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Abstract: This study investigates the influence of meteorological parameters such as temperature
and precipitation on gross primary production (GPP) in the continental United States (CONUS)
during boreal summer using satellite-based temperature and precipitation indices and GPP data at
various scales (i.e., pixel, county, and state levels). The strong linear relationship between temperature
and precipitation indices is presented around the central United States, particularly in the Great
Plains, where the year-to-year variation of GPP is very sensitive to meteorological conditions. This
sensitive GPP variation is mostly attributable to the semi-arid climate in the Great Plains, where crop
productivity and temperature are closely related. The more specific information for the regionality of
the relationships across the variables manifests itself at higher resolutions. The impact of the summer
meteorological condition on the annual crop yield is particularly significant. Maize and soybean
yields show a strong correlation with both Temperature Condition Index (TCI) and Precipitation
Condition Index (PCI) in the Great Plains, with a relatively higher relationship with TCI than PCI,
which is consistent with the relationship compared with GPP. This study suggests that in-depth
investigations into the relationship between maize and soybean yields and the climate are required.
The region-dependent relationship between GPP and meteorological conditions in our study would
guide agricultural decision making in the future climate.

Keywords: regional climate; crop productivity; crop yield; gross primary production; tempera-
ture; precipitation

1. Introduction

The United States (US) is one of the world’s major crop producers, accounting for roughly
one-third of world maize and soybean production [1]. Crop yields in the US show a positive
long-term trend tied to continued developments in crop genetics and agronomic practices [2],
while representing substantial variation associated with climate conditions [3–5]. Studies
have shown that the annual variability of agricultural production is sensitive to year-to-year
fluctuations in regional climate [5,6]. As discussed in Ray et al. [7], more than 36% of the
annual variability of crop yield in the US Midwest is due to regional climate variability. Many
studies have attempted to investigate the relationship between US crop yield and global
climate variability, such as the El Niño–Southern Oscillation (ENSO), which can affect regional
climate conditions [8–13].
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The influence of regional climate conditions on crop yield can be attributed primarily to
soil moisture variations, which result mostly from the interaction between temperature and
precipitation. The anomalously high temperature and low precipitation during the growing
season have been regarded as the main drivers creating unfavorable conditions for crop
growth [4,14]. Excessively high temperatures in the growing season can decrease crop yield
exponentially [15,16], cause pollen sterility, and reduce seed sets [6,17]. Prolonged lack of
precipitation leads to a decrease in soil moisture that harms crop growth [18,19], indicating
that the influence of these climatic factors can intensify under drought conditions [6]. As
mentioned in Park et al. [18], two–three months before harvesting (July and August for
maize and soybean) is the most important period because maize silking and soybean
blooming occur during that season. Obviously, it is hard to demonstrate which climate
condition is most responsible for crop yield variation, because (i) regional temperature and
precipitation in boreal summer are highly correlated and (ii) the relative importance of the
climate conditions depends on the regional characteristics. The analysis in this paper seeks
to resolve the above-mentioned aspects to provide detailed information about the role of
climate conditions in US agriculture.

Although many observational station data and the census of agriculture are available in
the continental United States (CONUS) at national and state levels, they are still insufficient
to represent the relationship between regional crop yield and climate conditions. What is
required is an understanding of the relationships between crop yields and climate variability
at finer spatiotemporal scales (e.g., county level and pixel level) [20]. Local-scale climate
conditions usually demand spatiotemporally continuous high-resolution data to understand
the effect on crop yield. Satellite-derived data provide spatiotemporally continuous climate
conditions (e.g., precipitation, land surface temperature (LST), and soil moisture) covering
large areas at relatively high resolution. Therefore, satellite data are useful for analyzing the
influence of climate conditions on crop yield at local and regional scales. This study uses
satellite-based precipitation, LST, and gross primary production (GPP) to identify the influence
of local climate on crop growth. For better spatiotemporally continuous investigations, GPP is
used as a surrogate variable representing agricultural production [21]. Maize and soybean
yields are also used to identify the influence of climate conditions.

This study aims to identify the influence of climate conditions from high-resolution
satellite images and to understand the role of climate conditions affecting regional maize
and soybean production. Because anomalous climate conditions such as unusually hot
and dry summers cause significant modulation in the US crop yield via excessive heat
stress [6,18,22], this study focused on July–August. Another goal is to investigate whether
the climate–US maize and soybean yield relationship exhibits regional dependency. The
sensitivity of maize and soybean yield to temperature and precipitation depends on local
factors, including irrigation rates, dry soil conditions, and farming methods [23–25]. These
considerations strongly suggest that detailed investigations of regional characteristics of
the climate–maize and soybean yield relationship are necessary. A better understanding of
the relative role of regional temperature and precipitation on crop productivity will greatly
benefit a wide range of agricultural applications. The specific objectives of this paper are to:
(i) examine correlations between satellite-based temperature and precipitation indices and
GPP data at various scales (i.e., pixel, county, and state levels); (ii) identify what causes the
regionally dependent sensitivity of GPP to the meteorological conditions; and (iii) examine
the extent to which GPP can explain maize and soybean yield in the census.

2. Data and Methodology

The considered study area CONUS comprises 48 states and the District of Columbia.
This study was conducted using LST, precipitation, GPP, and crop yield data across CONUS
(Table 1). Moderate resolution imaging spectroradiometer (MODIS) provides various surface
products which are useful to monitor crop growth. Monthly MODIS daytime Terra satellite
LST data (MOD11C3) in summer were used in this study. The LST data are obtained at
about 10:30 a.m. local time and have 0.05◦ spatial resolution. The generalized split-window
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algorithm was used for retrieving the LST products [26]. GPP data based on daily net
photosynthesis was used to diagnose the condition of the growth of crops (maize and soybean).
In this study, an 8-day composite MODIS GPP product (MOD17A2) at daytime (10:30 a.m.)
with 1 km resolution was used. The MODIS LST and GPP products for July and August
from 2000 to 2020 were downloaded from NASA Earthdata Search (https://lpdaac.usgs.gov/
tools/earthdata-search; assessed on 1 February 2022). Monthly precipitation data for July and
August from 2000 to 2020 was obtained from Climate Hazards Group InfraRed Precipitation
with Station data (CHIRPS) (https://www.chc.ucsb.edu/data; assessed on 1 February 2022),
which combines satellite imagery with 0.05◦ resolution and in situ station data to produce a
gridded rainfall time series [27]. CHIRPS especially shows good agreements with the station
data in CONUS [28]. The MODIS GPP data with 1 km resolution were mean aggregated to
0.05◦ resolution and transformed to a monthly time scale by considering the number of days in
the composite data. Precipitation data were reprojected onto MODIS imagery. Crop yield data
from 2000 to 2020 were obtained from the US Department of Agriculture National Agricultural
Statistics Service Quick Stats (USDA NASS; https://quickstats.nass.usda.gov/; assessed on
1 February 2022). Total maize (grain) and soybean yield data from survey data measured in
units of bushels per acre were used. The bsh/ac can be converted to tonnes/hectare (t/ha)
using a conversion factor of 0.063 and 0.067 for maize and soybean, respectively.

Table 1. Data used in this study. The spatial resolution is described based on the original product.

Type Product Spatial Resolution Units

Land surface temperature (LST) MODIS/Terra Monthly LST (MOD11C3) 0.05◦ Kelvin
Gross primary production (GPP) MODIS/Terra 8-day GPP (MOD17A2) 1 km kg C/m2

Precipitation Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) 0.05◦ mm

Crop yield data for maize and soybeans US Department of Agriculture National
Agricultural Statistics Service Quick Stats Vector (State-level) Bushels per Acre

Figure 1 shows the long-term mean spatial distribution of LST and precipitation aver-
aged from July to August (Figure 1a,b), the amount of state maize and soybean production
(Figure 1c,d), and the irrigation rate (Figure 1e). The percentages of US maize and soybean
production are indicated for each state (Figure 1f). The Midwest shows relatively lower
LSTs in summer compared with other regions, while the western US exhibits high LSTs
due to low evaporation from their dry condition (i.e., arid, desert, or steppe climate) [29].
For precipitation, the eastern US has a huge amount of rainfall in the summer, particularly
in the southeastern US. The large rainfall in these regions is associated with the moisture
transport from the Gulf of Mexico via the Caribbean low-level jet [30]. The Midwest also
exhibits relatively large summer rainfall, due to moisture convergence based on the Great
Plains low-level jet [31]. With the cool and rainy background climate, the major regions
for maize and soybean production are located in the midwestern maize/soybean belt
area (Figure 1). The states that make up 80% of total maize and soybean production are
highlighted with a specific boundary (Figs. 1c and e). Nine states—South Dakota (SD),
Nebraska (NE), Kansas (KS), Minnesota (MN), Iowa (IA), Wisconsin (WI), Illinois (IL),
Indiana (IN), and Ohio (OH)—for maize, and eleven states—SD, NE, KS, MN, IA, IL, IN,
OH, North Dakota (ND), Missouri (MO), and Arkansas (AR)—for soybean are included in
these boundaries. The irrigation rate is relatively high in arid regions (>60%) and relatively
low in humid regions (<20%) (Figure 1e).

Since the quantitative range of values for LST and precipitation differ, we normalized
each of their pixels for July and August between 2000 and 2020. These normalized LST
and precipitation products are known as the Temperature Condition Index (TCI; [32]) and
the Precipitation Condition Index (PCI; [33]). In particular, they are widely used indices in
drought research (Equations (1) and (2)).

https://lpdaac.usgs.gov/tools/earthdata-search
https://lpdaac.usgs.gov/tools/earthdata-search
https://www.chc.ucsb.edu/data
https://quickstats.nass.usda.gov/
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TCI = (LSTmax − LSTi)/ (LSTmax − LSTmin) (1)

PCI = (PRi − PRmin)/ (PRmax − PRmin) (2)

where LSTmax and LSTmin, and PR max, and PRmin are the maximum and minimum values
of LST and precipitation of given study periods. LSTi and PRi are the LST and precipitation
values of the pixel of a particular ith year.
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Figure 1. The spatial distribution of mean LST and precipitation for July–August (a,b), the amount
of state maize and soybean production, and the average irrigation rate for the state (c–e), and the
percentage of US maize and soybean production indicated for each state (f).

Moreover, the county-level and state-level TCI, PCI, and GPP data were produced by mean
aggregation. The correlations were analyzed between TCI and PCI, TCI and GPP, and PCI and
GPP for pixel-level, county-level, and state-level for July and August. We further assessed the
correlation between crop production and the climate variables (i.e., TCI and PCI) based on the
respective state levels for the major maize and soybean production. As mentioned above, maize
and soybean have positive trends because of the developments in crop genetics and agriculture.
Therefore, the linear trend of maize and soybean yield was removed.

3. Results and Discussion
3.1. The Influence of Meteorological Conditions on GPP

Figure 2 compares year-to-year relationships across TCI, PCI, and GPP at the various
spatial scales in the CONUS during summer. In the central and southeast US, TCI, and
PCI are highly correlated (p < 0.05; see Appendix A Figure A1), indicating that a warm
summer tends to be accompanied by a dryer condition, while their relationship is less
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clear on the northeast and west coasts (Figure 2a). In these regions, an anomalously warm
summer is occasionally accompanied by moist atmospheric advection resulting in the
weaker relationship between TCI and PCI. In seeking GPP sensitivity to the meteorological
conditions, GPP shows a higher correlation (p < 0.05) with TCI and PCI in the central US
(Figure 2b,c and Appendix A Figure A1b,c), where a strong relationship between TCI and
PCI exists (Figure 2a). The regions of larger GPP sensitivity are stretched from south to
north, particularly across the Great Plains. Contrarily, GPP in the southeastern US is less
sensitive to TCI and PCI in spite of the higher correlation between them. It is presumably
because a semi-arid climate in the Great Plains and a wet climate in the southeast have a
different plant type, resulting in different sensitivity, which will be discussed below. In the
southwest, the relationship between PCI and GPP is much weaker than in the other states,
presumably due to widespread irrigation (Figures 1e and 2i). The GPP sensitivity to TCI in
the Great Plains is remarkably stronger than that of PCI, implying that crop productivity
can be linearly related more to the temperature than precipitation. The above-mentioned
features shown in the 0.05◦ grid resolution are consistent with those at the county and state
levels (Figure 2d–j). To aid an advantage of high-resolution data, we compare a few states
in the Great Plains in the form of different spatial resolutions. The regional meteorological
impact can be assessed effectively using high-resolution satellite images (Figure 3). In North
Dakota (ND), for example, the correlation between TCI, PCI, and GPP varies significantly
within the finer scales at the 0.05◦ and county levels but it is difficult to identify at the
state level. Furthermore, in the western part of South Dakota (SD), a region with the Black
Hills National Forest (BHNF) showed a low correlation between TCI, PCI, and GPP locally.
The distinct characteristics of these forestry regions become more apparent as the scale is
increased from state level to 0.05◦ resolution.
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Figure 2. Correlations of annual variation between TCI and PCI, TCI and GPP, and PCI and GPP for
pixel level (a–c), county level (d–f), and state level (g–i) for the average of July and August. Their
significance maps for the correlation are represented in Figure A1.

To further examine the relationship between GPP and each meteorological condition
(i.e., TCI and PCI), their correlation coefficients are compared at the various spatial scales
in the 12 states representing major maize and soybean production (Figure 4). The majority
of regional GPP values in 0.05◦ grid points exhibits a stronger relationship with TCI
than PCI (i.e., the probability below the diagonal line in Figure 4a). This result indicates
that GPP variation in summer is more sensitive to variation of temperature than that of
precipitation, which is consistent with that shown in Figure 2. The correlation between
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GPP and TCI in most grid points exceeds 0.5. A stronger GPP-TCI relationship than the
GPP-PCI relationship is also discerned in the county-level and state-level data (Figure 4b,c).
However, their distribution of population density is statistically less evident than that in
the 0.05◦ data due to the sparse number of the samples.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 2. Correlations of annual variation between TCI and PCI, TCI and GPP, and PCI and GPP 
for pixel level (a–c), county level (d–f), and state level (g–i) for the average of July and August. Their 
significance maps for the correlation are represented in Figure A1. 

 
Figure 3. Detailed correlation analysis of annual variation between TCI and PCI, TCI and GPP, and 
PCI and GPP for pixel-level, county-level, and state-level 0.05° grids for the average of July and 

Figure 3. Detailed correlation analysis of annual variation between TCI and PCI, TCI and GPP, and
PCI and GPP for pixel-level, county-level, and state-level 0.05◦ grids for the average of July and
August over North Dakota (ND), South Dakota (SD), Nebraska (NE), and Kansas (KS). The dotted
circle line represents the region of Black Hills National Forest (BHNF).
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The GPP-TCI and GPP-PCI relationships in the 0.05◦ data and the county-level data
spread out widely, indicating a prominent regional dependency (Figure 4a,b). The state-
level data reveal that GPP in which state is the most sensitive to the meteorological condition
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(Figure 4c). For example, GPP values in the Great Plains (KS, NE, and SD) exhibit a
stronger relationship with meteorological conditions than that in the Midwest. This regional
dependency, consistent with the results shown in Figure 2, can be associated with the
background summer climate in each region. The background climate in the Great Plains is
arid, while the Midwest has a relatively cool and wet climate (Figure 1a,b). To investigate
the influence of background climate on regional dependency of the relationship between
GPP and meteorological variable, the correlation values at the 0.05◦ data in the 12 states are
sorted by long-term mean temperature and precipitation during summer (Figure 5).

Figure 5 shows the relationship between GPP and the meteorological variables as a
function of the regional background climate. The long-term mean climate determines GPP
sensitivity to TCI and PCI each year. The relationship between GPP and the meteorological
condition tends to be strong in a higher (lower) long-term mean temperature (precipitation).
GPP in a region is more sensitive to changes in meteorological conditions if a regional
background climate is warm and dry in summer. The more sensitive GPP response to
TCI and PCI in these regions is likely due to the non-linear relationship between GPP and
temperature, particularly evident in the semi-arid area [34]. Since GPP tends to decrease
exponentially with increasing temperature above a certain threshold, a larger decrease
in GPP with an anomalous warming is expected in the regions of higher background
temperature [34]. This prominent role of background temperature might be one of the
reasons for the aspect that GPP is more sensitive to TCI than PCI. Note that this non-
linear relationship with increasing temperature also appears in comparison with the crop
yield [16]. The results in this section strongly suggest that the temperature and precipitation
sensitivity of GPP is much more prominent in the Great Plains due to the warm and dry
background conditions. If the variation of GPP is consistent with crop yield, the regionally
dependent sensitivity to meteorological conditions would be valid in the annual crop yield.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

non-linear relationship with increasing temperature also appears in comparison with the 
crop yield [16]. The results in this section strongly suggest that the temperature and pre-
cipitation sensitivity of GPP is much more prominent in the Great Plains due to the warm 
and dry background conditions. If the variation of GPP is consistent with crop yield, the 
regionally dependent sensitivity to meteorological conditions would be valid in the an-
nual crop yield. 

 
Figure 5. Correlations of GPP-TCI (red) and GPP-PCI binned by long-term mean summer (left) tem-
perature and (right) precipitation using the 0.05° data in the 12 states of major maize and soybean 
production. Top rows indicate the average of correlation between July and August, and bottom 
rows indicate a ratio of the number of grid points in each bin. In the top rows, standard deviation 
of correlations in each bin is indicated as vertical ranges. 

3.2. Maize and Soybean Yield 
It is examined whether the regional dependency in the relationship between GPP and 

meteorological conditions also appears with the maize and soybean yields. First, the rela-
tionship between the average July–August GPP and annual crop yield is identified in Fig-
ure 6. The majority of states exhibit high correlations between summer GPP and maize 
and soybean yields, except for some states such as AR, ND, and MN. Despite the high 
correlation between summer GPP and maize yield, soybean yield exhibits a relatively low 
correlation with summer GPP (Figure 6). GPP is the photosynthetic accumulation of car-
bon by plants from the atmosphere, and plants having high radiation use efficiency (RUE) 
are efficient at carbon uptake for a given condition [35,36]. Maize and soybean have dif-
ferent photosynthesis pathways. Generally, the four-carbon compound (C4) plant (maize) 
has a much higher RUE value than the three-carbon compound (C3) plant (soybean), so it 
is considered that maize yield has a higher correlation with GPP than soybean yield [37]. 

Figure 5. Correlations of GPP-TCI (red) and GPP-PCI binned by long-term mean summer (left)
temperature and (right) precipitation using the 0.05◦ data in the 12 states of major maize and soybean
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3.2. Maize and Soybean Yield

It is examined whether the regional dependency in the relationship between GPP
and meteorological conditions also appears with the maize and soybean yields. First, the
relationship between the average July–August GPP and annual crop yield is identified in
Figure 6. The majority of states exhibit high correlations between summer GPP and maize
and soybean yields, except for some states such as AR, ND, and MN. Despite the high
correlation between summer GPP and maize yield, soybean yield exhibits a relatively low
correlation with summer GPP (Figure 6). GPP is the photosynthetic accumulation of carbon
by plants from the atmosphere, and plants having high radiation use efficiency (RUE) are
efficient at carbon uptake for a given condition [35,36]. Maize and soybean have different
photosynthesis pathways. Generally, the four-carbon compound (C4) plant (maize) has
a much higher RUE value than the three-carbon compound (C3) plant (soybean), so it is
considered that maize yield has a higher correlation with GPP than soybean yield [37].
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The correlations of state-level crop yields and the summer meteorological conditions
are compared to investigate whether the regional sensitivity of the crop yield to TCI and
PCI exists as it does in GPP (Figure 7). TCI has a higher relationship with crop yields than
PCI, consistent with the results in GPP. As previously stated, it is considered that maize
and soybean yields are more sensitive to variations in temperature than precipitation. As
discussed by Park et al. [18], maize is resistant to a shortage of precipitation, and soybeans,
which have an optimal daytime temperature of 29 ◦C, can suffer from pollen sterility
and reduced seed sets during periods of heat stress [6,17]. Crop yields in KS (maize and
soybean) and NE (maize) had high associations with both TCI and PCI, which is consistent
with the strong GPP-TCI and GPP-PCI link in the Great Plains (refer to Figure 2) where
the background climate is warm and dry (refer to Figure 1). Although maize and soybean
yields have larger correlations with TCI than PCI, the correlations with PCI tend to be
larger in some states located at high latitudes, such as MN (soybean) and ND (maize
and soybean). It is considered that heat stress within an extreme range is not critical
in high-latitude regions [38]. Generally, maize yield shows high correlations with the
meteorological conditions than soybean yield. The lower correlations of soybean yield are
likely due to soybean aphids, which only influence soybean yield and have no effect the
other plant species [39].
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4. Conclusions

The influence of summer meteorological conditions on GPP was identified using
satellite-based temperature, precipitation indices, and GPP data at various scales (i.e., pixel,
county, and state levels). The distinct characteristics of the regional climate impact were
precisely assessed as the scale increased from state level to 0.05◦ resolution. In investi-
gating the relationship across the variables over the twelve major crop-producing states
in CONUS, the temperature and precipitation indices exhibit a strong linear relationship
(r > 0.7) around the central United States. Consistently, the variation of GPP also exhibits a
higher relationship with the summer TCI and PCI in the central United States, while GPP
shows a relatively higher linear relationship with TCI (r~0.9) than PCI (r~0.75). Remark-
ably, their relationship was more robust in the Great Plains, which represent a semi-arid
background climate. In seeking the factor affecting the regionality of GPP sensitivity to me-
teorological conditions, it was the long-term mean climate that determines GPP sensitivity
to meteorological conditions primarily due to the non-linear relationship between them.

The regional impact of the variation of meteorological conditions on the maize and soy-
bean yields was investigated, as was whether the regional dependency in the relationship
between meteorological conditions and GPP also exists in maize and soybean yields. The
correlations between GPP and maize and soybean yields are high in the majority of states,
showing that the impact of meteorological conditions on GPP is similar to that on maize
and soybean yields. Maize yield appeared to have a stronger association with GPP than
soybean production because maize has a significantly higher RUE value than soybeans.
Maize and soybean yields tend to be more sensitive to temperature variations than to
precipitation variations. Consistent with the relationship between GPP and meteorological
conditions, maize and soybean yields had a stronger correlation with TCI and PCI in the
Great Plains. This indicates that a more vulnerable crop growth in a hot extreme is expected
in the Great Plains with a more sensitive GPP response [16]. This study still has some
limitations. This study used statistical methods at the statistical–descriptive level, and the
analysis focused on calendar timing rather than crop timing. Future studies will implement
crop models to describe the mechanisms in-depth and consider the phenology, the lengths
of the soybean and maize crop cycles, and other factors. The regional dependence would
provide useful insights into the more intense, frequent, and long-lasting heat extremes
expected in the future climate [40]. In conclusion, this study suggests that more research
into the climate–crop yield relationship at the local scale is required. Greater knowledge of
the relative roles of regional temperature and precipitation on crop development would
help a variety of agricultural applications.
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