels is optimized
by using DA and γ, respectively.

To prevent phase mutation after polarization optimization, the same polarization
channel should be selected for each interferogram, whether PS or DS pixels, to ensure phase
stability. For PS and DS pixels, the DA and γ of each polarization channel are calculated,
respectively, and the phase provided by the polarization channel that provides DA,Best and
γBest is selected as the phase after polarimetric optimization as follows:

DA,Best = min{DA,VV , DA,VH}
|γBest| = max{|γVV |, |γVH |}

(15)

where DA,VV and DA,VH are the amplitude dispersion of copolar and cross-polarization,
respectively, γVV and γVH are the coherence of copolar and cross polarization, respectively,
and DA,Best and γBest are the minimum amplitude dispersion and the maximum coherence,
respectively.

3.3.2. ESM

Because the BEST method only selects the phase that provides the minimum amplitude
dispersion and the maximum coherence from the polarization channels as the optimized
phase, it does not fully use the polarization information. Therefore, to make full use of
polarization information in phase optimization, the equal scattering mechanism (ESM)
method has been proposed [34].
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This ESM method solves the projection vector and obtains the parameters that min-
imize and maximize the polarization amplitude dispersion (DA,Pol) of PS pixels and the
polarization average coherence ( |γPol |) of DS pixels, respectively, as follows:

DA,Pol =
σA
mA

= 1
|ω†k|

√
1
N

N
∑

i=1
(|ωi

†ki| − |ω†k|)
2

|ω†k| = 1
N

N
∑

i=1

∣∣ωi
†ki
∣∣

γPol =
|ω†

1 Ω12ω2|√
ω†

1T11ω2
√

ω†
1T22ω2

|γPol | = 1
n

n
∑

i=1

∣∣γPol,i
∣∣

(16)

where σA and mA are the amplitude standard deviation and the mean amplitude of the
pixel time series, respectively, ωi(i = 1, 2 . . . , N) makes the polarization amplitude dis-
persion and average coherence reach the minimum or maximum normalized complex
projection vector, respectively, and N and n are the number of images and interferograms,
respectively. There are many methods to solve parameters, but the commonly used method
is currently exhaustive search polarization optimization [35]. The method traverses the
entire polarization space to obtain the optimal projection vector ωopt. Because the optimal
projection vector is not unique, the phase jump is prevented by Equation (17) as follows:

arg
(

ωH
1,optω2,opt

)
= 0 (17)

Physically, there is no time or scattering decoherence for the scatterers.

3.3.3. SOM

Although ESM makes full use of polarization information, it is only tenable under the
assumption of polarization stability. Otherwise, abnormal values appear in the polarization
optimization process, which render ESM results meaningless. Therefore, to avoid this
situation, the sub-optimum scattering mechanism (SOM) method has been proposed [36].

Based on the concept of BEST, all combinations of ψ and χ are searched to obtain the
minimum amplitude dispersion and maximum coherence values, which are regarded as
the optimal parameters, according to the following equations:

DA,SOM = min
(ψ,χ)

{
DA,aa(ψ, χ), DA,ab(ψ, χ)

}
|γSOM| = max

(ψ,χ)
{|γaa(ψ, χ)|, |γab(ψ, χ)|} (18)

where γaa and γab are determined as follows:

γaa =
E{Saa,1Saa,2}√

E
{
|Saa,1|2

}
E{|Saa,2|2}

γab =
E{Sab,1Sab,2}√

E
{
|Sab,1|2

}
E
{
|Sab,2|2

} (19)

where Saa,i and Sab,i are the copolar and cross-polar channels under the parameters ψ and
χ, respectively, and i = 1, 2 is the first and second image, respectively, of the generated
interferogram. The optimal parameters ψ and χ are obtained by the equations in (18),
and then the optimized interference phase is obtained. Because the solution space of this
method is a subspace of ESM, the SOM method can effectively reduce the occurrence of
outliers when polarization is unstable.

The above is the principle of the technology and method used in this paper, and the
specific processing process is shown in Figure 2.
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4. Experimental Results

According to the basic principle of PS-InSAR, a short spatiotemporal baseline can
reduce the effect of SAR image decoherence [6]. In this paper, the image of 12 January 2021
in the center of the time series was selected as the main image, and the other images formed
24 interference pairs with the main image (Figure 3).
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Figure 3. Temporal and perpendicular baseline graph of the generated interferogram stack. Red and
green dots represent primary and secondary SAR images forming the interferograms, respectively.

4.1. Analysis of Homogenous Point Selection

The selection of homogeneous points is a key step in the processing of polarization
time series. Because different ground objects have different scattering mechanisms for
electromagnetic waves with different polarization modes, it is difficult to fully identify
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homogeneous pixels through single polarization channels. Therefore, in this paper, multi-
polarization information was used to extract homogenous points. The HTCI algorithm was
used to select homogenous points at significance level α = 0.05. A small 7 × 7 window was
used to select the initial set of homogenous points, and then a large 15 × 15 window was
used to determine the final set of homogenous points. The threshold of homogenous points
was set to 20 [37]. The homogeneity selection results of VV (Figure 4a) and VH (Figure 4b)
different polarization channels were fused as the final homogeneity recognition results
(Figure 4c), and pixels were divided into PS and DS pixels according to the homogeneity
threshold. Because of the fusion of homogeneous points of different polarization channels,
some PS pixels can be easily mistakenly classified as DS pixels. Therefore, in this paper, the
amplitude dispersion of each pixel in the DS set under different polarization channels was
calculated, and the pixels with a value less than 0.25 [17] were classified as PS pixels.
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C represent the selected special area, respectively. The chromaticity bar on the right indicates the
number of selected homogeneous points.

As shown in Figure 4, in the area of vegetation coverage and tailings reservoir, the
number of homogeneous points after fusion increased significantly. In addition, contours
of features in the fusion results were more definitive, especially on lakes, roads, and the
dam body of the tailings reservoir (areas A, B, and C, respectively; Figure 4), and the
characteristics of those features were clearly identified. According to visual interpretation
and statistical analysis, the most homogeneous points were identified with VH + VV, which
increased the number by 8.45% and 3.86% compared with VV and VH, respectively (Table 1).

Table 1. Comparison of SHP recognition results.

Polarization Mean Value SHP > 20 Improvement (%)

VH 74 225,142 3.86
VV 68 215,618 8.45

VH + VV 89 233,831
SHP represents statistically homogeneous pixel. Polarization and Improvement represent different polariza-
tion channels and the percentage of increase of VH + VV compared with SHP of single polarization channels,
respectively.

To demonstrate the advantages of the fusion method in identifying homogeneous
points, three reference points, a, b, and c, were selected in areas A, B, and C (see Figure 4c),
respectively, and the window to identify homogeneous points was set to 15 × 15 (Figure 5).

Different ground objects had different scattering characteristics of radar electromag-
netic waves, which led to differences in the number of homogeneous points obtained
from different polarization intensity image sets (Figure 5). As shown in Figure 5a,b, the
proposed method effectively increased the number of homogeneous points selected from
the reference pixel, whether in a region with strong or weak scattering intensity. On the
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exposed road (Figure 5b), the number of homogeneous points with the VH channel was
similar to that with the VV channel, but by combining the identification results of the two
homogeneous point data sets, the number of homogeneous points in the lower half of the
road was effectively supplemented. In the tailings reservoir area (Figure 5c), the method
also effectively increased density and accuracy of the selected homogeneous points.
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Thus, the method of selecting homogeneous points used in this paper was reasonable
and reliable. Next, according to identified homogeneous points, the threshold of homoge-
neous points was set to divide pixels into PS and DS pixels, and the polarization phase was
optimized.

4.2. Polarimetric Optimization

The BEST, SOM, and ESM methods were used to optimize the polarization phase of
the PS and DS pixels identified in the previous step. The original VV polarization and
the optimized amplitude dispersion and coherence results were determined. Figure 6
shows distribution histograms of amplitude dispersion, and Figure 7 shows distribution
histograms of coherence.

Amplitude dispersion was the phase quality index, and BEST, SOM, and ESM were
used to optimize the PS pixels (Figure 6). The three methods effectively reduced the
amplitude dispersion of PS, although effects of SOM and ESM were better than that of
BEST, with ESM having the best effect. To further analyze effects, a local, enlarged view was
examined (Figure 6b). Generally, the largest number of pixels with amplitude dispersion in
the range of 0 to 0.45 was after ESM optimization, followed by that after SOM and then
BEST. Compared with the VV channel, the number of pixels with amplitude dispersion
in the range of 0 to 0.3 did not increase significantly after BEST optimization, although
the number of pixels increased significantly in the range of 0.3 to 0.45. After SOM and
ESM optimization, the number of pixels with amplitude dispersion value less than 0.15
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was roughly the same, but in the interval from 0.15 to 0.45, the number of pixels was
significantly greater after ESM than after SOM.
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With coherence as the quality evaluation index, the three polarization optimization
methods were used to optimize the phase of DS pixels (Figure 7). As shown in the coher-
ence histogram in Figure 7a, the BEST, SOM, and ESM methods effectively increased the
coherence of DS pixels. When in the range of 0 to 0.4, coherence improved significantly. The
best optimization effect was with ESM, and that with SOM was better than that with BEST.
To further analyze the optimization effect of a high coherence interval, a local, enlarged
figure was examined (Figure 7b). The optimization effect of the three methods in the high
coherence interval was the same as that in the low coherence interval. The best effect
was with the ESM method, with the highest number of pixels with coherence greater than
0.4. Compared with BEST, the number of pixels in the interval with coherence greater than
0.4 increased significantly with the SOM method. The BEST method significantly increased
the coherence of pixels by selecting high-coherence pixels of different polarization channels.

4.3. Deformation Analysis of Tailings Reservoir

Deformation monitoring results of the Kafang tailings reservoir from 9 August 2020 to
24 May 2021 were determined by using the VV channel and three polarization optimization
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methods (Figure 8). In general, monitoring results with the different methods were similar.
A total of 8286 monitoring points were selected using the VV channel, including 1294 moni-
toring points on the tailings reservoir. A total of 15,184 monitoring points were selected by
the BEST method, including 1516 monitoring points on the tailings reservoir, and 30,310
and 47,721 monitoring points were selected by SOM and ESM methods, respectively, with
2384 and 2637 monitoring points, respectively, on the tailings reservoir. The three polariza-
tion optimization methods effectively increased point selection density in the region and
ensured the accuracy of subsequent phase unwrapping. Compared with the VV channel,
the three methods increased the density of monitoring points by 1.83 (BEST), 3.66 (SOM),
and 5.76 (ESM) times, whereas on the tailings reservoir, the density of monitoring points
increased by 1.17 (BEST), 1.84 (SOM), and 2.04 (ESM) times. With the increases, comprehen-
sive deformation information of the surface and tailings reservoir in the area was displayed.
According to the deformation rate diagrams of the tailings reservoir, the monitoring results
of each method were relatively consistent. The black rectangle in Figure 8h shows the
maximum deformation area of the tailings reservoir. Deformation of the tailings reservoir
edge was relatively stable, whereas that in the middle was small. Thus, deformation tended
to diffuse from the maximum deformation area to the surrounding area. In conclusion,
integrating polarization information increased the density of monitoring points obtained
by time series InSAR, covering almost the entire tailings reservoir area, which can provide
new technical support for high-precision, all-around, fine monitoring of tailings reservoirs.
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Figure 8. Monitoring results of deformation rate of a tailings reservoir: (a), (b), (c), and (d) repre-
sent deformation rate results of VV, BEST, SOM, and ESM methods, respectively; (e), (f), (g), and
(h) represent deformation rate results of VV, BEST, SOM, and ESM methods in red rectangular areas.
The number and () in the upper left corner indicate the number of highly coherent points selected
and percentage increase by different methods w.r.t that of the VV channel.

To evaluate the reliability of monitoring results with each method, deformation rates
of the nearest monitoring points between two algorithms were selected for comparison,
and deformation rate correlation diagrams are shown in Figure 9. A total of 8248 nearest
neighbors were selected by VV and BEST. Because the monitoring results of different
methods were distributed independently, the reliability of different methods could be
verified by calculating the correlation coefficient r, with a value between −1 and 1. When
the value of r was close to 1, the correlation between two methods was high. The r was
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0.81 between the VV and the BEST method. A total of 14,758 closest points were selected
between the BEST and SOM methods, and the r value was 0.87, whereas 30,210 closest
points were selected between the SOM and ESM methods, and the r value was 0.89.
Therefore, with an increase in point selection density, the r value also increased, Thus, the
increase in point selection density effectively overcomes the low point selection density of
the VV channel in nonurban areas and poor monitoring results and ensures reliability of
monitoring the surface deformation of tailings reservoirs by providing more detailed data.
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The standard deviation of monitoring points of different methods was calculated
using a bootstrapping method [38] (Figure 10). The standard deviation of the VV and
BEST methods was large, and thus the monitoring accuracy was low, whereas the standard
deviation of SOM and ESM methods was small, and thus the monitoring accuracy was
high. Peak values of fitted curves for the VV (Figure 10a) and BEST (Figure 10b) methods
were greater than 6 mm/year, and the standard deviation of the average deformation rate
was 6.4 (VV) and 6.3 (BEST) mm/year. The standard deviation of deformation rate was
mainly in the range of 4 to 10 mm/year, and the number of pixels in that range accounted
for 93.1% (VV) and 94.0% (BEST) of the total number. By contrast, peak values of fitted
curves of SOM (Figure 10c) and ESM (Figure 10d) methods were less than 6 mm/year,
and the standard deviation of the average deformation rate was 5.1 (SOM) and 4.9 (ESM)
mm/year. The standard deviation of the deformation rate was mainly in the range of 1 to
10 mm/year, and the number of pixels in that range accounted for 97.0% (SOM) and 98.4%
(ESM) of the total. Thus, an increase in the density of monitoring points was conducive to
subsequent phase unwrapping, thereby improving the accuracy of deformation monitoring
in the study area.

To further analyze the deformation of the tailings reservoir, three profile transects
were examined (Figure 11). All three profiles extended from the maximum deformation
area of the tailings reservoir in different directions to the dam bottom of the tailings
reservoir. The A–A′ profile was from the maximum deformation area along the edge of
the reservoir; the B–B′ profile was from the maximum deformation area through the center
of the reservoir, and the C–C′ profile was along the maximum deformation direction of
the tailings deformation. Along the A–A′ profile (Figure 11a), the monitoring results of
the four methods were generally consistent. The deformation rate changed gradually
within 670 m from point A and then began to change significantly after 670 m. However,
because of the low point selection density of VV channels in the tailings reservoir area,
accuracy of subsequent phase unwrapping was poor. Compared with the other three
methods, there was a great difference in the deformation rate at less than 300 m from
point A. From 475 m to 670 m from point A, the transect passed through the edge of
the reservoir, resulting in poor coherence and low point selection density. At distances
greater than 700 m from point A, the deformation rate increased continuously, reached the
maximum deformation rate at 830 m, and then decreased continuously. Along the B–B′
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profile (Figure 11b), changes in deformation rate were generally consistent with those of the
A–A′ profile. At less than 400 m from point B, the three polarization optimization methods
produced deformation rates that were denser and more consistent than those of the A–A′

profile. However, between 400 m and 630 m from point B, the selected points were sparse,
and the consistency of the deformation rate was poor because the transect passed through
the reservoir. At distances greater than 660 m from point B, changes in the deformation rate
were consistent with those of the A–A′ profile at the maximum deformation rate. Along
the C–C′ profile of the maximum deformation of the tailings reservoir, the consistency of
SOM and ESM methods was generally better than that in A–A′ and B–B′ profiles. Because
of the problem of point selection density, VV channels had many points at less than 265 m
from point C, which were different from deformation rates of the other three methods.
However, changes in deformation rates with the four methods were consistent. At less than
350 m from point C, deformation rates clearly increased, but from 350 m to 650 m, changes
in the deformation rate were more gradual. As the profile passed through the reservoir
area, monitoring points were not selected for VV channels, and deformation rates of the
monitoring points selected by the BEST method were significantly different from those of
the SOM and ESM methods. The difference could be explained because the BEST method
did not select enough monitoring points to improve the accuracy of phase unwrapping,
which led to large changes in the deformation rate. However, deformation rates of the
SOM and ESM methods continued to be highly consistent because of the high density of
monitoring points. Where the deformation rate was large, the change trend continued to
increase at first and then decreased. In conclusion, the polarization optimization methods
effectively increased the point selection density of the tailings reservoir, which solved the
problem of insufficient point selection density of VV channels in non-urban areas and
improved the precision in subsequent phase unwrapping. Compared with the monitoring
results of VV channels, the application of polarization information in the deformation
monitoring of tailings reservoirs can provide highly consistent and reliable data to support
the safe operation of tailings reservoirs.
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5. Discussion
5.1. Analysis of Tailing Pond Deformation Based on Precipitation Data

To analyze the accumulated deformation of the tailings reservoir, monitoring points
with large accumulated deformation at the same location on the tailings reservoir were
selected to examine changes in deformation with time (Figure 12). Changes in accumulated
deformation with different methods were similar and consistent. To analyze causes of
deformation in the tailings reservoir, local precipitation data were correlated with accu-
mulated deformation (Figure 12). On the basis of experimental results, the deformation
of the tailings reservoir was divided into three stages in the study period. The first stage
was a settlement stage from 9 August 2020 to 1 November 2020, followed by a slight
uplift stage from 1 November 2020 to 17 February 2021, and then a continuous settlement
stage from 17 February 2021 to 24 May 2021. From 9 August 2020 to 2 September 2020,
because of a large amount of precipitation, the dam body of the tailings reservoir was
washed by rainwater, resulting in settlement of the tailings reservoir. Later, also because of
a large amount of precipitation, rainwater was recharged, the groundwater level rose, and
surface water absorption and expansion led to a slight rise in the tailings reservoir from
2 September 2020 to 20 October 2020. Subsequently, the ponding in the tailings reservoir was
discharged through the drainage system, and as a result, the tailings reservoir settled from
20 October 2020 to 1 November 2020. However, from 1 November 2020 to 17 February 2021,
when local precipitation decreased significantly and the ground rebounded, the tailings
reservoir was less affected by external factors and rose to a certain extent. By contrast, from
17 February 2021 to 24 May 2021, the tailings reservoir continued to settle because of the
effect of precipitation.

According to relevant data [23], the deformation of a tailings reservoir is coarse in
front of the dam and fine in the pond in the horizontal direction, and there is a serious
phenomenon of a fine particle accumulation layer, a cross-layer, and interbedding. In the
vertical direction, there is a relation between upper coarse and lower fine, and there are
many fan-shaped “sugar core” weak intercalations, showing heterogeneity and anisotropy.
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In a leaching experiment, first, the tailings swell and rebound. After leaching is stopped for
a period of time, the deformation shrinks rapidly and becomes stable. With an increase
in leaching time, the deformation gradually tends to zero. Because there are many “sugar
core” weak intercalations in tailings reservoirs, monitoring the deformation is essential.
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5.2. Calculation Efficiency Analysis

This experiment was conducted on a processor configured with a 5-core Intel (TM)
i5-10500 CPU and a 20 GB of RAM computer. The software used was Matlab R2019a. The
search step was set to 5◦, the experiment was not conducted in parallel, and the GPU was
called for processing.

Time required and improvement effect of the three polarization optimization methods
were compared (Table 2). The BEST method required the least time, but its improvement
effect was not significant. The ESM method required the longest time, but it increased the
density of monitoring points in the entire area by 476% and in the tailings reservoir area
by 104%. Thus, the optimization effect of the ESM method was substantial. Because the
search space of the SOM method was a subspace of the ESM method, its calculation time
was shortened by nine hours compared with that with the ESM method. The improvement
effect of the SOM method was better than that of the BEST method but inferior to that of
the ESM method.

Table 2. Polarimetric optimization computation time of PolPSI techniques.

Method Time (h) Improvement Test Site

BEST 1.5 83% (17%)
Kafang (500 × 2500)SOM 28 266% (84%)

ESM 37 476% (104%)
Method represents the polarization optimization method used. Time represents the time required for different
methods. Improvement, and () represent the percentage of increase in high coherence points in the whole study
area and the tailings reservoir area w.r.t. that of VV channel, respectively. Test site represents the study area, and ()
represent the size of the image.

The experimental results showed that additional time was needed to obtain good
monitoring results, and as a result, the time spent in optimization could seriously limit the
application of this technology in actual production and monitoring. Therefore, to solve this
problem, the following aspects can be improved. First, increase the search step of SOM
and ESM methods to improve the calculation efficiency and shorten the required time,
although this step will inevitably lead to a decline in monitoring results. Second, upgrade
computer hardware, configure a higher performance processor, and then parallel the SOM
and ESM methods in Matlab and call the GPU for processing, which will help improve
the computing efficiency and ensure good monitoring results under the condition that the
search step size remains unchanged. Last, use more efficient polarization optimization
methods, such as the coherency matrix decomposition (CMD) method [39].
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6. Conclusions

In this paper, dual-polarization Sentinel-1 data from 9 August 2020 to 24 May 2021
were acquired. The HTCI algorithm was used to identify the homogeneous points of
different polarization channels and fuse them. Pixels were divided into PS and DS pixels,
and then three polarization optimization methods (BEST, SOM, and ESM) were used to
monitor the deformation of the Kafang tailings reservoir in Gejiu City, Yunnan Province,
China. The conclusions were as follows:

(1) Fusing the homogenous points obtained from different polarization channels in-
creased the density of homogenous points, with densities 3.86% and 8.45% higher
than that of VH and VV, respectively. The BEST, SOM, and ESM methods were used
for polarization optimization. Comparing amplitude dispersion and coherence, the
three methods provided significant improvements compared with VV polarization,
but the optimization effect was in the order ESM > SOM > BEST.

(2) Deformation monitoring of a tailings reservoir showed that compared with VV po-
larization, the three optimization methods significantly improved the point selection
density. In the image coverage area, the three optimization methods increased the
density by 1.83 (BEST), 3.66 (SOM), and 5.76 (ESM) times compared with that with VV
polarization, whereas in the tailings reservoir area, density increased by 1.17 (BEST),
1.84 (SOM), and 2.04 (ESM) times.

(3) Correlation coefficients between VV and BEST, BEST and SOM, and SOM and ESM
were 0.81, 0.87, and 0.89, respectively, indicating that the calculated deformation rates
of the tailings reservoir had a certain reliability. In addition, with the increase in point
selection density, SOM and ESM methods effectively reduced the standard deviation
of deformation rate, which improved the accuracy of subsequent phase unwrapping.

(4) Although the BEST method increased the point selection density, it only selected the
optimal phase on the basis of existing polarization channel data and did not fully
use the polarization information. By contrast, the SOM and ESM methods more fully
used polarization information to improve the phase quality of pixels by searching the
polarization space. However, those two methods needed to use an exhaustive method
to search the polarization space, and as a result, the computational efficiency was
low. By increasing the step length of the ESPO method, the search times of the whole
polarization space will be reduced, and the computational efficiency will be effectively
improved, but this means that the monitoring density will decrease. In addition, using
parallel computing, calling GPU, or using more efficient CMD methods will effectively
solve the problem of low computational efficiency. Therefore, how to improve the
computational efficiency of SOM and ESM will be the focus of future research.
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