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Abstract: The detection of small infrared targets lacking texture and shape information in the presence
of complex background clutter is a challenge that has attracted considerable research attention in
recent years. Typical deep learning-based target detection methods are designed with deeper network
structures, which may lose targets in the deeper layers and cannot directly be used for small infrared
target detection. Therefore, we designed the attention fusion feature pyramid network (AFFPN)
specifically for small infrared target detection. Specifically, it consists of feature extraction and feature
fusion modules. In the feature extraction stage, the global contextual prior information of small
targets is first considered in the deep layer of the network using the atrous spatial pyramid pooling
module. Subsequently, the spatial location and semantic information features of small infrared
targets in the shallow and deep layers are adaptively enhanced by the designed attention fusion
module to improve the feature representation capability of the network for targets. Finally, high-
performance detection is achieved through the multilayer feature fusion mechanism. Moreover, we
performed a comprehensive ablation study to evaluate the effectiveness of each component. The
results demonstrate that the proposed method performs better than state-of-the-art methods on a
publicly available dataset. Furthermore, AFFPN was deployed on an NVIDIA Jetson AGX Xavier
development board and achieved real-time target detection, further advancing practical research and
applications in the field of unmanned aerial vehicle infrared search and tracking.

Keywords: small infrared target detection; attention fusion; atrous spatial pyramid pooling; feature
pyramid network

1. Introduction

Small infrared target detection technology, which has been widely used in several
fields, such as military early warning, precision guidance, field rescue, and forest fire
prevention, forms an essential part of an infrared search and tracking system [1]. Compared
to other imaging methods, infrared imaging offers a longer range, resistance against
interference, and independence from lighting conditions. However, the detected targets are
usually very small—ranging from one pixel to tens of pixels—with weak texture, shape
information, and low signal-to-noise ratios, owing to the long distance between the target
and the infrared sensor. These targets tend to become lost in the presence of heavy noise
and background clutter (Figure 1). The unique characteristics of small infrared target
imaging pose significant technical challenges; therefore, the accurate and effective detection
of small infrared targets remains an open problem.

For decades, small infrared target detection has predominantly been based on model-
driven conventional methods. These methods, which analyze the physical and imaging
properties of the target, make reasonable assumptions based on prior knowledge, and
design fixed hyperparameters owing to the lack of publicly available infrared datasets.
Model-driven methods primarily include background suppression-based methods [2,3],
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local contrast-based methods [4–7], and optimization-based methods [8–10]. Despite the
abundance of theoretical and hypothetical constraint terms, these model-driven methods
exhibit low detection accuracy and poor robustness in practical detection tasks when the
target size, target shape, signal-to-noise ratio, and background clutter significantly change.
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Figure 1. Example images of small infrared targets, indicated by the red bounding box and magnified
in the lower-right corner. Left: a ship that is difficult to identify against a complex background of sea
clutter; middle: a tank that is difficult to identify in a mountainous scene; right: a dim five-pixel-sized
target against a cloudy background.

In recent years, publicly available infrared datasets [11,12] have fueled the devel-
opment of data-driven methods for small infrared target detection. Unlike traditional
model-driven approaches, convolutional neural network (CNN)-based methods train
detectors with a large amount of data to enable models to learn the features of the tar-
get; consequently, they have significant advantages in terms of accuracy and false alarm.
Gao et al. [13] proposed an approach based on a constant false alarm rate to detect dim and
small targets. McIntosh et al. [14] proposed an optimized target-to-clutter ratio metric for
small infrared target detection networks. Du et al. [15] demonstrated that in small infrared
target detection tasks, the focus should be on shallow features containing rich detail and
spatial location information. Zhao et al. [16] used a generative adversarial network (GAN)
to detect small infrared targets, but this approach requires numerous training samples and
is time-consuming. Dai et al. [17] focused on feature fusion in different network layers
and designed the asymmetric contextual module (ACM) specifically for small infrared
target detection. This enabled them to obtain a more effective feature representation, thus
improving the detection of small infrared targets. Chen et al. [18] proposed a local patch
network with global attention by considering the global and local characteristics of infrared
small targets. Hou et al. [19] constructed a feature extraction framework, combining manual
feature methods to build a mapping network between feature maps and small target likeli-
hoods in images. Hou et al. [20] converted a single infrared image frame into a probabilistic
likelihood map of the target in terms of the image pixels, introduced feature groups into
network downsampling at the perception layer, enhanced the small target feature group
weights to improve the representation of small targets, and introduced a skip connection
layer with full convolution. Ma et al. [21] proposed a small infrared target detection net-
work with generated labels and feature mapping to deal with the low contrast and low
signal-to-noise ratio characteristics of small infrared targets. Wang et al. [22] focused on the
correlation between target and background pixels and proposed a coarse-to-fine internal
attention-aware network for small infrared target detection. Wang et al. [23] proposed
a multi-patch attention network based on an axial attention encoder and a multi-scale
patch branching structure in order to highlight the effective characteristics of small targets
and suppress background noise. Chen et al. [24] proposed a multi-tasking framework for
infrared small target detection and segmentation that reduces the model complexity while
significantly improving the inference speed of the algorithm. Zhou et al. [25] proposed
the competitive game framework pixelgame from a new perspective by highlighting the
target information through maximum information modulation. Although these data-driven
methods have employed various techniques to achieve detection performance gains, they
are affected by the target being lost in the deep layers and poor edge segmentation details.
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Based on the above analysis, for features such as missing color information and the
weak texture shape of small infrared targets, the target detection network needs not only
to fully utilize the global contextual information of the image but also to add attention
mechanisms to focus on the target regions of interest in different network layers. Inspired
by [26–28], we designed the attention fusion feature pyramid network (AFFPN) for small
infrared target detection. Without increasing the model complexity, the network focuses on
the important spatial location and channel information of small targets through attention fu-
sion and the acquisition and exploitation of image global contextual information to enhance
the feature representation of small targets, thus improving the detection performance.

The contributions of this study are summarized as follows:

(1) We propose the AFFPN for single-frame small infrared target detection, which
achieves a better performance than existing methods on the publicly available SIRST
dataset, enabling effective segmentation of small target details, and exhibits higher
robustness against complex backgrounds.

(2) We propose an attention fusion module that focuses on the channel and spatial
location information of different layers and uses global contextual information to
achieve feature fusion. This module helps the network focus on the semantic and
detailed information of the infrared mini-target and dynamically perceives the features
of the different network layers of small targets.

(3) We deploy the proposed algorithm on an NVIDIA Jetson AGX Xavier development
board and achieve real-time detection of 256 × 256-pixel resolution images.

The remainder of this paper is organized as follows. We begin with a brief review of
the related work in Section 2. Subsequently, in Section 3, we provide a detailed description
of the AFFPN structure. Section 4 presents the experimental details and analyzes the results
obtained. Finally, the conclusions are presented in Section 5.

2. Related Work
2.1. Small Infrared Target Detection

Several studies have focused on small infrared target detection [1]. Traditional model-
driven approaches rely on reasonable assumptions, require no data training, and the
detection results focus on the location of the target in the image. Filter-based approaches
measure the discontinuity between the target and the background and include top-hat
filters [29] and max-median filters [3]. Human visual system-based approaches [4,5,30,31]
detect small targets based on local contrast differences between the target and the back-
ground, extracting valid feature information from complex backgrounds. However, these
model-driven approaches are susceptible to factors such as background clutter and noise,
which degrade the detection performance.

In recent years, CNNs have been employed for small infrared target detection as a
pixel-level segmentation task and have attracted considerable attention. The CNN-based
approach has powerful feature representation capabilities and achieves a better detection
performance than conventional methods in terms of learning small target features from
large amounts of data. Deng et al. [32] proposed a multiscale CNN for spatial infrared point
target recognition, which combines shallow and deep features for feature learning and
classification. Shi et al. [33] transformed the detection problem into a denoising problem and
achieved end-to-end detection of small infrared targets. Additionally, [13,14,34] designed
CNNs with different structures to extract the basic features of small infrared targets to
improve the detection accuracy. Zhao et al. [35] proposed a lightweight small infrared target
detection network called TBC-Net, which used U-Net [36] as the target extraction module
and designed a semantic constraint module. Zhao et al. [16] constructed a GAN model to
automatically learn the unique distribution features of small infrared targets and directly
predict the intensity of the targets. Attention mechanisms help networks focus on regions
of interest and enhance the contextual information of target features [15]. Dai et al. [17]
proposed an asymmetric attention module specifically for small infrared target detection.
They designed top-down global context feedback and bottom-up modulation paths to
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exchange deep semantic information and fine shallow detail information to better detect
small targets. Li et al. [27] proposed the densely nested attention network (DNANet) and
designed a dense nested interaction module (DNIM) for multiple interactions between
deep semantic features and shallow detail features to maintain deep small infrared targets.
Zhang et al. [37] focused on the contextual relationships and feature utilization in network
delivery for small infrared target detection and proposed the attention guided pyramidal
context network (AGPCNet), which improves the detection accuracy through shallow and
deep feature fusion.

2.2. Attention and Feature Fusion

Attention mechanisms: Attention mechanisms have received considerable attention
owing to their excellent performance and have been widely used in target detection,
semantic segmentation, and natural language processing. Self-attention [38] is a popular
attention mechanism that extracts attention based on the attention of the feature map;
non-local attention convolutional units [39] focus only on regions that are the size of the
neighborhood kernel; SENet [26] automatically obtains the importance of each channel
and performs weighted selection by the interdependencies between the modeled features
displayed; CBAM [40] considers the attention weights in both the spatial and channel
dimensions to better focus on regions of interest; DANet [41] uses self-attention to fuse
channel attention (CA) and spatial attention (SA); and [42–45] focus on the region of interest
of the image from different perspectives to obtain excellent enhancement effects.

Feature fusion: The emergence of U-Net [36] and the feature pyramid network
(FPN) [46] has boosted the development of semantic segmentation networks, enabling bet-
ter feature fusion between shallow and deep networks using summation or concatenation
between different levels. Zhang et al. [47] designed the semantic feature fusion module to
solve the information imbalance caused by information dilution in an FPN. Gong et al. [48]
designed the fusion factor to control the information passed from the deep to shallow
layers to adapt the FPN to tiny object detection. Li et al. [27] proposed the DNIM to achieve
the fusion of deep semantic features and shallow detailed features while constructing an
attention mechanism between different layers to further enhance the fusion performance.
Tong et al. [49] proposed an enhanced asymmetric attention feature fusion module that
preserves and highlights the fine details of small infrared targets using shuffle units and
cross-layer feature fusion. Zhang et al. [37] focused on attention-guiding mechanisms and
fusion strategies between contexts for small infrared target detection. Attention mecha-
nisms and feature fusion strategies in neural networks have evolved rapidly; however,
these studies have focused on generic target detection. Studies on semantic segmentation
tasks and architectures specifically for small infrared target detection tasks are limited. The
low signal-to-noise ratio of small infrared target images, small number of image pixels
constituting the target, lack of texture information, absence of contour and shape features,
and complex background represent the key challenges involved in small infrared target
detection. Therefore, developing and designing effective attention modules and feature
fusion mechanisms for small infrared target detection is crucial.

3. Proposed Method

In this section, we introduce the details of the proposed AFFPN. The network archi-
tecture of the proposed method is shown in Figure 2. The network consists of two parts:
the feature extraction and feature fusion modules. The following subsections describe the
overall structure and main component modules of the proposed AFFPN.

3.1. Network Architecture

Figure 2 shows that, given the SIRST image as input, the AFFPN performs feature
extraction and feature fusion in turn, and then the prediction module classifies each pixel
and outputs the segmentation result of the small infrared target. Section 3.2 presents
details on the feature extraction module, which consists of two parts: the atrous spatial
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pyramid pooling module (ASPPM), which acquires global contextual information, and
the attention fusion (AF) module, which fuses different feature layers. The input image
is pre-processed and downsampled to extract rich small target features, and the global
contextual information of the small targets is aggregated and utilized by the ASPPM. The
attention fusion module enhances the network’s feature representation of small infrared
targets by skipping connections and passing high-resolution information throughout the
network, ensuring effective fusion of spatially detailed shallow features and semantically
rich deep features. We use the attention fusion module to adaptively enhance deep and
shallow features to obtain more accurate channel and spatial location information of the
target because a gap exists between the different layers in terms of semantic information.
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Figure 2. Proposed AFFPN. Feature extraction module. First, the input image is sent to the residual
module for downsampling feature extraction and then the atrous spatial pyramid pooling and
attention fusion modules for selective enhancement of features at different levels. Feature fusion
module. The features of different levels are upsampled and concatenated to fuse the multilayer
features, and the segmentation result of the target is obtained by the prediction module.

Notably, we use ResNet-20 [50] as the backbone architecture in the C1, C2, and C3
phases of feature extraction, with the details of the network backbone shown in Table 1
(only the first convolutional layers of C2 and C3 were subsampled), enhancing the learning
capability of the CNN and further improving the network’s ability to make full use of
features at different levels during the downsampling and upsampling stages. To ensure
that the spatial location information at the shallow level is passed to the deeper network
layers to reduce the loss of fine detail information at the shallow level for small infrared
targets at the deeper levels, the feature fusion module is described in detail in Section 3.3.
Different feature layers are upsampled to the same size and then the features of the different
network layers are fused by a concatenation operation to generate a robust feature map
capable of improving the feature representation of small targets. The final binary map
output by the prediction module is the small infrared target detection result.

Table 1. AFFPN backbones.

Stage Output Backbone

C0 480 × 480 3× 3conv, 64

C1 480 × 480
[

3× 3conv, 64
3× 3conv, 64

]
×3

C2 240 × 240
[

3× 3conv, 128
3× 3conv, 128

]
×3

C3 120 × 120
[

3× 3conv, 256
3× 3conv, 256

]
×3
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3.2. Feature Extraction Module
3.2.1. ASPPM

Zhao et al. [51] demonstrated that pyramidal pooling modules can construct effective
global contextual priors to reduce the loss of contextual information. We constructed the
hierarchical contextual ASPPM in the deepest feature layer (C3) of the FPN infrastructure
to fully utilize the global information, as shown in Figure 3. We believe that a single 3 × 3
or 1 × 1 convolution mixing all multi-scale contextual information is insufficient. Inspired
by [51], we first increase the perceptual field of the deep network by atrous convolution
with three different dilation rates, using three different-sized pooling modules divided into
different sub-regions to form pooled representations for different locations. The pooled
feature maps are then upsampled and fused with the feature maps of different sizes of
atrous convolution to obtain a rich perceptual field in a stitching fashion to form the final
feature representation.
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Figure 3. Architecture of the atrous spatial pyramid pooling module (ASPPM).

A hierarchical global prior that includes different scales and variations between sub-
regions can reduce the information loss between sub-regions [52]. We propose the novel
ASPPM to better capture the global contextual prior information of small infrared target
images. For pyramids with a layer size of N, the perceptual field of the network is first
increased by convolution of voids with different dilation rates. Then, the dimensionality
of the contextual representation is reduced to 1/N of the original layer using a 1 × 1
convolutional layer, and the feature map is upsampled to the same size as the input
features (C3) by means of bilinear interpolation. Finally, the features of different levels are
concatenated to form the final global contextual scene prior. Notably, the size of the atrous
convolution dilation rate and the size of the global pooling is changeable. We set the size of
the ASPPMs dilation rate to 3, 6, and 9 and the bin sizes of the ASPPMs to different scales
of 1 × 1, 2 × 2, and 4 × 4 based on the pixel distribution properties of a small infrared
target. The ASPPM of the global contextual prior is calculated as:

yj =

{
δ(B(Conv3×3(x, dilation = i))) i = 3, 6, 9 j = 1, 2, 3

U(Conv1×1(B(δ(AdapPool(x, i))))) , i = 1, 2, 4 j = 4, 5, 6
L(X) = Conv1×1(Concat[yj(x), x])

(1)

where Conv1×1 is point-by-point convolution [53] with a kernel size of 1 × 1 and Conv3×3
is the different dilation rate atrous convolution with a kernel size of 3 × 3. U, B, and δ are
upsampling, batch normalization, and the ReLU activation function, respectively. Concat is
the operation of cascading features at different scales, and AdapPool is the global pooling
operation with different feature sizes.
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3.2.2. Attention Fusion Module

Deep feature networks extract the semantic information of small targets; however,
they may risk losing the spatial details of the targets. Shallow feature networks retain
the spatial location information; however, they lack a deep semantic understanding of
the targets. The original FPN [46] consists of a bottom-up feedforward network, skip
connection, and top-down network. The feedforward network is used to expand the field
of perception and extract high-level semantic information, and the inverse network restores
high-level features to the same size as the input image. A simple approach for achieving
powerful contextual information modeling capability is to continue increasing the depth of
the network. However, the areas of small infrared targets consist of only a few pixels and
as the network deepens, the target may be lost in the deeper network. Additionally, feature
representation is difficult when the network does not make full use of the information from
the different feature layers.

Therefore, we propose the attention fusion module (Figure 4) to ensure the extraction of
rich semantic information of small targets while maintaining the deep feature representation
of the small targets. Moreover, this module is used to solve the problems of target detail
loss, information redundancy between different layers, and inadequate feature fusion.
Here, X and Y refer to the shallow fine detail information and deep semantic information,
respectively. The deep semantic feature map is upsampled to the same size as that of the
corresponding shallow feature map, and then the feature map output Z is obtained through
the attention fusion module. The attention fusion module consists of SA, which focuses on
the shallow spatial location information of the target, and CA, which focuses on the deep
semantic information of the target. The input shallow detail features X and deep semantic
features Y are processed by the SA and CA, respectively, and then the processed features
are fused.
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Figure 4. Architecture of the attention fusion module.

SA: The shallow feature map contains a large amount of detailed information [28],
and, hence, we use SA to learn the details of small targets in order to direct the network’s
attention to more detailed spatial location information. This helps to generate effective
features for small target detection. We denote the shallow features as X ∈ RC×H×W , and
the set of locations is denoted by R= {(x, y)|x = 1, 2, . . . H; y = 1, 2, . . . W}, where (x, y)
represents the location coordinates of the features. Similar to [28], the input shallow feature
maps are convolved using convolution kernel sizes of 1 × k and k × 1 to, respectively,
capture the spatial location and detail information of the shallow features of small infrared
targets. Finally, the spatial feature maps are normalized using the sigmoid function. SA
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attention weights S(X) ∈ RC×H×W that focus on the shallow spatial location information
are calculated as:

C1 = Conv2(Conv1(X, W1
1 ), W2

1 )
C2 = Conv1(Conv2(X, W1

2 ), W2
2 )

SA = S(X, W) =σ(C1 + C2)
(2)

where Conv1 and Conv2 are convolutional operations with kernel sizes of 1 × k and k × 1,
respectively, and W and the sigmoid function are the SA parameters. Finally, the output of
the shallow features is obtained by weighting the SA as:

X′ = SA(X)⊗ X (3)

where ⊗ and SA(·) denote element-wise multiplication and SA, respectively.
CA: Deep features contain highly abstract semantic information [50]; however, they

lack detailed information about the target. We use global CA [26] to weight deep features
using multiple receptive fields to capture highly discriminative channel features. Channel-
level statistics are first generated by Equation (4) to obtain a feature map of size 1 × 1 × C
with global sensory fields, aggregating global contextual information. The dependencies be-
tween channels are then captured through two fully connected layers, as shown in Figure 4.
CA attention weights CA(Y) ∈ RC×H×W , which focus on deep channel information, are
calculated as:

y =
1

H ×W

H,W

∑
i=1,j=1

Y[:, i, j] (4)

CA = σ(B(W2δ(B(W1y)))) (5)

where H, W, σ, B, and δ denote the height, width, sigmoid function, batch normalization,
and ReLU function, respectively. Moreover, W1 and W2 represent two fully connected
operations, where W1 ∈ R C

r ×C and W2 ∈ RC× C
r , and r denotes the channel reduction ratio.

Finally, the output of the deep features is obtained according to the CA weights:

Y′ = CA(Y)⊗Y (6)

where ⊗ and CA(·) denote element-wise multiplication and CA, respectively. The final
output after SA and CA for shallow and deep features, respectively, is the attention feature
fusion map:

Z = SA(X)⊗ X+CA(Y)⊗Y (7)

3.3. Feature Fusion Module

A single feature map path cannot adequately represent the small infrared target
features after the feature extraction module. We designed a pyramid feature fusion module
specifically for aggregating deep and shallow features to achieve multilayer feature fusion
of small infrared targets, as shown in Figure 2. We first upsample the feature maps of
different layers to the same size Pi,J

up ∈ RCi×H0×W0 i ∈ {0, 1, . . . , I} and concatenate
the deep features containing semantic information and shallow features with fine detail
information to generate feature maps containing rich information. This prevents feature
loss and underutilization of shallow spatial location information in the deep layer network
for small targets and ensures the robustness of small target features. The feature map
generation P′i for multi-feature fusion is obtained using the following equation:

P′i = U2i (δ(GN(Conv3×3(Pi)))) {i = 1, 2, 3} (8)

where U(·) denotes upsampling using bilinear interpolation and 2i is a multiple of up-
sampling. Conv3×3, GN, and δ denote convolutional operations with kernel sizes of 3 × 3,
group normalization, and the ReLU function, respectively.



Remote Sens. 2022, 14, 3412 9 of 22

4. Experimental Evaluation

In this section, we present qualitative and quantitative evaluations of the proposed
method conducted using publicly available infrared datasets. First, the evaluation metrics
are described in Section 4.1, and details of the experimental implementation are described in
Section 4.2. Subsequently, we present the results of a detailed ablation study in Section 4.3.
Finally, in Section 4.4, the AFFPN is compared visually and quantitatively with state-of-the-
art methods to demonstrate its superiority.

4.1. Evaluation Metrics

We consider small infrared target detection as a pixel-level semantic segmentation
task. Therefore, we use classical semantic segmentation evaluation metrics to compare the
performance of different algorithms. The main algorithm evaluation metrics include mean
intersection over union (mIoU), normalized IoU (nIoU), F-measure, the precision–recall
(PR) curve, and receiver operating characteristic (ROC). These evaluation metrics assess
the ability of the algorithm to accurately locate and describe the shape of small infrared
targets to ensure that the network detects the target and to ensure there are as few false
positives as possible.

(1) Mean intersection over union (mIoU): mIoU is the classical pixel-level semantic
segmentation evaluation metric used to characterize the contour description capability
of an algorithm. It is defined as the ratio of the intersection and concatenation area
between predictions and labels, as follows:

mIoU =
# Area of Overlap
# Area of Union

(9)

(2) Normalized IoU (nIoU): nIoU is an evaluation metric designed by [11] for small
infrared target detection to better measure the segmentation performance of small
targets and prevent the impact of the segmentation results of large targets on the
overall evaluation metric. It is defined as follows, where TP, T, and P denote true
positive, true, and positive, respectively:

nIoU =
1
N

N

∑
i

TP[i]
T[i] + P[i]− TP[i]

(10)

(3) F-measure: The F-measure is used to measure the relationship between precision and
recall. Precision, recall, and the F-measure are defined as follows, where β2 = 0.3, and
FP and FN denote the numbers of false positives and false negatives, respectively:

Precision = TP
TP+FP Recall = TP

TP+FN

Fmeasure =
(β2+1)Precision×Recall

β2Precision+Recall

(11)

(4) PR curve: The PR curve is used to characterize the dynamic change between precision
and recall; the closer the curve is to the upper right, the better the performance.
Average precision (AP) is used to accurately evaluate the PR curve, as defined as
follows, where P is precision and R is recall:

AP =
∫

P(R)dR (12)

(5) ROC: The dynamic relationship between true positive rate (TPR) and false positive
rate (FPR) is described by the ROC. The TPR and FPR are defined as follows, where
FN denotes the number of false negatives:

TPR =
TP

TP + FN
FPR =

FP
FP + TN

(13)
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The area under the curve (AUC) is used to quantitatively assess the ROC.

4.2. Implementation Details

Dataset: We evaluated the proposed AFFPN on the SIRST [11] dataset, which con-
tains 427 images and 480 typical small infrared target instances. We divided the training,
validation, and test sets using a 5:2:3 ratio. Several small infrared targets in the SIRST
dataset were very dim and hidden in background clutter, and only 35% of the targets
contained the brightest pixels in the image (Figure 1). Therefore, thresholding the original
image considering only the salient features of the target or background suppression-based
methods does not achieve good detection results.

Implementation details: We conducted experiments for all data-driven methods using
implementations based on the PyTorch framework. The input images were randomly
cropped to the same size of 480 × 480. All images were normalized to accelerate network
convergence. The Adagrad optimizer [54] is widely used for network training, and it is
one of the most popular optimizer methods. We refer to Dai et al. [17] for training AFFPN
using the Adagrad optimizer and the corresponding hyperparameters, with a batch size of
8 and the initial learning rate and weight decay set to 0.05 and 1 × 10−4, respectively. The
proposed network model was trained using the softIoU loss function [55] for 300 epochs.
All model-driven methods were re-evaluated on the SIRST test set using MATLAB 2019.
For the data-driven methods (FPN [46], U-Net [36], TBC-Net [35], and ACM-FPN [17]),
we re-trained and tested them on the SIRST dataset according to the authors’ publicly
available code and original parameter settings to obtain comparative experimental results.
The TBC-Net [35] experimental results were referenced from Dai et al. [11]. A computer
with an Intel I9-10900X @3.7 GHz CPU and a single TITAN RTX GPU was used for training
and testing.

4.3. Ablation Study

To demonstrate the effectiveness of the structural design and network modules of the
AFFPN, different variants were constructed for detailed ablation experiments.

(1) Ablation study for the attention fusion module: The attention fusion module adap-
tively enhances shallow spatial location features and deep semantic features, filtering
redundant features while focusing on the valuable information of the target in differ-
ent layers to achieve better feature fusion. We compared AFFPN with four variants to
demonstrate the effectiveness of the designed attention fusion module.

• AFFPN-cross-layer feature fusion: We considered cross-layer feature modulation
between different feature layers, changing the feature layers that CA and SA focus on.
Specifically, the features of the shallow layer are dynamically weighted and modulated
by SA and the features of the deep layer, and the features of the deep layer are weighted
and modulated by CA and the features of the shallow layer. Finally, their features are
summed to fuse them, as shown in Figure 5a.

• AFFPN w/o AF (element-wise summation): This variant of AFFPN removes the CA
and SA modules and uses the common element-wise summation approach instead of
the AF module to achieve feature fusion in different layers. The aim is to explore the
effectiveness of the AF module, as shown in Figure 5b.

• AFFPN w/o SA: We considered only CA in this AFFPN variant, and removed SA to
investigate its contributions, as shown in Figure 5c.

• AFFPN w/o CA: We considered only SA in this variant, removing CA to evaluate its
advantages, as shown in Figure 5d.

The results of the ablation experiments for different variants are listed in Table 2,
where larger values of mIoU, nIoU, and F-measure are associated with a better performance
and the opposite is true for the number of parameters. The best results in each column are
highlighted in boldface red font and the second-best results are highlighted in boldface
blue font. We set up an ablation module for cross-layer feature fusion to explore the effect
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of information interaction between the shallow detail features and deep semantic features.
The results in the table show that the mIoU, nIoU, and F-measure of AFFPN–cross-layer
feature fusion decreased by 2.25%, 1.7%, and 1.13%, respectively. The experimental results
show that maximizing the advantages of different feature layers is key to improving the
feature representation capability of the network for small infrared target detection.

Table 2. Different attention-fusion modules and their mIoU, nIoU, and F-measure results on the
SIRST dataset.

Model Params (M) mIoU (×10−2) nIoU (×10−2) F-Measure (×10−2)

AFFPN–cross-layer feature fusion 7.40 75.89 74.21 82.50

AFFPN w/o AF (element-wise
summation) 7.17 75.80 74.63 82.48

AFFPN w/o SA 7.18 76.26 74.43 82.01

AFFPN w/o CA 7.39 75.58 74.15 82.93

AFFPN (Ours) 7.40 78.14 75.91 83.63
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The table shows that, if the AF module is removed, the mIoU, nIoU, and F-measure of
the AFFPN w/o AF on the test set decrease by 2.34%, 1.28%, and 1.15%, respectively. This
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demonstrates the importance of SA and CA fusion, where the AF module pays sufficient
attention to the spatial location and semantic feature information of different layers and
fuses the information of different sub-features to enhance the feature representation of
CNN for small infrared targets, thus enhancing the performance of small infrared target
segmentation. To further illustrate the effectiveness of our proposed attention fusion
module, we visualized the heat map before and after attention fusion. As shown in
Figure 6, with the help of the attention fusion module, the AFFPN deep feature maps are
accurately shape segmented and have a strong response to information cues.
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is circled by a solid red frame. The feature maps from the deep layer of AFFPN have high values
representative of informative cues.

Furthermore, we conducted separate ablation experiments with AFFPN variants that
lack SA and CA to explore the contribution of the two different types of attention. As
Table 2 shows, there is a significant decrease in the mIoU, nIoU, and F-measure scores of
both AFFPN w/o SA and AFFPN w/o CA. This is because SA helps the network focus on
shallow fine detail features and location information, and CA better utilizes deep semantic
information to enhance the network representational capability, thus producing better small
target detection results.

Additionally, to demonstrate the novelty and effectiveness of our attentional feature
fusion module designed for small infrared targets, we compared it with typical attentional
fusion approaches incorporating the attentional mechanisms SENet [26], CBAM [40], and
Shuffle Attention [45].

The experimental results in Table 3 further demonstrate the effectiveness of our de-
signed attention fusion approach. The designed attention fusion mechanism adds little
to no network complexity and exhibits the best performance on all evaluation metrics.
Instead of simply superimposing attention, we focus on the spatial features details of
the shallow layers and the semantic features of the deeper layers, concentrating on the
representative features of the different layers of the target, thereby significantly improving
the detection performance of small infrared targets. The experimental results demonstrate
the novelty and effectiveness of our idea of attentional fusion focusing on different layers
of target features.

Table 3. Various attention modules and their mIoU, nIoU, and F-measure results on the SIRST dataset.

Model Params (M) mIoU (×10−2) nIoU (×10−2) F-Measure (×10−2)

AFFPN with SE 7.40 76.71 75.06 82.60

AFFPN with CBAM 7.28 75.97 74.02 82.90

AFFPN with Shuffle Attention 7.46 74.47 73.11 82.56

AFFPN (Ours) 7.40 78.14 75.91 83.63
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(2) Ablation study for ASPPM and multiscale feature fusion: The ASPPM is used to
enhance the global a priori information of a target and reduce contextual information
loss. Multiscale feature fusion concatenates deep features containing semantic infor-
mation and shallow features containing spatial location detail information to generate
globally robust feature maps in order to improve the detection performance of small
targets. We compared AFFPN with two variants to demonstrate the effectiveness of
ASPPM and multiscale feature fusion.

• AFFPN w/o ASPPM: We removed the ASPPM from this variant to assess its contribution.
• AFFPN w/o multilayer concatenation: We removed the multilayer feature fusion

module in this variant and used the last layer of the feature extraction module to
predict the targets to explore the effectiveness of multiscale feature fusion.

Table 4 shows the experimental results obtained for the AFFPN and its variants.
The AFFPN without the ASPPM shows degradation on all metrics. We improved the
performance of small infrared target detection with respect to all metrics, with almost no
increase in the number of network parameters because we designed the ASPPM to reduce
contextual information loss and better capture the global contextual a priori information of
the target.

Table 4. ASPPM and multiscale feature fusion ablation results for mIoU, nIoU, F-measure, AP,
and AUC.

Model Params (M) mIoU
(×10−2)

nIoU
(×10−2)

F-Measure
(×10−2)

AP
(×10−2)

AUC
(×10−2)

AFFPN w/o ASPPM 7.63 76.32 74.59 83.29 79.17 94.44

AFFPN w/o multilayer
concatenation 7.68 74.25 74.55 83.42 78.53 93.67

AFFPN (ours) 7.40 78.14 75.91 83.53 80.61 94.52

Compared to the results of the AFFPN, the mIoU, nIoU, F-measure, AP, and AUC
values of the AFFPN without multilayer concatenation decreased by 3.89%, 1.36%, 0.11%,
2.08%, and 0.85%, respectively. This is due to the limited features available in a single
feature layer, which fails to fully utilize the rich semantic information in the deep layer and
the fine detail information in the shallow layer. This further demonstrates the rationality
and superiority of using multiscale features for fusion in the proposed feature fusion part
of AFFPN.

4.4. Comparison with State-of-the-Art Methods

To further demonstrate the superiority of AFFPN, we performed qualitative and quan-
titative comparisons with state-of-the-art methods. First, eight traditional model-driven
methods were selected for comparison with AFFPN. They included the filter-based methods
top-hat [29] and max-median [3], the human visual system-based methods RLCM [7] and
MPCM [56], the gradient property-based LIGP [57], the multiscale image entropy-based
MGDWE [58], and the optimization-based methods NRAM [59] and PSTNN [60]. The
parameter settings for these model-driven methods are shown in Table 5. Additionally,
FPN [46], U-Net [36], TBC-Net [35], ACM-FPN [17], and ACM-U-Net [17] were selected as
data-driven comparison methods.
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Table 5. Parameter settings of the model-driven methods.

Methods Parameter Settings

Top-hat Structure size = 3 × 3
Max-median Patch size = 3 × 3

RLCM Size: 8 × 8, Slide step: 4, threshold factor: k = 1
MPCM L = 9, window size: 3 × 3, 5 × 5, 7 × 7
LIGP k = 0.2, Local window size = 11 × 11

MGDWE r = 2, Local window size = 7 × 7
NRAM Patch size: 50 × 50, Slide step: 10, λ = 1√

min(m,n)
PSTNN Patch size: 40 × 40, Slide step: 40, λ = 0.6√

max(n1,n2)∗n3
, ε = 1e−7

(1) Qualitative comparison. Figures 7–9 compare the detection results of the eight meth-
ods on three typical scenes of small infrared targets, where the detection methods
are labeled in the top-left corner of each image. The target area is magnified in the
lower-right corner to show the results of fine segmentation more visually. We used
red, yellow, and green circles to indicate correctly detected targets, false positives, and
missed detections, respectively.
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The figures show that the filter-based top-hat and max-median methods are sensitive
to noise and show varying numbers of false positives in different scenarios, indicating their
strong response to background clutter and noise. The local rank-based methods yield more
false positives and missed detections. Notably, these model-driven methods cannot fully
segment the target shape accurately; they can only perceive the approximate position of
the target. This is because traditional model-driven methods rely on hand-crafted features
and a priori assumptions that do not adapt to the variation of various complex contexts
in the SIRST dataset and are, therefore, less robust in different complex contexts. In the
data-driven approach, U-Net does not consider the fusion of different feature layers and the
association of global contextual information. Therefore, false positives occurred in scenes
1 and 2, and missed detections occurred in scene 3, further illustrating the importance
of paying attention to the fusion between different feature layers and global contextual
associations. ACM-FPN, which lacks a feature attention fusion module, yielded false
positives in scenes 1 and 2. With the support of the AF module and ASPPM, AFFPN
performs accurate localization and shape-contour detail segmentation of small infrared
targets, achieving a better small target detection performance than the other methods.

Figures 10–12 show the three-dimensional visualization results of the eight methods for
three typical small infrared target scenarios. Clearly, the top-hat and max-median methods
have the most severe FPR, further illustrating their sensitivity to background clutter and
noise. Other traditional methods (for example, NRAM and PSTNN) show severe false
positives and missed detections in scenes with complex backgrounds. This is because the
traditional methods largely depend on a priori assumptions and hyperparameter settings
and do not adapt well to changes in the background complexity and target size. The
CNN-based methods exhibit a better detection performance than traditional model-driven
methods; however, U-Net inevitably experienced target loss in scene 4. U-Net and ACM-
FPN output false positives in scene 5. With the attention-fusion module and ASPPM, which
focuses on contextual information, the proposed method achieves more accurate detection
of small infrared targets and adapts to the challenges of various complex backgrounds, and
variations in the target size, resulting in a better performance.
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(2) Numerical quantitative comparison. We obtained the predicted values of all the
traditional model-driven methods, after which we eliminated low response regions
by setting adaptive thresholds to suppress noise, calculated as follows:

Tadaptive = 0.5×max−value(G) + 0.5× avg−value(G) (14)
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where max−value(G) and avg−value(G) denote the maximum and average values of
the output, respectively. All data-driven methods used the experimental parameters
of the original authors.

Table 6 details the mIoU, nIoU, F-measure, AP, and AUC evaluation metrics for the
14 different methods. The best results in each column are highlighted in boldface red font
and the second-best results are in boldface blue font. As can be seen in the table, AFFPN
achieved the best performance on all the evaluation metrics. The significant increase in
these evaluation metrics indicates that the proposed algorithm provides a significant im-
provement in both small infrared target detection and segmentation. The advantages of
CNN-based methods over traditional model-driven approaches are clear. This is because
the SIRST dataset contains several challenging images with complex background clutter,
and different sizes and shapes of the target. The model-driven methods, which are based
on the assumption of prior knowledge constraints, suppress the target while suppress-
ing the background, and the hand-selected parameters limit the general performance of
these methods. Consequently, model-driven methods detect the target but have difficulty
achieving complete segmentation of the target.

Table 6. Quantitative comparison with state-of-the-art methods on the SIRST dataset.

Methods mIoU (×10−2) nIoU (×10−2) F-Measure
(×10−2) AP (×10−2) AUC (×10−2)

Top-hat 28.75 42.95 69.29 58.49 84.40

Max-median 15.65 25.43 62.40 41.50 74.96

RLCM 28.56 34.44 46.94 39.95 87.97

MPCM 21.35 24.54 65.98 39.73 72.65

LIGP 31.01 40.62 72.56 58.83 82.11

MGDWE 16.22 23.06 50.60 20.30 61.85

NRAM 24.99 32.39 67.82 48.38 76.69

PSTNN 39.68 48.16 71.73 59.31 83.89

FPN 72.18 70.41 80.39 75.90 93.10

U-Net 73.64 72.35 80.81 76.11 94.01

TBC-Net 73.40 71.30 — — —

ACM-FPN 73.65 72.22 81.60 78.33 93.79

ACM-U-Net 74.45 72.70 81.68 78.08 93.63

AFFPN(Ours) 78.14 75.91 83.53 80.61 94.52

The improvements achieved by AFFPN over the data-driven CNN-based approach
are evident. This is due to the redesign of the backbone network so that it is tailored
for small infrared target detection. First, the network constructs effective hierarchical
global prior in the small infrared target feature extraction phase to reduce the loss of
contextual information in the deep features and to better capture the global contextual prior
information of small targets. Subsequently, we selectively enhance the semantic information
and spatial location detail information of deep and shallow features of the CNN using
the designed attention fusion module to focus on the contributions of different network
layers to the feature representation of the small infrared target and achieve progressive
feature fusion of different network layers through the multilayer feature fusion module.
With these targeted network structures and module designs, the inherent features of the
small infrared targets are retained in the deeper layers of the network, enhancing the small
target feature representation capability of the network, and thus significantly improving
the detection performance.

The PR and ROC curve results for several different methods are compared in Figure 13.
AFFPN outperforms existing CNN-based and traditional model-driven approaches in all
metrics, which indicates its ability to significantly suppress the background and accurately
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detect targets while segmenting them accurately. The PR curve results (Figure 13a) show
that the proposed method achieves the best precision and recall rates, which implies that
it is able to guarantee the overall target localization and detection accuracy in challeng-
ing scenarios where the targets vary in size, shape, and location. The ROC curve results
(Figure 13b) show that the proposed method achieves the best performance, with proba-
bilistic detection (PD) responding rapidly to changes in the FPR. However, the performance
of the traditional model-driven approaches largely depends on a priori assumptions; they
cannot adapt to changes in complex backgrounds, and they do not perform well with
respect to both the PR and ROC curve evaluation metrics.
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(3) Comparison of the inference performance. The inference performance is key to the
practical deployment and application of unmanned platforms. The NVIDIA Jetson
AGX Xavier development board has been widely used in a variety of unmanned
platforms because of its high-performance computing capabilities. We deployed
AFFPN on a stationary high-performance computer platform to compare its inference
performance with those of other methods. We also implemented it on the NVIDIA
Jetson AGX Xavier development board to further advance the application of AFFPN
in real-world scenarios.

For the baseline (model-driven and data-driven) approaches, the average inference
time for a single image was measured using a CPU-based implementation. We calculated
the inference speeds of AFFPN on a CPU, GPU, and AGX Xavier development board
separately, and used C, G, and B to, respectively, differentiate them in the test environment,
as described in Section 4.2. The NVIDIA Jetson AGX Xavier development board was used
in 30 W power mode for the measurement. In the calculation of the inference time, only
the time taken by the algorithm to process the image was considered, ignoring the time
taken for data preparation. Table 7 presents the processing times for a single image frame
for the different methods, and the average inference time for a single image for AFFPN on
different computational resources.

Table 7. Inference times for different algorithms.

Methods Top-Hat Max-Median RLCM MPCM LIGP MGDWE NRAM

Times (s) 0.006 0.007 6.850 0.347 0.877 1.670 0.971

Methods TBC-Net U-Net ACM-FPN ACM-U-Net Ours (C) Ours (G) Ours (B)

Times (s) 0.049 0.144 0.067 0.156 0.218 0.008 0.059

The inference times for different algorithms reported in their original papers are also
listed in Table 7. The inference times of the algorithms are slightly different from those
reported in the original papers because of the different computing platforms. AFFPN shows
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an excellent inference performance on the CPU, although it is slower than the top-hat and
max-median algorithms. Algorithms such as RLCM, MPCM, and MGDWE are slower, and
their detection accuracy is equally poor.

AFFPN runs at approximately the same speed as the U-Net and ACM-U-Net methods
on the CPU and achieves a frame rate of 125 frames per second (fps) on the GPU, which is
a satisfactory inference performance. Notably, the AFFPN deployed on the NVIDIA Jetson
AGX Xavier development board achieves an inference performance comparable to that of
ACM-FPN, which fully demonstrates the feasibility of deploying the proposed network for
practical applications on unmanned aerial vehicle platforms.

We compared the performance of AFFPN on the NVIDIA Jetson AGX Xavier develop-
ment board in different power modes to further demonstrate that the AFFPN can support
embedded platforms deployed in multiple application scenarios. The NVIDIA Jetson AGX
Xavier development board supports three power modes: 10, 15, and 30 W, to suit different
applications. Considering that deep learning accelerators are faster when processing data in
batches than in single frames, and that in embedded scenarios, the embedded development
board may need to simultaneously process video images captured by multiple sensors,
we tested the average processing time of a single-frame image at different batch sizes for
AFFPN. The inference speed results for different power and different batch sizes are listed
in Table 8. The proposed method achieves frame rates of up to 21, 22, and 44 fps for batch
sizes of 16 in the 10, 15, and 30 W power modes, respectively, which demonstrates the
suitability of AFFPN for real-time and efficient target detection tasks in a wide range of
embedded scenarios.

Table 8. AFFPN inference times for different powers and batch sizes.

Time (s)
Batch Size

1 2 4 8 16 32

Power
Mode (W)

10 0.1203 0.0815 0.0624 0.0521 0.0472 0.0479

15 0.1190 0.0804 0.0612 0.0514 0.0459 0.0461

30 0.0593 0.0391 0.0299 0.0249 0.0227 0.0236

In the experiments, we considered the detection of small infrared targets as a pixel-level
semantic segmentation task and presented the details of the experimental implementa-
tion and the dataset and evaluation metrics. Detailed ablation experiments were then
performed to demonstrate the effectiveness of the structural design and network modules.
This was followed by a description of the model-driven and data-driven approaches in
the comparison experiments, which qualitatively compared the detection performance
of several state-of-the-art approaches visually. Furthermore, AFFPN was compared with
state-of-the-art approaches using a quantitative evaluation. Finally, AFFPN was deployed
on the NVIDIA Jetson AGX Xavier development board to validate the possibility of us-
ing the AFFPN algorithm for practical applications. The effectiveness and reliability of
AFFPN in the detection of single frames of small infrared target images is evident from the
visualization results and the quantitative evaluation.

5. Conclusions

In this study, we proposed a novel small infrared target detection method called
the AFFPN, comprising feature extraction and feature fusion modules. In the feature
extraction stage, ASPPM was used to reduce the loss of contextual information in the
deeper layers of the network and to better exploit the global contextual prior information
of small targets. To focus on small target features in different layers, the network was
designed with CA and SA to focus on the semantic and spatial location information of the
target in the deep and shallow layers, respectively. This improves the fusion and utilization
of the inherent information of small targets while retaining and focusing on the small
infrared target features. Finally, a multiscale feature fusion module was proposed to further
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improve the utilization of features. We compared the proposed method with state-of-the-
art methods and conducted extensive ablation studies to verify the effectiveness of the
individual modules. Our proposed method achieved the best performance on the publicly
available SIRST dataset and has the ability to achieve accurate detection in complex scenes.
Additionally, we deployed AFFPN on the NVIDIA Jetson AGX Xavier development board
to evaluate its performance in real-time detection tasks. Lightweight model deployment of
this kind has considerable potential for applications in areas such as infrared detection and
search systems in unmanned aerial vehicles.

However, some unresolved issues, such as the efficiency of the feature fusion methods,
the accuracy of deep feature representation, and the speed and reliability of the deployment,
deserve further research. In future studies, we will continue to explore the practical
applications of lightweight high-performance models for small infrared target detection.
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