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Abstract: Research into glacial mass change in West Kunlun (WK) has been sufficient, but most of the
existing studies were based on geodetic methods, which are not suitable for specific health state anal-
yses of each glacier. In this paper, we utilize Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) imagery, applying the continuity equation to obtain altitudinal specific mass
balance (SMB) for 615 glaciers (>2 km2) during 2002–2011, 2011–2020, and 2002–2020 to research
glacial health and its response to climatic forcing. The results show dissimilar glacier SMB patterns
between 2002–2011 (0.10 ± 0.14 m w.e. a−1), 2011–2020 (–0.12 ± 0.14 m w.e. a−1) and 2002–2020
(−0.01± 0.07 m w.e. a−1). Additionally, the glacier equilibrium line altitude (ELA) in WK was 5788 m,
5744 m, and 5786 m, respectively, and the corresponding accumulation area ratios (AARs) were 0.59,
0.62, and 0.58, during 2002–2011, 2011–2020, and 2002–2020, respectively. Regarding glacier response,
compared with the ordinary-least-square (OLS) model, the artificial neural network (ANN) model
revealed a respectively less and more sensitive glacier SMB response to extreme negative and positive
summer skin temperatures. In addition, the ANN model indicated that the glacier ELA was less
sensitive when the integrated water vapor transport (IVT) change exceeded 0.7 kg m−1s−1. Moreover,
compared with IVT (−121.57 m/kg m−1s−1), glacier ELA shifts were chiefly dominated by summer
skin temperature (+154.66 m/°C) in the last two decades. From 2002–2011 and 2011–2020, glacier
SMB was more susceptible to summer skin temperature (−0.38 m w.e./°C and −0.16 m w.e./°C,
respectively), while during 2002–2020, it was more influenced by IVT (0.45 m w.e./kg m−1s−1). In
contrast with eastern WK, glaciers in western WK were healthier, although mitigation measures are
still needed to safeguard glacier health and prevent possible natural hazards in this region. Finally, we
believe that the inconsistent change between glacier SMB and ELAs from 2002–2020 was connected
with ice rheology and that the combined effects of skin temperature and IVT can explain the WK
glacier anomaly.

Keywords: specific mass balance; continuity equation; glacier health; glacier response; West Kunlun

1. Introduction

In the past two decades, glaciers worldwide have experienced accelerated ice mass
loss due to global warming [1,2], which will result in more than one billion people facing
water shortages and food insecurity in the upcoming three decades [3,4]. High Mountain
Asia (HMA), regarded as “The Third Pole” [5], contains approximately 7.0 ± 1.8 × 103 km3

ice [6] and includes 95,536 glaciers with a total area of approximately 97,605 ± 7935 km2,
based on the Randolph Glacier Inventory version 6.0 (RGI v6.0) [7,8]. Accordingly, it is
crucial for glaciologists to research glacier change in HMA [9]. Previous studies have
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concluded that in Karakoram, West Kunlun (WK), Eastern Hindu Kush, and Eastern Pamir,
glacier mass balance has been neutral or slightly positive in the last two decades [10–15].
Although numerous studies of glacier elevation or mass change in eastern WK have been
undertaken [16–18], research into comprehensively and spatiotemporal glacier specific
mass balance (SMB) change in WK is still lacking.

Additionally, via laser altimeters, optical stereo images, or interferometric synthetic
aperture radar (InSAR) previous studies have estimated that glaciers in WK have been in a
state of mass gain for the last two decades [15,19–21]. However, these glacier mass balance
results were estimated from surface elevation change datasets and typically used a fixed
area-averaged glacier surface density [22]. In contrast, glacier SMB should be determined
by solving the continuity equation, considering depth-integrated ice flow, and applying
varied ice density on the glacier surface, which is more robust and accurate, and more
suitable for evaluating glacier health [23].

Moreover, glacier equilibrium line altitude (ELA) has been estimated by many glaciol-
ogists in high-mountain environments [24–26]. ELA is defined as the altitude line where
over a period of one year, the accumulation of snow is exactly balanced by ablation [27,28].
There have been many studies about how to retrieve ELA based on the relationship between
glacier mass balance and altitude profile [29–31]. However, these methods require prior
knowledge of the glacier mass balance altitude curve, and in most cases, computation of
ELA acquisition is time-consuming; thus, application of this ELA-retrieving approach has
been limited. Other studies have acquired ELA by measuring the end-of-summer snow
line altitude via optical imagery [32,33] or solely retrieving ELA from >7% or >10 km2 of
debris-covered areas for each glacier [34]. The latter technique assumes that previously
existing debris cover (>1 year) is located within the ablation zone, and newly exposed
debris on the glacier surface (<1 year), which remains more than one year after its exposure
and survives in the accumulation zone. However, due to cloud cover effects on optical
images and limited debris-covered glaciers worldwide, this method has restricted appli-
cations. In the current study, we acquired the ELA for each glacier by applying the Dice
coefficient approach based on glacier SMB outcomes across WK during 2002–2020, which
is less restricted and more robust than previous methods [23].

Previous studies have concluded that glacier mass balance is linearly sensitive to cli-
matic factors (i.e., temperature, precipitation, radiation, humidity, and wind speed) [35–41],
and bare-ice albedo [42]. Conversely, Bolibar et al. [43] confirmed that glacier mass bal-
ance response to meteorological factors is nonlinear. Furthermore, some studies have also
concluded that glacier ELA shifts are correlated with climatic factors [27,44,45]. However,
we discovered that previous studies primarily estimated glacier mass balance and ELAs
through energy and mass balance models, based on meteorological reanalysis datasets
or gauge station measurements. Owing to the scarcity of climatological stations in high-
mountain regions, and the inaccuracy of climatic reanalysis datasets, the extent of glacier
sensitivity to climatic factors remains uncertain. Compared with the energy and mass
balance model, estimating glacier mass balance via continuity is more feasible and reli-
able because it relies on proven techniques (geodetic method, glacier velocity generation,
and ice thickness estimation). Hence, in this study, we applied a continuity equation to
obtain glacier SMB in WK, and to investigate nonlinear glacier SMB and ELA sensitivity to
climatic elements in this area during 2002–2020, via the artificial neural network (ANN)
technique [46].

In this study, we calculated spatially distributed SMB via the continuity equation
during 2002–2020 and its two subperiods (2002–2011, 2011–2020), for each glacier across the
whole WK and its two subregions, Western WK and Eastern WK. Glacier dynamics dataset
were sourced from the ITS_LIVE project [47], and glacier thickness data were supplied by
Farinotti et al. [6]. Additionally, we estimated ELAs and accumulation area ratios (AARs)
for each glacier to research glacier health during 2002–2020. Finally, we utilized the ERA5.1
reanalysis dataset [48] to yield the mean annual skin temperature and integrated water
vapor transport (IVT) trends during 2002–2020, and estimate the nonlinear response to
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these of glacier SMB and ELA in WK in the last two decades. Overall, the contribution of
this work can be summarized into three points: (A) obtaining via continuity equation the
multi-temporal glacier SMB in WK and its two subregions during 2002–2011, 2011–2020,
and 2002–2020; (B) estimating via Dice coefficient the multi-temporal glacier ELA and AAR
variation in WK in the past two decades; (C) researching nonlinear glacier SMB and ELA
response to climate change in WK during 2002–2020.

2. Materials and Methods
2.1. Study Area

WK (35◦–37◦N, 76◦–83◦E) is widely covered by glaciers (see Figure 1). We divided
WK into two subregions, western WK and eastern WK. Based on RGI v6.0, WK includes
4819 glaciers, and the total area of glaciers (>0.01 km2) is 7855 km2, making it one of
the most extensively glaciated areas in China. In western WK and eastern WK, there
are 2958 glaciers (2899 km2) and 1861 glaciers (4956 km2), respectively. These glaciers are
characterized as cirque, valley, and ice-cap types. Herreid and Pellicciotti [34] found that the
area of debris-covered glaciers in WK was 245 km2. The Guliya Ice Cap is the largest ice cap
in mainland Asia (~370 km2) [49], and the Duofeng glacier, the largest mountain glacier in
the WK, has an area of ~240 km2. The main ridge of WK separates the steep northern slope,
descending to the Tarim Basin, and the southern slope, which has a lower gradient towards
the Tibetan Plateau [50,51]. The local climate is frigid and dry and is primarily controlled
by midlatitude westerlies. The annual precipitation and mean temperature near the ELA
(~5930 m a.s.l.) are approximately 300 mm (mainly concentrated in May–September) and
−13.9 °C, respectively [52]. Summer accumulation is dominant for glaciers in WK [53].
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Figure 1. Overview of the study area. Sub panel: Locations of study area, West Kunlun (WK), in
High Mountain Asia (HMA). Main panel: Location of glaciers in the WK and outlines of Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) coverage used in this study, in-
cluding subdivision in Western WK and Eastern WK. Background image is Shuttle Radar Topography
Mission Digital Elevation Model (SRTM DEM). We used Randolph Glacier Inventory version 6.0
(RGI v6.0) as the glacier outline.
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2.2. Data

This study calculated glacier SMB by the continuity equation, leveraging Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) DEMs, ITS_LIVE ice
velocity, and ice thickness during 2002–2011, 2011–2020, and 2002–2020 (Supplementary
Information Tables). In addition, we used the ERA 5.1 reanalysis dataset to obtain the
annual mean skin temperature and IVT trends in WK from 2002–2020 (see Table 1).

Table 1. Data used in this study to calculate glacier specific mass balance (SMB).

Data Used Time Spatial
Resolution (m) Number Purpose

ASTER L1A 2001–2020 15 87 Glacier SMB
ITS_LIVE 2001–2020 240 19 Mean ice velocity

* Farinotti et al., 2019 2000–2016 25 615 Ice thickness estimation
ERA 5.1 2002–2020 0.25◦ × 0.25◦ - Climatic analysis

* Ice thickness data set from https://www.research-collection.ethz.ch/handle/20.500.11850/315707, accessed on
23 April 2022.

2.3. Glacial Elevation Change Generation

To provide full coverage of glaciers in WK in 2002, we used ASTER DEMs from 2001,
2003, 2004, and 2005 to compensate for the dearth of ASTER image coverage in 2002. This
situation also occurred in 2011 and 2020. We chose 2002, 2011, and 2020 as representatives
because the greatest quantities of ASTER imagery were available for these three time points.
We calculated the elevation change for each glacier within its own specific time offset
(Supplementary Information Discussion). In addition, we chose predominantly winter and
spring ASTER images because they could minimize seasonal offset when acquiring glacier
elevation change (hereafter referred to as “seasonal bias”) [54]. To account for the seasonal
bias, we used a winter accumulation rate of +0.15 m per month [55,56].

We used MicMac ASTER software to obtain ASTER DEMs. We chose this software
because it could provide higher-accuracy DEMs with sensor motion (“jitter”) correction,
compared with silcAst software [57]. Next, we applied the methods proposed by Nuth and
Kääb [58] to coregister DEMs for 2002, 2011, and 2020 (excluding glacier area using RGI
v6.0), to obtain glacier elevation change results for the three different periods. Here, we
used ASTER DEMs from 2020 as a primary map to coregister ASTER DEMs from 2002 and
2011. In addition, during the coregistration procedure, we applied fifth-order polynomial
correction for curvature bias, which has been described and applied previously [11,59].
One example of the coregistration results can be seen in Figure 2. Here, we used Median
and Normalized Median Absolute Deviation (NMAD) as statistical tools to evaluate the
effects of DEM coregistration [60].

Furthermore, after we obtained glacier elevation change in WK, we used ASTER DEMs
for the three different periods to acquire the corresponding slope map, and then excluded
from the slope map glacier elevation change pixels > 45

◦
to eliminate erroneous pixels in

the glacier elevation change maps [61].

https://www.research-collection.ethz.ch/handle/20.500.11850/315707
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co-registration; (c) is the statistical analysis of this process (in the subplot (c), med indicates median,
and NMAD is normalized median absolute deviation).

2.4. SMB Obtainment
2.4.1. Continuity Equation

In this study, we used the continuity Equation (1) to calculate SMB for each glacier in
WK [62–64]:

∂H
∂t

= b−∇ ·→q (1)

where ∂H
∂t is the annual rate of elevation change on the glacier surface and b is the annual

SMB, including the surface, internal, and basal mass balance combined; here, however,
we refer to b as the surface mass change, assuming that frontal ablation englacial and
subglacial components are negligible [65,66]. ∇ ·→q is the annual ice flux divergence. All
these equation elements are in the unit of meters of ice equivalent per year (m, i.e., a−1). To
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transfer each unit into meters of water equivalent per year (m w.e. a−1), we can modify
and reorganize Equation (1) into Equation (2):

bw =
∂H
∂t

ρ∂H
ρH2O

+∇ ·→q
ρ∇·→q
ρH2O

(2)

where bw refers to SMB in meters of water equivalent per year [23]. ρ∂H and ρ∇·→q are ice

densities on the glacier surface, ρH2O is the water density (999.972 kg m−3).

2.4.2. Ice Flux and Flux Divergence

To acquire glacier SMB, it was necessary to obtain ice flux divergence. We calculated
the ice flux vector at each pixel according to Equation (3), with the ITS_LIVE multiyear
mean ice velocity dataset for three periods (2002–2011, 2011–2020, and 2002–2020) and the
modelled glacier thickness dataset. Surging glaciers were not excluded, because Yasuda
and Furuya [51] concluded that there were only three surging glaciers in the West Kunlun
Shan from 2000 to 2014, while Dehecq et al. [47] reported that there were only seven glaciers
in a surging state.

→
q = Hγ

→
Vs (3)

where
→
q represents the ice flux vector, H is the ice thickness in meters, γ

→
Vs is the column-

averaged glacier velocity, and the constant γ represents the relative importance of basal
motion and vertical ice shear deformation. To determine γ for each glacier, we applied a
Monte Carlo analysis to estimate the depth-integrated velocity per pixel [23].

The ice flux divergence represents the vertical component of glacier surface velocities,
resulting in submergence in divergent flow zones and emergence in convergent flow zones.
Based on this, we calculated ice flux divergence ∇ ·→q using Equation (4) [23]:

∇ ·→q =
∂
→
qx

∂x
+

∂
→
qy

∂y
(4)

where ∂
→
qx

∂x and ∂
→
qy

∂y represent ice flux divergence values in the x and y directions, respectively.

2.4.3. Density Correction

In this study, we used transformed Equation (2) to obtain SMB as the unit of meters of
water equivalent per year (m w.e. a−1). Thus, it was necessary to consider glacier surface
density variations. We did not consider temporal mean ice density variation, because this
led to an uncertainty of only 2% [67]. Nevertheless, we had to consider the ice density
variation between the accumulation and ablation zones of each glacier, and the dissimilarity
of snow and ice densities. In general, snow and firn usually have a lower density than
clean ice [68].

We took three steps to correct glacier density. First, we assumed that clean ice was the
dominant type spreading over the glacier surface; thus, we gave each glacier an ice density
of 900 kg m−3. After that, we combined the elevation change signal and flux divergence
to classify the accumulation and ablation zones for each glacier. If elevation change and
flux divergence were both positive, we regarded this area as an accumulation zone and
assigned a density of 600 kg m−3. If they both represented negative values, we assumed
this corresponded to the glacier ablation zone, and a density of 900 kg m−3 was assigned.
Finally, for the rest of the glacier area, we assumed a density of 850 kg m−3. We assumed
that glacier density uncertainty was 60 kg m−3 [23].
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2.5. Uncertainty Estimations
2.5.1. Uncertainty of Glacial Elevation Change

We suggest that elevation change uncertainty involves three factors: residual bias
related to DEM coregistration, glacier area change, and voids in the DEM difference map.
Here, we calculated the glacier elevation change uncertainty by Equation (5):

E∆h =
√

E2
coreg + E2

area + E2
voids (5)

where E∆h represents the glacier elevation change uncertainty and Ecoreg is the uncertainty
associated with the residual error in the stable area of the DEM difference maps after
DEM coregistration. Earea represents the uncertainty caused by glacier area changes in the
last 20 years. Evoids refers to the void-filling method [69], leading to offsetting of glacier
elevation change.

We assert that in the same slope range, the elevation changes in the stable area and
glaciated area have the same elevation change offset patterns, which has been described
previously [70,71]. To acquire stable regions, we excluded lakes according to the Hydro-
LAKES v1.0 dataset [72]. We also tried to remove glacial lake impacts [73] from the DEM
difference maps, but we found very few glacial lakes in WK (11 glacial lakes with a total
area of ~5.28 km2). Hence, we ignored glacial lake influences when estimating Ecoreg.

In this study, we generated a slope map for each glacier and stable area. Then, we
classified slope with a bin interval of 1

◦
. We took the DEM difference of each slope bin in

the stable region as a reference to estimate Ecoreg, which can be expressed by Equation (6):

Ecoreg =

n
∑

i=1
dhi

n
(6)

where Ecoreg represents the uncertainty of each slope band for each glacier, n is the number
of slope bin, dhi is the mean elevation difference at each slope bin.

Furthermore, we assumed that the uncertainty associated with glacier area change
during 2002–2020 was mainly focused on glacier termini; thus, we chose a 250 m altitude
band above each glacier terminus as the ablation area. We assumed that 250 m was
enough for glacier recession, since previous studies found that glaciers in WK mainly show
advance [74]. Afterwards, we extended this ablation area (250 m above glacier termini)
with an outward buffer distance of 500 m to compensate for the glacier mass outside RGI
v6.0, and the RGI v6.0 boundary uncertainty. This determined the maps of two regions:
the ablation zone and the buffered zone. To account for the contribution of ice mass loss to
ice velocity, which flows into the buffered region and the uncertain RGI v6.0 boundary, we
assumed that approximately 5% of buffered regions are covered by ice mass. Therefore, we
used this ratio (5%) to multiply the mean difference of buffered region for each glacier to
estimate Earea, which can be expressed by Equation (7):

Earea =

n
∑

i=1
dhi

n
× Aratio (7)

where dhi represents the elevation difference per pixel in the 500 m-buffered region of each
glacier, n is the number of pixels in the 500-m buffered region, Aratio is 5%.

Unavoidably, we needed to exclude some outliers after differencing DEM maps for
different periods, which led to some gaps in glaciated areas. For the period 2002–2020, we
excluded pixel values outside the range of −17 to +14 m. For 2002–2011 and 2011–2020, we
judged that the reasonable glacier elevation change rates were −13∼33 m and −50∼10 m,
respectively. To estimate the uncertainty caused by gaps in glaciated areas, we divided each
glacier into 50 m interval elevation bands and then excluded outliers at each elevation band
(>3σ). Then, we used the mean glacier elevation change for each bin to fill the gaps [75].
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Although we filled the gaps, glacier elevation change offsets could still occur; thus, we
needed to account for the uncertainty Evoids caused by the void-filling approach, which can
be calculated by Equation (8):

Evoids = dh + C× σdh√
N

(8)

C =

{
2× dcor, i f N � d2

cor
2×
√

N, i f N ≤ d2
cor

(9)

where N is the pixel count in the glacier voided area. C is a factor that is determined by
Equation (9). Here, we selected dh = −0.0440 m and σdh = 6.1212 m [75].

2.5.2. Uncertainty of SMB Results

Van et al. [64] assumed that the main source of SMB uncertainty E∆M can be primarily
attributed to the inaccuracy of surface elevation change and ice flux divergence. Therefore,
in this study, we calculated E∆M by Equation (10):

E∆M =

√
(E∆h × ρ∆h)

2 +
(

Eρ∆h × ∆h
)2

+
(
E∇q × ρ∇q

)2
+
(
Eρ∇q × |∇q|

)2 (10)

where E∆h is the glacier elevation change uncertainty, E∇q is the ice flux divergence un-
certainty, ρ∆h and ρ∇q represent glacier surface density variations (see Section 2.4.3, Eρ∆h
and Eρ∇q represent glacier surface density uncertainty, ∆h is the annual glacier elevation
change, |∇q| is the magnitude of ice flux divergence.

To calculate E∇q, Miles et al. [23] assumed that we can use the 68th centile value of
reported error in glacier surface velocity magnitude, and normalized ice thickness standard
errors for each glacier, which can be expressed by Equation (11)

E∇q =

√∣∣∣∣σv

Vs

∣∣∣∣2 + (σH
H

)2
(11)

where Vs is the mean glacier surface velocity, σv is the standard inaccuracy of the glacier
surface velocity magnitude, H is the mean ice thickness for each glacier, σH is the standard
error of ice thickness for each glacier.

2.6. Glacial Health Estimation
2.6.1. ELAs and AARs Calculation

ELA is the altitude where the mean glacier mass balance is zero. Hence, it divides
glaciers into ablation and accumulation zones, which is significant for glaciologists’ investi-
gations of glacier health [76]. AAR represents the accumulation area ratio of each glacier
and is determined by the ELA. Here, we used three stages to retrieve ELAs across the
whole WK. First, on the basis of glacier SMB results and ASTER DEM, we used possible
ELA to classify pixels within each glacier into ablation and accumulation zones. The resul-
tant possible ELA divided each glacier into predicated accumulation and ablation regions.
Then, we moved the possible ELA across the whole elevation range of each glacier, at a 25 m
altitudinal distance with each movement, and determined the optimal classification outcomes
by using the best-performing Dice coefficient results [77] according to Equation (12):

DC =
2× (Nc + Na)

NSMB + NDEM
(12)

where DC represents the Dice coefficient, NSMB is the total pixel count of the SMB map,
NDEM is the number of total pixels in the DEM map, Nc is the true prediction of number of
pixels in the glacier accumulation zone, which can be calculated by the number of pixels
that represent positive values in both the DEM and SMB maps. Na is the true prediction of
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the number of pixels in the glacier ablation zone, which can be described as the negative
value pixel count in both the DEM and SMB maps.

Finally, for those glaciers with optimal ELAs at either end of the glacier elevation range
(glaciers in a complete ablation or accumulation state), we fitted a linear trend between
the SMB area ratio and each altitude bin (25 m), to determine the theoretical climatic ELA.
Here, for each glacier, the SMB area ratio was defined as the mean SMB at each elevation
band multiplied by its area ratio. We applied the SMB area ratio technique for all glacier
ELA generation, because of the unpredictable impacts of high ice flow and glacier terminal
thickening during glacier ELA acquisition. After all the ELA-retrieving procedures were
completed, AARs could be straightforwardly calculated for each glacier.

2.6.2. Glacial Health Index (GH Index)

In this study, we estimated the GH index for 2002–2020 for each glacier in WK, using
Equation (13). We divided glacier health status into two groups and four subgroups. For
the two groups, we classified glaciers in a healthy or unhealthy state as those with GH
index > 0 or GH index < 0, respectively. With respect to the four subgroups, we first selected
0 < GH index < 10 or−10 < GH index < 0, and labelled these glaciers as low-quality healthy
or sub-healthy. For those glaciers with GH index < −100 or GH index > 100, we called
these superiorly healthy and unhealthy glaciers, respectively.

GH index =


∣∣∣∣ ∆h

∆t(AARlatter−AAR f ormer)

∣∣∣∣, i f ∆h > 0

−
∣∣∣∣ ∆h

∆t(AARlatter−AAR f ormer)

∣∣∣∣, i f ∆h < 0
(13)

where ∆h represents glacier surface elevation change, ∆t is the time shift, AARlatter is the
AAR of each glacier in the later time span (2011–2020), AAR f ormer is the AAR of each glacier
in the earlier time span (2002–2011).

2.7. Glacier Response Model
2.7.1. Ordinary-Least-Square (OLS) Model

OLS modelling is a common machine learning technique for estimating linear regres-
sions equations with minimum squares error. In this work, we applied this method to
investigate linear glacier SMB and ELA shift response to climatic forcing (summer skin
temperature and IVT), as in previous studies [46,78]. Using the OLS model, calculation of
glacier SMB response to climate change was carried out with Equation (14), and glacier
ELA shift sensitivity to meteorological factors was calculated using Equation (15):

∆b
∆t

=
db
dT

∆T +
db
dP

∆P (14)

where ∆b
∆t is glacier SMB (m w.e. a−1), ∆T is June-July-August (JJA) skin temperature annual

trend (°C a−1), ∆P is IVT annual trend (kg m−1s−1 a−1), db
dT is glacier SMB sensitivity to JJA

skin temperature (m w.e./°C), db
dP is glacier SMB sensitivity to IVT (m w.e./kg m−1s−1).

∆ELA =
dELA

dT
∆T +

dELA
dP

∆P (15)

where ∆ELA is glacier ELA shift (m), ∆T is mean JJA skin temperature change (°C), ∆P
is mean IVT change (kg m−1s−1). dELA

dT is glacier ELA sensitivity to JJA skin temperature
(m/°C), dELA

dP is glacier ELA sensitivity to IVT (m/kg m−1s−1).

2.7.2. ANN Model

The ANN model utilizes deep learning techniques to research nonlinear glacier SMB
and ELA response to climatic forcing (summer skin temperature and IVT), chiefly to observe
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how glacier SMB and ELA respond to extremely positive and negative climate change, and
further to assist projecting glacier response to multiple future climate forcings [43].

Unlike Bolibar et al. [46], we applied only four layers (two hidden layers) since we
did not consider glacial topography impact on SMB and ELA changes. For the two hidden
layers, we assigned 20 neurons to each. For cross-validation, we utilized the LeavePOut
method (p = 10) to validate the training results. For the training and test datasets, we use
mean squared error as loss function and determination coefficient R2 as metrics.

3. Results
3.1. Varied SMB Spatiotemporal Patterns

In this study, we estimated glacier SMB (>2 km2) in WK (see Figure 3).
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We found that during 2002–2011, glacier SMB in eastern WK was 0.05 ± 0.15 m w.e. a−1,
while in western WK, it was 0.20 ± 0.11 m w.e. a−1, which showed that glaciers were thick-
ening at a higher rate in western WK. From 2011 to 2020, the glacier SMB in western WK was
−0.04± 0.08 m w.e. a−1, and in eastern WK it was more negative (−0.16 ± 0.17 m w.e. a−1).
During 2002–2020, glacier SMB in eastern WK was −0.06 ± 0.07 m w.e. a−1, while in west-
ern WK, it was 0.12 ± 0.06 m w.e. a−1 (see Table 2).
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Table 2. Spatial variations of SMB in WK over three different time spans. (unit: m w.e. a−1).

Periods Western WK Eastern WK WK

2002–2011 0.20 ± 0.11 0.05 ± 0.15 0.10 ± 0.14
2011–2020 −0.04 ± 0.08 −0.16 ± 0.17 −0.12 ± 0.14
2002–2020 0.12 ± 0.06 −0.06 ± 0.07 −0.01 ± 0.07

Moreover, according to RGI v6.0, in WK there are 471 and 84 glaciers on the northern
and southern slopes, respectively. In western WK, 238 glaciers are located on the northern
slope, and 26 glaciers on the southern slope. In eastern WK, there are 233 glaciers on the
northern slope and 58 glaciers on the southern slope. We found that in the past two decades,
glaciers on the northern slope in eastern WK displayed regular trends of increased gain or
reduced loss of ice mass, which is consistent with outcomes obtained by Zhang et al. [79].
However, this trend was reversed in Western WK, except during 2002–2011 (see Table 3).

Table 3. Spatial variations of glacier SMB in northern and southern slopes of WK and its two
subregions over three different time spans. (unit: m w.e. a−1).

Periods
Northern Slope Southern Slope

Western WK Eastern WK WK Western WK Eastern WK WK

2002–2011 0.09 ± 0.10 −0.47 ± 0.14 −0.28 ± 0.13 1.02 ± 0.19 0.77 ± 0.17 0.79 ± 0.17
2011–2020 0.14 ± 0.08 0.19 ± 0.16 0.17 ± 0.13 −0.47 ± 0.09 0.26 ± 0.17 0.22 ± 0.17
2002–2020 0.20 ± 0.05 0.01 ± 0.07 0.07 ± 0.06 −0.14 ± 0.11 0.09 ± 0.08 0.08 ± 0.08

Overall, glaciers showed different SMB variations between western and eastern WK.
Glaciers in western WK predominantly underwent greater gain or reduced loss of ice mass
compared with eastern WK. Additionally, we found that there were dissimilar slope effects
on SMB distribution in western and eastern WK. The northern slope in western WK showed
the greatest loss of mass in the last two decades, while in eastern WK, the southern slope
lost more ice mass.

In terms of dissimilar SMB spatial patterns in WK, we found that glacier SMB showed
dissimilar variations during different periods. Specifically, during 2002–2011, glacier SMB
was 0.10 ± 0.14 m w.e. a−1, indicating that the glaciers were generally thickening. How-
ever, from 2011–2020, glacier SMB showed a slight mass loss (−0.12 ± 0.14 m w.e. a−1).
During the full period (2002–2020), glacier SMB displayed a slight mass loss in WK
(−0.01 ± 0.07 m w.e. a−1) (see Figure 4).

Gardner et al. [80] estimated that the average rate of elevation change was 0.17 ± 0.15 m a−1

in WK during 2003–2009, similar to our results (0.18 ± 0.10 m a−1). Zhang et al. [79] found
that the glacier elevation change was 0.002 ± 0.003 m a−1 in eastern WK during 2000–2018,
which also fits our results (−0.01± 0.03 m a−1). Shean et al. [81] calculated that glacier mass
balance in WK was slightly positive (0.01± 0.14 m a−1) during 2000–2018; the result in ours
study was 0.06 ± 0.04 m a−1 during 2002–2020. We also compared glacier elevation change
outcomes during 2002–2011 and 2011–2020 with those of Hugonnet et al. [2], which showed
only a minor difference, with a maximum dissimilarity of 0.04 m a−1 during 2011–2020.
Brun et al. [11] estimated that the glacier mass balance in WK was 0.14 ± 0.08 m w.e. a−1

during 2000–2016, which represents a large difference compared with our results but does
overlap within uncertainty. There are two reasons for this difference. First, our time span
was 2002–2020, which differed from that studied by Brun et al. [11]. Changes in glacial ele-
vation described by Hugonnet et al. [2] confirmed that glaciers can experience remarkable
mass gain or loss with a five-year period. Second, we used the continuity equation rather
than the rationally estimated ice density value (850 kg m−3) (see Table 4).
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Table 4. Averaged glacier elevation change (GEC), in a unit of m a−1, comparing our results and others.

Periods Region GEC Study Notes of Methods

2003–2009 WK 0.17 ± 0.15 Gardner et al. [80] ICESat
2000–2010 WK 0.19 ± 0.12 Hugonnet et al. [2] ASTER
2010–2020 WK −0.05 ± 0.11 Hugonnet et al. [2] ASTER
2000–2016 WK 0.18 ± 0.33 Brun et al. [11] ASTER
2000–2018 Eastern WK 0.002 ± 0.003 Zhang et al. [79] SRTM and TanDEM-X
2000–2018 WK 0.01 ± 0.14 Shean et al. [81] WorldView-1/2/3, GeoEye-1, and ASTER
2000–2020 WK 0.08 ± 0.07 Hugonnet et al. [2] ASTER

3.2. ELAs and AARs Outcomes

Based on the aforementioned SMB results for three different time spans, we obtained
glacier ELAs and AARs across the whole WK. We found that the area-weighted mean
and median ELAs in WK from 2002–2020 were 5786 m and 5535 m, respectively, and their
respective AARs were 0.58 and 0.78. In HMA, the area-weighted mean and median ELAs
and AARs were 5283 m and 5349 m, and 0.51 and 0.44, respectively [23]. This showed that
glacier ELAs and AARs (area-weighted mean and medium) in WK were larger than the
average levels in HMA (see Figure 5).
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Furthermore, in the two subperiods (2002–2011 and 2011–2020), glacier ELAs and
AARs showed minor changes. From 2002–2011 and 2011–2020, ELAs were 5788 m and
5744 m, and AARs were 0.59 and 0.62, respectively. We found that ELAs underwent a slight
decline and AARs saw a slight increase from the earlier subperiod to the latter, which was
inconsistent with the corresponding SMB variations (see Table 5).

Table 5. Median and area-weighted mean ELAs (unit: m a.s.l.) and AARs in WK and its two
subregions, during 2002–2011, 2011–2020, and 2002–2020 (the former are area-weighted mean ELAs
or AARs, and the latter are median ELAs or AARs).

Periods
ELAs AARs

Western WK Eastern WK WK Western WK Eastern WK WK

2002–2011 5381/5379 5965/5732 5788/5570 0.67/0.67 0.50/0.76 0.59/0.76
2011–2020 5510/5406 5846/5519 5744/5482 0.55/0.64 0.64/0.90 0.62/0.81
2002–2020 5451/5367 5932/5624 5786/5535 0.60/0.67 0.54/0.84 0.58/0.78

Generally speaking, during 2002–2011, 2011–2020, and 2002–2020, glacier ELAs in
western WK were always lower and their corresponding AARs were consistently larger
than those in eastern WK. We can observe that glacier ELAs increased from 2002–2011 to
2011–2020 in eastern WK, while in western WK, they show an opposite trend.

Owing to the lack of in situ measurements for WK, we were reliant on previous
studies to verify our ELA and AAR outcomes [23]. We found that dissimilarities between
our results and others were slightly substantial, at 322 m for ELAs and 0.19 for AARs.
We assumed that these results were mainly due to different time spans, spatial coverage
dissimilarities, glacier samples, and slight differences in the ELA retrieval methods.

3.3. Skin Temperature and IVT Results

To assess climatic forcing in WK, we extracted the mean annual summer skin tem-
perature (JJA skin temperature), winter skin temperature (December-January-February
skin temperature, DJF skin temperature), mean annual IVT, and corresponding summer
IVT (JJA IVT) and winter IVT (DJF IVT) trends, for 2002–2011, 2011–2020, and 2002–2020
within the glaciated area [82,83] (the significance and correlation per pixel of climatic fac-
tors are described in the Supplementary Information Discussion). Sakai and Fujita [78]
assumed that the annual range of monthly temperature (annual temperature) and the ratio
of summer IVT have close interplay with glacier mass balance in HMA (Supplementary
Information Discussion). However, in this study, we found that the summer IVT ratio
and annual skin temperature were less significant than the annual IVT and summer skin
temperature when depicting glacier responses to meteorological variations.

Generally speaking, in WK, JJA skin temperature has been increasing, while DJF skin
temperature decreased during 2002–2011, 2011–2020, and 2002–2020. In the two subperiods,
2002–2011 and 2011–2020, decreasing JJA skin temperature trends could be observed (from
0.04 °C a−1 to 0.02 °C a−1), and the DJF skin temperature showed the same tendency (from
−0.15 °C a−1 to −0.25 °C a−1) (see Table 6).

Table 6. June-July-August (JJA) and December-January-February (DJF) skin temperature (unit:
°C a−1) trends in western WK, eastern WK and WK overall, over three time periods.

Periods
JJA Skin Temperature DJF Skin Temperature

Western WK Eastern WK WK Western WK Eastern WK WK

2002–2011 0.01 0.07 0.04 −0.33 0.02 −0.15
2011–2020 0.01 0.04 0.02 −0.38 −0.15 −0.25
2002–2020 0.05 0.08 0.06 −0.09 −0.01 −0.04
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Additionally, during the full period (2002–2020), we found that the JJA skin temper-
ature increased by 0.05 °C a−1 in western WK, while in eastern WK it increased more
obviously (0.08 °C a−1). From 2002–2011, the JJA skin temperature increased by 0.01 °C a−1

in western WK, while in eastern WK it increased to 0.07 °C a−1. During 2011–2020, the
JJA skin temperature in western WK maintained the same increasing pace (0.01 °C a−1) as
the earlier subperiod, while in eastern WK its rate of increase declined (0.04 °C a−1) (see
Figure 6).
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Moreover, during 2002–2020, the DJF skin temperature in western WK dropped by
0.09 °C a−1, and in eastern WK it declined by 0.01 °C a−1. During the earlier subperiod,
the DJF skin temperature in western WK decreased by 0.33 ◦C a−1, while in eastern WK it
increased by 0.02 °C a−1. During the later subperiod, the DJF skin temperature decreased
by 0.38 °C a−1 in western WK, while in eastern WK the decrease was−0.15 °C a−1, showing
a remarkable difference between western and eastern WK (see Figure 7).
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Overall, JJA and DJF skin temperatures in western and eastern WK had similar trends
during 2011–2020 and 2002–2020, except 2002–2011. Furthermore, across the whole WK,
the JJA skin temperature was rising, and the DJF skin temperature was declining.

Additionally, we extracted the annual mean IVT inclination in WK for the last two
decades (see Figure 8). The results showed that although IVT inclination in WK con-
tinued to rise, the rate of increase was declining. IVT increased at 0.19 kg m−1s−1 a−1,
0.16 kg m−1s−1 a−1, and 0.10 kg m−1s−1 a−1, in 2002–2011, 2011–2020, and 2002–2020,
respectively (the IVT direction for the last two decades can be seen in the Supplementary
Information Figures).
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In two subregions, western WK and eastern WK, there was also an indication that the
rate of increase in the annual IVT trend declined from the earlier subperiod (2002–2011)
to the later subperiod. In addition, there were almost no differences in the annual IVT
trends between western and eastern WK in the three periods (2002–2011, 2011–2020, and
2002–2020) (see Table 7).

Table 7. Annual IVT (unit: kg m−1s−1 a−1) trends in Western WK, Eastern WK and WK over
three periods.

Period Western WK Eastern WK WK

2002–2011 0.20 0.18 0.19
2011–2020 0.16 0.16 0.16
2002–2020 0.10 0.10 0.10

Furthermore, we also researched the JJA and DJF IVT trends in WK for the past
two decades (see Table 8) (correlation coefficient R and significance p value per pixel are
described in Supplementary Information Figures). Overall, we found no obvious spatial
differences between western and eastern WK for 2002–2011, 2011–2020, and 2002–2020.
Nevertheless, we discovered obvious differences in the JJA and DJF IVT trends between the
three periods (2002–2011, 2011–2020, and 2002–2020). Specifically, we found a remarkable
increasing JJA IVT trend (0.55 kg m−1s−1 a−1) during 2011–2020, which was apparently
higher than the periods 2002–2011 and 2002–2020. In addition, we found that the DJF IVT
was decreasing, except during 2011–2020 when it rose by 0.02 kg m−1s−1 a−1.

Table 8. JJA and DJF IVT trends (unit: kg m−1s−1 a−1) in western WK, eastern WK, and WK during
three different periods.

Periods
JJA IVT Trend DJF IVT Trend

Western WK Eastern WK WK Western WK Eastern WK WK

2002–2011 0.33 0.30 0.32 −0.17 −0.10 −0.14
2011–2020 0.57 0.53 0.55 0.03 0.01 0.02
2002–2020 0.26 0.26 0.26 −0.10 −0.06 −0.08

4. Discussion
4.1. Glacial Health in WK

ELAs or AARs can be used to denote the accumulation zone over the glacier surface;
thus, they can be used to estimate glacier health in WK. Miles et al. [23] demonstrated
that glaciers in WK exhibit much healthier states compared with other HMA regions.
Nonetheless, due to limited glacier sample size and the lack of multitemporal comparisons,
evidence for glacier well-being in WK remains scarce.

In western WK, we estimate that 69% of glaciers are in a healthy state (regarding glacier
healthy state classification here and below, see Section 2.6.2). The remaining unhealthy
glaciers show no remarkable thinning pattern, indicating that they are unable to supply
much downstream water. In eastern WK, 62% of glaciers are in a healthy state, which
demonstrates that glaciers in western WK are healthier and more stable than those in
eastern WK. Furthermore, low-quality healthy glaciers account for 84.15% of total glaciers
in western WK, while in eastern WK, this figure decreases to 74.72%. This result shows
that, when accounting for global warming, western WK exceeds eastern WK in its stores of
potential downstream water. We also researched sub-healthy glaciers in WK. The outcomes
show that there are 179 glaciers in a state of subhealth in WK. Nonetheless, in contrast
to the varied spatial distribution pattern of low-quality healthy glaciers between western
WK and eastern WK, the allocation of sub-healthy glaciers is dispersed relatively evenly
between the two subregions. The results show that 85 sub-healthy glaciers are located in
western WK and 94 glaciers are located in eastern WK.
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Additionally, 34 glaciers in WK currently show a superiorly healthy state. The distribu-
tion of these glaciers is unevenly dispersed between western and eastern WK; 10 glaciers are
located in western WK, and 24 glaciers are located in eastern WK. Furthermore, 15 glaciers
are in a supremely unhealthy state in WK, and the number of worst-state glaciers is 14 in
eastern WK and one in western WK. Overall, glaciers in eastern WK generally have a more
detrimental status and have been the primary downstream water providers for mountain
dwellers in the last two decades. However, it will be necessary to pay careful attention
to glacier variations in western WK in the upcoming decades, as they hold a substantial
quantity of potential meltwater and are more likely to be affected by global warming and
become natural hazards [72,84–86].

Brun et al. [87] concluded that mean glacier elevation can explain glacier SMB vari-
ability for most regions in HMA to some extent (>8%). However, we found no remarkable
altitude characteristics in WK that can explain why some glaciers are healthy and others
are not. However, we recognize that glacier aspect has some connections with dispersion
of glacier well-being in our study area. The results show that 80% of healthy glaciers are
on the northern slope, while for unhealthy glaciers, this ratio decreases to 70%. This may
contribute to topographic shading effects, altering the potential clear-sky solar radiation
received by glaciers [88,89].

4.2. SMB Response to Climate Forcing

Che et al. [40] concluded that the ratios of glacier mass balance to summer skin
temperature and precipitation are nonlinear. Wang et al. [90] assumed that sensitivity of
glacier mass balance to summer skin temperature is nonlinear, and that the relationship
between glacier mass balance and precipitation is linear. Sakai and Fujita [78] assumed a
linear mass balance response to both of these climatic factors. However, via deep learning
technology, Bolibar et al. [43] suggested that the relationship between glacier mass change
and meteorological elements is nonlinear. We compared linear and nonlinear relationships
between glacier SMB and climate forcing, using an OLS multilinear regression model and
an ANN model, respectively (see Supplementary Information Discussion). Conversely, for
extreme positive summer skin temperature changes, the ANN model demonstrated larger
glacier SMB sensitivity than the OLS model. For extreme negative summer skin temperature
changes, glacier SMB sensitivity was smaller indicated by the ANN model. The results
we revealed for the periods 2011–2020 and 2002–2020 match well with Bolibar et al. [43],
except for the period 2002–2011.

Generally, both the OLS and ANN models depicted that WK glaciers are more sensitive
to IVT than to summer skin temperature in the long run, which may be attributed to the
high altitudes of WK glaciers [53,83,90,91]. However, in the two subperiods, glaciers were
more sensitive to summer skin temperature.

During 2002–2011, glacier SMB sensitivity to summer skin temperature was
−0.38 m w.e./°C; with a 1 °C increase in summer skin temperature, glacier SMB would
decrease 0.38 m w.e. During the period 2011–2020, glacier SMB sensitivity to summer skin
temperature was larger (−0.16 m w.e./°C). However, during the full period (2002–2020),
glacier SMB sensitivity to summer skin temperature was −0.13 m w.e./°C, which was
less than in the period 2002–2011. We found that glacier SMB sensitivity to summer skin
temperature during 2011–2020 and 2002–2020 was substantially smaller than in other HMA
regions [92–97]. We believe our results are feasible, because previous studies have shown
that glacier SMB sensitivity to summer skin temperature varies in different regions and,
generally speaking, continental glaciers are the least sensitive to climate change [90]. Specif-
ically, Ebrahimi and Marshall [98] found that glacier mass balance sensitivity to summer
skin temperature was −0.236 m w.e./°C in the Canadian Rocky Mountains, which is con-
siderably different from glacier sensitivity to summer skin temperature in Switzerland
(−0.63∼−0.72 m w.e./°C) [99]. This shows that glaciers in different regions can display
different climatic sensitivities, as they are surrounded by varied environmental conditions.
Furthermore, glaciers in WK are located at comparatively higher altitudes than other HMA
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regions, and they are considered continental glaciers; thus, it is reasonable to suggest that their
sensitivity to summer skin temperature is smaller than that of glaciers in other HMA regions.

Furthermore, glacier SMB sensitivity to IVT was found to be similar to the summer
skin temperature sensitivity pattern. From 2002–2011, glacier SMB sensitivity to IVT was
+0.22 m w.e./kg m−1s−1. Combined with the annual mean IVT during this period, this is
equivalent to 0.02 m w.e. (50%)−1. This result was smaller than that for its neighbouring
region, Karakoram (0.02 m w.e. (10%)−1), and smaller than subcontinental glacier SMB
sensitivity to precipitation (0.09 m w.e. (10%)−1) [90]. We believe that a primary reason for
this apparent discrepancy is the dissimilar estimation of glacier SMB (Supplementary Infor-
mation Discussion), as well as the differences between IVT and precipitation [100]. During
2011–2020, glacier SMB sensitivity to IVT was 0.07 m w.e./kg m−1s−1, equal to approxi-
mately 0.01 m w.e. (50%)−1. This outcome demonstrated that during the later subperiod,
glaciers in WK were less sensitive to IVT than in the earlier subperiod. Overall, during the
full time period (2002–2020), glacier SMB sensitivity to IVT was +0.45 m w.e./kg m−1s−1,
which is approximately 0.02 m w.e. (50%)−1.

4.3. ELAs Response to Climate Forcing

Sagredo et al. [27] showed that glacier ELA shifts are linearly related to summer skin
temperature and precipitation variations. Conversely, motivated by the nonlinear glacier
SMB response [43], we researched the nonlinear relationship between glacier ELA shifts
and climate forcing (see Supplementary Materials). The result showed that glacier ELA
was almost linear with climate change. However, the ANN model captured a significant
glacier ELA response to IVT. With the increment of IVT exceeding 0.7 kg m−1s−1, the glacier
ELA response was less sensitive, and its shift was smaller than the value displayed by the
OLS model, indicating that increasing glacier IVT cannot effectively mitigate the impacts
of increasing summer skin temperature on variations in glacier ELA. For the following
analysis, we exclusively utilized the linear glacier ELA response.

We found that glacier ELA sensitivity was mainly driven by summer skin tempera-
ture (+154.66 m/°C) rather than IVT (−121.57 m/kg m−1s−1). Zhang et al. [101] found
that HMA glaciers are more sensitive to summer skin temperature than to precipitation.
Wang et al. [90] concluded that continental glacier ELAs are relatively insensitive to skin
temperature change, in contrast with maritime glaciers. The ELA sensitivity of maritime
glaciers in HMA is generally +200∼300 m/°C, and ELA can sometimes be lifted above the
maximum elevation with a merely 1 K increase of summer skin temperature. Furthermore,
glacier ELA sensitivity to summer skin temperature varies globally. Noël et al. [102] found
that the ELA sensitivity of Svalbard glaciers to summer skin temperature was +129.66 m/°C.
Sagredo et al. [27] found that Andes glacier ELAs sensitivity to summer skin temperature
ranged from +140∼230 m/°C. Réveillet et al. [103] found that the ELA sensitivity of the
Zongo glacier to summer skin temperature would respond by +120∼180 m/°C under
different climatic model scenarios. Based on our results, with a 1 °C increase in summer skin
temperature, glacier ELAs in WK would increase 143.76 m, which is reasonable and rational.

Furthermore, Bolibar et al. [43,46] have confirmed that glacier mass change is con-
nected with glacier topography and climatic change. Thus, we can conclude that glacier
ELA shift is also connected with these two parameters. However, in the long run, glacier
topographic change is comparatively small compared with climatic change, thus, in the cur-
rent study, we have not accounted for its impact on glacier ELA shift. Based on our retrieved
glacier SMB and ELA results, we found that in eastern WK average glacier SMB changed
from positive to negative from 2002–2011 to 2011–2020, while glacier ELA decreased in the
same period, which is an abnormal phenomenon. We believe that this may be connected
with ice flow on the glacier surface. Specifically, if we presume that glaciers are stationary
and we ignore the snow drift effect, then the ELA would rise with increasing summer skin
temperature. However, the glacier surface velocity in WK is remarkable [47,51,104]; there-
fore, the ice mass in the accumulation zone would be transferred to lower elevations, which
would decrease the ELA. We found that in WK there are 99 glaciers showing negative SMBs
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and decreasing ELAs. Meanwhile, ice velocity was apparent, and ice flux was positive
close to ELA in the accumulation zones of these glaciers. This evidence suggests that the
ice mass in the accumulation zone, driven by glacier dynamics, results in the abnormal
phenomenon of decreasing ELA. Additionally, this could explain why glacier SMB was
negative in the later subperiod (2011–2020), while its corresponding ELA decreased.

5. Conclusions

In this study, we calculated glacier SMB in WK via the continuity equation, for the
periods 2002–2011, 2011–2020, and 2002–2020. The results show that in the former time
span, glaciers were in a state of mass gain (0.10 ± 0.14 m w.e. a−1), while during the later
subperiod, glaciers were in a state of mass loss (−0.12 ± 0.14 m w.e. a−1). Overall, in the
last two decades, glacier SMB in WK has been slightly negative (−0.01 ± 0.07 m w.e. a−1).
We estimated glacier ELAs and AARs in WK and its two subregions, western and eastern
WK, for 2002–2020. We found that ELAs slightly declined from the earlier time span
(5788 m) to the later (5744 m), in contrast to SMB variations. We believe that this abnormal
phenomenon was due to increasing glacier surface velocities, especially during 2011–2020.
We found that glacier surface velocity was apparent in the vicinity of ELAs, and ice flux in
the neighboring ELA zones was positive, which could lead to snow or ice slipping over the
ELA and amassing in the upper position of the ablation zone. Hence, ELA would decrease,
even with increasing summer skin temperature. Furthermore, ELAs in western WK were
lower than those in eastern WK, because of the higher median glacier altitude in eastern WK.

Additionally, we found that glaciers in western WK are healthier than those in eastern
WK, and that necessary monitoring measurements are still indispensable to safeguard
substantially vulnerable low-quality healthy glaciers. Eastern WK glaciers are in a worse
state of well-being than western WK glaciers. Furthermore, we established a quantitative
relationship between glacier SMB and meteorological elements, summer skin temperature
and IVT. The results showed that SMB was mainly affected by summer skin tempera-
ture during the two subperiods (2002–2011 and 2011–2020). However, in the full period
(2002–2020), glacier SMB was more prone to IVT, which can explain why glacier SMB in
WK is less negative than other HMA regions in the last two decades. Overall, glacier SMB
was more sensitive to extreme positive summer skin temperatures and less sensitive to
extreme negative summer skin temperatures.

Finally, we also observed a quantitative relationship between glacier ELA shifts and
the climatic factors of summer skin temperature and IVT. Glacial ELA variations were
found to be more sensitive to summer skin temperature (+154.66 m/°C) than to IVT
(−121.57 m/kg m−1s−1). The ELA shift sensitivity equation has relatively large uncertainty,
which could be associated with glacier dynamics. To conclude, the WK glacier ELA is less
sensitive to an extremely positive IVT.
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(p-value) of annual mean surface temperature per pixel in WK during (a) 2002–2011, (b) 2011–2020,
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Acronyms
Acronym Definition
AAR(s) Glacier accumulation area zone(s)
ANN model Artificial neural network model
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
DJF Month from December to next year’s February
ELA(s) Glacier equilibrium line altitude(s)
GH index Glacier health index
GEC Glacier elevation change
HMA High Mountain Asia
IVT Integrated water vapor transport
JJA Month from June to August
OLS model Ordinary least square model
RGI v6.0 Randolph Glacier Inventory version 6.0
SMB Specific mass balance
SRTM DEM Shuttle Radar Topography Mission Digital Elevation Model
WK West Kunlun Mountains
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