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Abstract: Landslide susceptibility mapping (LSM) is an important element of landslide risk assess-
ment, but the process often needs to span multiple platforms and the operation process is complex.
This paper develops an efficient user-friendly toolbox including the whole process of LSM, known
as the SVM-LSM toolbox. The toolbox realizes landslide susceptibility mapping based on a support
vector machine (SVM), which can be integrated into the ArcGIS or ArcGIS Pro platform. The toolbox
includes three sub-toolboxes, namely: (1) influence factor production, (2) factor selection and dataset
production, and (3) model training and prediction. Influence factor production provides automatic
calculation of DEM-related topographic factors, converts line vector data to continuous raster factors,
and performs rainfall data processing. Factor selection uses the Pearson correlation coefficient (PCC)
to calculate the correlations between factors, and the information gain ratio (IGR) to calculate the
contributions of different factors to landslide occurrence. Dataset sample production includes the
automatic generation of non-landslide data, data sample production and dataset split. The accuracy,
precision, recall, F1 value, receiver operating characteristic (ROC) and area under curve (AUC) are
used to evaluate the prediction ability of the model. In addition, two methods—single processing and
multiprocessing—are used to generate LSM. The prediction efficiency of multiprocessing is much
higher than that of the single process. In order to verify the performance and accuracy of the toolbox,
Wuqi County, Yan’an City, Shaanxi Province was selected as the test area to generate LSM. The results
show that the AUC value of the model is 0.8107. At the same time, the multiprocessing prediction
tool improves the efficiency of the susceptibility prediction process by about 60%. The experimental
results confirm the accuracy and practicability of the proposed toolbox in LSM.

Keywords: landslide susceptibility mapping; toolbox; SVM; automatic; multiprocessing; the whole process

1. Introduction

The occurrence of landslide disasters causes great losses to the economy and human
life all over the world every year [1,2]. Natural events such as rainfall [3,4], earthquakes [5,6]
and floods [7] often lead to a series of landslides. Landslide susceptibility mapping (LSM) is
used to determine the probability of future landslides in the study area by comprehensively
analyzing various topographic, geological and hydrological factors, as well as human
activity, alongside historical landslide activity in the study area [8,9]. LSM is of great
significance to landslide risk management, human life safety and urban future planning.

In recent years, LSM has attracted the attention of many scholars, and various re-
lated articles have been published. The methods of generating landslide susceptibility
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mapping mainly include empirical modeling based on expert experience [10,11], physi-
cally based models [12], data-driven statistical modeling [13–15] and machine learning
models [16–19]. Compared with traditional methods, the machine learning models do not
rely on expert experience, which reduce the subjectivity of evaluation and generally have
high accuracy. With the development of geographic information system (GIS) software
and open-source machine learning libraries, the machine learning methods are becoming
increasingly popular.

Compared with other machine learning algorithms, the support vector machine (SVM)
method has been widely used in calculating landslide susceptibility because of its advan-
tages in solving small-sample, nonlinear and high-dimensional classification problems [5,8].
However, the process of landslide susceptibility assessment using SVM is complicated,
consisting of multiple steps such as data preprocessing, influencing factor selection, dataset
production, model training and prediction. Generally, when using SVM to generate LSM,
researchers must work with a cross-platform. Terrain factors based on the Digital Elevation
Model (DEM) (e.g., slope, aspect) rely on platforms such as ArcGIS or QGIS. Model training
and parameter optimization usually adopt widely used programming languages such as
Python, R or MATLAB. In addition, Excel, SPSS software or programming languages have
been used for model accuracy evaluation and statistical analysis in most previous studies.

Tools related to landslide susceptibility mapping are usually available in the form
of academic code, which requires users to have programming skills. Some studies have
proposed and applied several tools to evaluate landslide susceptibility. Osna et al. [20]
developed an independent application (GeoFIS) to generate landslide susceptibility maps
using the Mamdani fuzzy inference system (FIS). Sezer et al. [11] developed an LSM module
based on expert experience with NetCAD architecture software. Jebur et al. [21] created
a landslide susceptibility mapping toolbox using bivariate statistical analysis (BSA) based
on ArcGIS. Zhang et al. [15] provided a landslide susceptibility assessment tool based
on the optimized frequency ratio method, which itself is based on the ArcGIS platform.
Torizin et al. [22] provided an independent landslide susceptibility assessment application
written in Python, Project Manager Suite (LSAT PM). Bragagnolo et al. [23] developed
a free and open-source plug-in, namely r.landslide, based on the GRASS software of open-
source GIS, to generate landslide susceptibility mapping based on an artificial neural
network. Sahin et al. [24] integrated R and ArcGIS software and developed a landslide
susceptibility mapping toolkit (LSM tool pack) based on logistic regression and random
forest. Guo et al. [25] introduced a Python QGIS plugin [26] named FSLAM, which allows
us to compute regional shallow landslide susceptibility based on the effective antecedent
water recharge and the event rainfall.

Most of the above toolboxes are based on expert experience models or statistical
models, such as the weight of evidence method, frequency ratio method and so on. These
methods are simple in principle and easy to implement, but with limited accuracy. To date,
only a limited number of previous studies have involved the development of landslide
susceptibility mapping tools based on machine learning methods. At the same time, most
tools only involve model training and prediction, instead of the whole process of LSM. In
addition, most studies only use the single-factor pixel value corresponding to landslide
point locations as samples for model training. However, landslides usually occur within
a region and are affected by characteristics from the surrounding environment. Therefore,
problems exist when constructing samples based on a single pixel [27,28]. The realization
of regional-scale data construction is often complicated and time-consuming.

To solve the above-mentioned problems, this research develops an LSM toolbox based
on the ArcGIS platform (SVM-LSM toolbox). The toolbox includes data preprocessing,
factor selection, SVM model training and evaluation, and landslide susceptibility map
prediction, involving the whole process of LSM. Moreover, this toolbox only uses the
ArcGIS platform, which avoids cross-platform operation and reduces user input param-
eters as much as possible. The operation is simple, convenient and user-friendly. The
susceptibility prediction process based on sliding windows is time-consuming. This tool
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provides a multiprocessing rapid prediction tool to sufficiently improve the production
efficiency of landslide susceptibility mapping. In addition, a tool for the rapid production
of multi-channel block datasets is constructed to improve the efficiency of dataset making.
It is worth noting that this toolbox is not limited to the mapping of landslide susceptibility
based on SVM and can also be used for other binary classification problems based on SVM.
Section 2 of this paper introduces the basic functions of the toolbox and a description of
each module; Section 3 discusses the experimental research on the landslide susceptibility
mapping of the toolbox in Wuqi County, Shaanxi Province, China, and provides an analysis
of the relevant results; and Section 4 presents the conclusion.

2. LSM Toolbox
2.1. LSM Workflow

An overall flow chart of LSM based on SVM is shown in Figure 1. The process of
generating LSM based on SVM consists of data collection, data preprocessing, dataset
making, feature selection, model training and susceptibility map prediction. The data
collection includes historical landslide data, the coverage of the study area and landslide
influencing factors, such as roads, rivers, faults, Normalized Difference Vegetation Index
(NDVI), DEM, lithology and rainfall. Among them, landslide points, the coverage of the
study area, roads, rivers and faults are vector data, NDVI, DEM and lithology are grid
data, and rainfall is the NetCDF-4 (nc4) format. Data preprocessing includes calculating
topographic factors (such as slope, aspect, etc.) based on DEM, converting line vector data
to continuous raster factors, and nc4 data processing. For raster data, it is also necessary to
clip them to the same study area range. Subsequently, based on landslide points and the
range of the study area, the same number of non-landslide points are randomly selected to
construct negative samples. Then, the dataset is randomly divided into training samples
and test samples in the ratio of 7:3. In addition, the Pearson correlation coefficient (PCC)
and information gain ratio (IGR) are calculated for all the samples. Influencing factors
are selected based on the calculation results; factors with high correlations or with less
importance to landslide occurrence are removed. Then, the training and test sets are
reconstructed according to the results of the feature selection. Finally, the training set is
used to train the model, and an optimal SVM model is obtained through the comprehensive
analysis of parameters and evaluation indicators such as accuracy, precision, recall, F1 value,
receiver operating characteristics (ROC) and area under the curve (AUC). The optimal
model is finally used to predict the susceptibility index of the study area and generate
a susceptibility map of the study area for subsequent analysis.

In this paper, a toolbox is presented to generate landslide susceptibility maps according
to the above-mentioned workflow. The LSM toolbox includes three sub-toolboxes: “1
influence factor production”, “2 factor selection and dataset production” and “3 model
training and prediction”, as shown in Figure 2. This toolbox is developed based on ArcPy
and Python language and can be directly integrated into ArcGIS 10.1 (or higher) or ArcGIS
Pro software. It is efficient and user-friendly.
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2.2. Influencing Factor Production

Landslide influencing factors are various factors that affect the occurrence of land-
slides through the study of the occurrence mechanism of landslides in the study area. The
occurrence of landslides is affected by various influencing factors. At present, there is no
unified standard for the selection of influencing factors. Pourghasemi et al. [29] conducted
a statistical analysis on the influencing factors used in the study and found that topographic
factors, geological factors and human activities are the most commonly used factors for
landslide occurrence. This toolbox provides a tool for generating relevant topographic
factors based on DEM, a tool for converting roads, faults and rivers into continuous raster
data, and a rainfall processing tool.

2.2.1. Topographic Factor Calculation

This tool integrates other factors calculated by DEM, and automatically calculates
other topographic factors such as slope, aspect, curvature, plane curvature, profile cur-
vature, relief amplitude, surface roughness, topographic wetness index (TWI) and other
topographic factors based on DEM data in the study area. As shown in Figure 3a, it is
necessary to only input DEM data and select the factors that need to be calculated. These
factors can be calculated optionally according to the needs of users by checking the box
in front of the factors to be calculated, but aspect must be calculated when calculating
plane curvature, and slope must be calculated when calculating profile curvature, surface
roughness or TWI.
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2.2.2. Convert Line Vector Data to Continuous Raster Factor

This tool automatically converts the line vector data of the study area into continuous
raster data, such as distance to roads, distance to faults and distance to rivers. The conver-
sion principle adopts Euclidean distance. As shown in Figure 3b, the user only needs to
input the line vector data to be converted and the result save path.

2.2.3. Rainfall Data Processing

The National Aeronautics and Space Administration (NASA, https://gpm.nasa.gov/,
accessed on 24 December 2020) provides a Global Precipitation Measurement Mission
(GPM). These are high-precision precipitation data obtained using multi-sensors, multi-
satellites and multi-algorithms combined with the satellite network and rainfall gauge
inversion, with a spatial and temporal resolution up to 0.5 h, 0.1◦ × 0.1◦ [30]. The monthly or
daily rainfall data downloaded from NASA are in the .nc4 format, which is time-consuming
and laborious to convert into raster data one by one. Therefore, this tool provides a rainfall
batch conversion tool to convert the .nc4 format data to the .tif format raster data. As shown
in Figure 3c, the user only needs to input the rainfall data and specify the raster data output
coordinate system.

2.2.4. Batch Clipping of Each Factor Layer

After the production of the factor layer data, the row and column numbers and
coverage of each factor layer data are usually inconsistent. This tool is used to batch clip
the raster data of each factor layer according to the vector data of the study area in order to
obtain the factor layer data of the study area. As shown in Figure 3d, this tool only needs

https://gpm.nasa.gov/
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the user to set the folder where the raster factors are located and the vector data of the
study area; it can automatically iteratively select the .tif format files for clipping. All the
raster data resolutions should be consistent.

2.3. Factor Selection and Dataset Production
2.3.1. Non-Landslide Data Generation

This tool is used to generate non-landslide point data within the study area vector data
layer. As shown in Figure 4a, the user inputs landslide points and the study area vector
file and specifies the number of non-landslide points to be selected outside of a buffer
and how many meters from the landslide point. First, the tool generates a buffer zone
at a specified distance from the landslide point and erases the buffer zone layer on the
study area layer to obtain the selectable range of non-landslide sample points. It then uses
random points to generate the same number of non-landslide points within the optional
range. The non-landslide points should be selected as far from landslide points as possible.
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2.3.2. Data Sample Production

This tool is used to generate multi-channel block sample raster data from vector
point data. As shown in Figure 4b, the user inputs the vector point elements and the
multi-channel factor layer data and specifies the buffer distance, which is half of the actual
distance represented by the cropped raster size. The tool uses vector point data to create
a buffer and iteratively selects the buffer range corresponding to each point vector in order
to cut the multi-channel raster data one by one, resulting in a single multi-channel block
dataset of each vector point named after the “FID” attribute value. When the buffer distance
is less than the resolution of the raster data, the obtained sample has reached the point at
which the landslide point is located.

2.3.3. Dataset Split

When using the machine learning methods for model training, it is common to split
the samples into a training set and a test set in a certain ratio. The training set is used to
train the model and the test set is used to test the generalization of the model and prevent
overfitting. As shown in Figure 4c, users can specify the ratio of the training and test sets
by themselves. Generally, the ratio of the training and test sets is 7:3. Finally, the sample
paths and labels of the training and test sets will be given, respectively (0 for non-landslide
and 1 for landslide), and the results are saved in a txt file.

2.3.4. PCC and IGR Calculation

Determining the most effective combination of the influencing factors for landslide
susceptibility mapping is of great importance. If the influencing factors are not evaluated,
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this will not only cause data redundancy but will also affect the execution efficiency
and prediction accuracy of the model [31]. At present, there is no optimal solution for
the selection of influencing factors, but they typically consist of two parts: correlation
analysis and importance evaluation. This toolbox provides two of the most commonly used
influencing factor selection methods: PCC and IGR. The PCC is an index used to measure
the correlation between the influencing factors. The closer its absolute value is to 1, the
stronger the correlation between the two factors. The information gain ratio is an index
used to evaluate the importance of each factor layer on landslide occurrence. The higher
the IGR value, the greater the impact of this factor on landslide occurrence. Any factor
with zero IGR does not influence landslide occurrence. As shown in Figure 4d, this tool
calculates PCC and IGR based on the generated data samples and saves them in a txt file.
Upon comprehensively considering the calculation results, factors with strong correlation
and little influence on landslide occurrence are eliminated based on the principle that the
lower the correlation is, the greater the importance is.

2.4. Model Training and Prediction
2.4.1. Image Generation to Be Predicted

The different factor layers are stacked in a certain order to form multi-channel raster
data, which is the image to be predicted. It is used for sample production and susceptibility
map prediction. As shown in Figure 5a, this tool only requires the input of the path and
stacking order of each factor layer. Here, the stacking order of the factor layers used for the
image to be predicted should be consistent with the order of the factor layers in the model
training samples.
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2.4.2. Model Training and Performance Evaluation of SVM

This tool is used to generate SVM models with given parameters and provide eval-
uation results of the accuracy of each model. As shown in Figure 5b, the user enters the
directory in which the dataset sample is located along with the number of rows, columns
and channels of the dataset. At the same time, the optional values of parameter gamma and
penalty factor C to be adjusted also should be given. The parameter adjustment method
used in this tool is the grid search algorithm.

SVM has certain advantages in solving the problem of small-sample classification [32].
The kernel function and slack variable are used to deal with the linear indivisibility of
the sample data. At the same time, because the classifier is only determined by the
support vector, SVM can effectively avoid overfitting. SVM attempts to classify samples by
introducing kernel functions that map landslide influencing factors to a high-dimensional
feature space, from which it attempts to locate the optimal hyperplane with the maximum
spacing between landslides and non-landslides from the feature space [33]. Xu et al. [5]
discussed the influence of different kernel functions of SVM on landslide susceptibility
mapping. The results show that the prediction effect of the radial basis function (RBF) in
SVM is optimum. Therefore, the kernel function of this tool defaults to RBF.

The susceptibility map is equivalent to a binary classification problem. Landslides
are marked as “1” and non-landslides marked as “0”. Thus, the confusion matrix can be
constructed according to different combinations of real value and predicted value, and the
model accuracy evaluation index can be constructed based on the confusion matrix. In
this tool, accuracy, precision, recall, F1 value, receiver operating characteristic (ROC) and
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area under curve (AUC) were used to evaluate the prediction ability of the model. The
calculation formula [6] is as follows.

accuracy =
TN + TP

TN + TP + FP + FN
(1)

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 value =
2× TP

2× TP + FP + FN
(4)

If the real result and predicted result are landslide, it is called true positive (TP); if
the real result and predicted result are non-landslide, it is called true negative (TN); if the
real result is landslide and the predicted result is non-landslide, it is called false negative
(FN); if the real result is non-landslide and the predicted result is landslide, it is called false
positive (FP).

In the ROC, false-positive rate (FPR) is the x-axis and true-positive rate (TPR) is the
y-axis. At the same time, the area under the ROC (AUC) is used to quantitatively evaluate
the prediction accuracy of methods. The AUC value range is [0, 1]. The larger the AUC
value, the higher the accuracy of the model classification and the better the accuracy.

FPR =
FP

FP + TN
(5)

TPR =
TP

FN + TP
(6)

2.4.3. Landslide Susceptibility Map Prediction

This tool is used to predict landslide susceptibility in the study area, based on the
optimal model, and obtain the landslide susceptibility map in the study area. In this tool, a
sliding window with the same row and column numbers as the dataset is constructed to
select the data to be predicted for input into the optimal model to obtain the susceptibility
index until all rows and columns are sliding. The tool provides two options: single process
(Figure 5c) and multiprocessing (Figure 5d). Single-process and multiprocessing tools can
be used under ArcGIS and ArcGIS Pro, but the single-process tool speed is slow and the
multiprocessing tool is fast. In a single process, the user must only give the image to be
predicted, the optimal model and the number of rows and columns of the dataset. In
multiprocessing, the user must also specify “pythonw.exe” location.

3. Results

Taking Wuqi County, Shaanxi Province, China as an example, the developed toolbox
was applied to carry out a landslide susceptibility assessment.

3.1. Study Area

The study area is located in Wuqi County, Yan’an City, Shaanxi Province (107◦38′57′′E~
108◦32′49′′E, 36◦33′33′′N~37◦24′27′′N). It covers a total area of 3791.5 km2, encompasses
a total population of 145,700 and has an altitude of 1233~1809 m. The study area has a warm,
temperate, continental, semi-arid climate. It is dry and windy in spring, sees alternating
drought and flood conditions in summer, is cool and wet in autumn and is cold and dry
in winter, and the annual average temperature is 7.8 ◦C. The average annual rainfall is
483.4 mm, and the total coverage of forest and grass is 49.6%. The Wuding and Beiluo River
systems lie within the study area. The landform belongs to the hilly and gully area of the
Loess Plateau. The terrain fluctuates greatly, the gully is long and the slope is steep [34].
The landslide type in the study area mainly belongs to Loess landslides. During the flood
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season, rainstorms or continuous rainfall will often induce landslides, collapses and debris
flow of different scales, seriously threatening the lives and property safety of local people.
Therefore, it is of great practical significance to carry out landslide susceptibility evaluation
in Wuqi County. The location of the study area is shown in Figure 6.
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3.2. Preprocessing of Influencing Factors

The influence factor data sources used in this example include DEM, roads, rivers,
lithology, NDVI and rainfall. Lithology and NDVI were pre-processed into 30 m resolution
raster data. For the acquired DEM data, the “topographic factor calculation” tool is used
to generate slope, aspect, curvature, plane curvature, profile curvature, relief amplitude,
surface roughness and a topographic wetness index (TWI). At the same time, the “convert
line vector data to continuous raster factor” tool is used to produce the distance to rivers
and distance to roads. Since there is no active fault in the study area and it is not affected
by active faults, the distance to the fault is not considered. For the rainfall data (.nc4), the
“rainfall data processing” tool is used to convert the monthly rainfall data obtained by
NASA into the corresponding raster data in batches, and the raster calculator is used to
accumulate monthly rainfall data in order to obtain annual rainfall data. Finally, the “batch
clipping of each factor layer” tool is used to batch cut the generated influencing factor data
according to the vector data of the study area. Finally, a total of 14 landslide influencing
factors are generated (Figure 7), and the spatial resolutions of all the factor data are 30 m.
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Figure 7. Landslide influencing factors in Wuqi County. (a) Altitude, (b) slope, (c) aspect, (d) curvature,
(e) plane curvature, (f) profile curvature, (g) relief amplitude, (h) surface roughness, (i) topographic
wetness index (TWI), (j) normalized difference vegetation index (NDVI), (k) rainfall, (l) lithology,
(m) distance to roads, (n) distance to rivers.
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3.3. Factor Selection and Sample Generation

There are 789 historical landslides in the study area, which can be divided into 175 large
landslides, 417 medium landslides and 197 small landslides. In this study, all the landslide
locations are used to construct the landslide dataset. Based on the landslide point data, the
“non-landslide data generation” tool was used to randomly generate the same number of
non-landslide points, each of which should be at least 1 km away from all of the landslide
points in the study area.

Since the calculation of IGR and PCC must be based on all the sample data, the dataset
needs to be created before the selection of influencing factors. Firstly, the “image generation
to be predicted” tool is used to stack the generated data of 14 influencing factors in the
study area in multiple channels. Then, the “data sample production” tool is used to make
landslide and non-landslide block datasets based on the superimposed multi-channel
images. In addition, the “dataset split” tool is used to divide the training samples and
test samples in the ratio of 7:3, before saving the path and labels of the samples to the
corresponding txt file, respectively. Finally, all the block datasets have fourteen channels,
eight rows and eight columns. There are 1104 images in the training set and 474 images in
the test set, in which the landslide dataset is marked as 1 and the non-landslide dataset is
marked as 0.

After using the “PCC and IGR calculation” tool to calculate the PCC and information
gain ratio of each factor layer based on the data samples, Figure 8 shows the results of the
PCC calculation. It can be seen that the correlation coefficients between plane curvature
and slope, TWI and slope, and relief amplitude and surface roughness are greater than 0.5.
The study area is located in the hinterland of the Loess Plateau which is a typical hilly and
gully landscape with high topographic fragmentation and loose soils. The reason for such
strong correlations is that the study area often suffers from severe rainfall erosion and river
erosion. On the one hand, the greater the slope, the more severe the soil erosion. Therefore,
the more complex the surface morphology, the greater roughness and relief amplitude of
the surface. On the other hand, the steep slopes with low water retention capacity lead to
low soil water content (TWI), and vice versa. Figure 9 presents the calculation results of
the information gain ratio. The IGR values of 14 landslide influencing factors are greater
than 0, indicating that these factors have an impact on the occurrence of landslides in the
corresponding areas. In this study area, lithology has the greatest impact on landslide
occurrence, followed by NDVI, plane curvature, profile curvature and TWI, while curvature
and relief amplitude have the least impact. Upon a comprehensive analysis of PCC and
IGR, the two influencing factors of slope and relief amplitude were removed for Wuqi
County, and the remaining 12 influencing factors were used for subsequent research.

According to the evaluation results, the steps of “image generation to be predicted”,
“data sample production” and “dataset split” should be repeated in decreasing order of
information gain ratio (i.e., lithology, plane curvature, profile curvature, NDVI, TWI, aspect,
surface roughness, distance to rivers, DEM, distance to roads, rainfall and curvature) to
obtain the final image and sample data for further prediction. The number of channels of
all the block datasets used is 12, and their row and column numbers are both eight in the
subsequent analysis.
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Figure 9. Information gain ratio for the Wuqi County case study. Note that “slp” represents slope,
“asp” represents aspect, “cur” represents curvature, “plancur” represents plane curvature, “profilecur”
represents profile curvature, “rivers” represents distance to rivers, “roads” represents distance
to roads, “lithology” represents lithology, “SroughnessC” represents surface roughness, “relief”
represents relief amplitude, and “rainfall” represents rainfall.
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3.4. Model Training and Performance Evaluation

The “model training and performance evaluation of SVM” tool is used to train the
model based on the generated training data, evaluate the performance with the test set and
plot the ROC curve. Of these, the SVM model uses the RBF kernel function. The model has
two parameters: gamma and penalty factor C. The grid search algorithm is used to optimize
the parameters, find the optimal set of model parameters and generate the optimal model.
The values of parameters gamma and C are selected from 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.5,
0.8, 1, 2 and 5. Figure 10 shows the AUC values and the difference in accuracy between
the training and test sets for different gamma and C values, which used gamma values as
horizontal coordinates and C values as vertical coordinates. In the figure, the size of the
circle represents the AUC value. The larger the circle, the greater the AUC value and the
better the model performance. The color of the circle represents the accuracy difference
between the training and test sets. If it exceeds 0.5, it is represented by 0.5. The greater
the accuracy difference, the higher the degree of overfitting of the model and the worse
the generalization performance. Consequently, comprehensive analysis shows that when
gamma is 0.02 and C is 2, the AUC value is high, the accuracy difference is small, and the
model is optimal.
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Table 1 shows the performance of the optimal model with the testing dataset, and
Figure 11 shows its corresponding ROC curve. Among the 474 testing datasets, 169 land-
slides and 171 non-landslides were correctly predicted, while 68 landslides and 66 non-
landslides were incorrectly predicted. The correct samples predicted by the model accounted
for 71.73% of the total samples, with a precision of 71.55% and a recall rate of 72.15%. At
the same time, the AUC value of the model is 0.8029, indicating that the model has good
prediction performance and the result of the landslide susceptibility map is reliable.



Remote Sens. 2022, 14, 3408 17 of 22

Table 1. Evaluation index of the model performance.

Evaluation Index Results

Confusion matrix
Landslide Non-landslide

Landslide 169 68
Non-landslide 66 171

Accuracy 0.7173
Precision 0.7155

Recall 0.7215
F1 0.7185

AUC 0.8029

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 

Table 1. Evaluation index of the model performance. 

Evaluation Index Results 

Confusion matrix 
 Landslide Non-landslide 

Landslide 169 68 
Non-landslide 66 171 

Accuracy 0.7173 
Precision 0.7155 

Recall 0.7215 
F1 0.7185 

AUC 0.8029 

 
Figure 11. The ROC curve of the optimal model. 

3.5. Landslide Susceptibility Map Generation and Analysis 
With the trained optimal model, the “landslide susceptibility map prediction” tool is 

used to predict the generated image unit by unit according to the optimal model. The 
probability of each evaluation unit being predicted as a landslide is obtained to generate 
a landslide susceptibility map for the study area. The predicted susceptibility indexes lie 
between 0 and 1. The larger the susceptibility index is, the more susceptible the area is to 
landslides. The generated susceptibility map is divided into five levels—very low, low, 
moderate, high and very high—using the natural break method in ArcGIS. The landslide 
susceptibility map of Wuqi County after classification is obtained by SVM, as shown in 
Figure 12. 

It is clear in Figure 12 that the areas in Wuqi County with high and very high suscep-
tibility to landslides are mainly concentrated on both sides of rivers severely affected by 
soil erosion. Low- and very-low-susceptibility areas are mainly distributed in high-alti-
tude areas with limited human activity. The locations of historical landslides are well fit-
ted with the predicted results. The areas where landslides are relatively concentrated are 
predicted as high and very high susceptibility areas, which is in line with the actual situ-
ation. Table 2 shows the proportion of each graded area and the density of landslide points 
within each grade. It can be seen that the proportion of high- and very-high-susceptibility 
areas is 29.97%, and the proportion of low- and very-low-susceptibility areas is 49.18%. 
With increased susceptibility grade, the density of landslide points increases continu-
ously, which is in line with the actual situation of the susceptibility grade. The density of 

Figure 11. The ROC curve of the optimal model.

3.5. Landslide Susceptibility Map Generation and Analysis

With the trained optimal model, the “landslide susceptibility map prediction” tool
is used to predict the generated image unit by unit according to the optimal model. The
probability of each evaluation unit being predicted as a landslide is obtained to generate
a landslide susceptibility map for the study area. The predicted susceptibility indexes lie
between 0 and 1. The larger the susceptibility index is, the more susceptible the area is to
landslides. The generated susceptibility map is divided into five levels—very low, low,
moderate, high and very high—using the natural break method in ArcGIS. The landslide
susceptibility map of Wuqi County after classification is obtained by SVM, as shown in
Figure 12.

It is clear in Figure 12 that the areas in Wuqi County with high and very high suscep-
tibility to landslides are mainly concentrated on both sides of rivers severely affected by
soil erosion. Low- and very-low-susceptibility areas are mainly distributed in high-altitude
areas with limited human activity. The locations of historical landslides are well fitted with
the predicted results. The areas where landslides are relatively concentrated are predicted
as high and very high susceptibility areas, which is in line with the actual situation. Table 2
shows the proportion of each graded area and the density of landslide points within each
grade. It can be seen that the proportion of high- and very-high-susceptibility areas is 29.97%,
and the proportion of low- and very-low-susceptibility areas is 49.18%. With increased
susceptibility grade, the density of landslide points increases continuously, which is in
line with the actual situation of the susceptibility grade. The density of landslide points in
very-high-susceptibility areas is 0.77 and that in very-low-susceptibility areas is 0.04.



Remote Sens. 2022, 14, 3408 18 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 23 
 

 

landslide points in very-high-susceptibility areas is 0.77 and that in very-low-susceptibil-
ity areas is 0.04. 

 
Figure 12. Classification map of landslide susceptibility in Wuqi County. 

Table 2. Statistical analysis of each susceptibility class in Wuqi County. 

Classes Area (km2) Proportion (%) 
Landslide Density 

(Number/km2) 
Very low 924.43 24.28 0.04 

Low 948.24 24.90 0.08 
Moderate 794.02 20.85 0.14 

High 648.42 17.03 0.28 
Very high 493.02 12.94 0.77 

3.6. Toolbox Operation Efficiency Evaluation 
Although the “landslide susceptibility map prediction (single process)” and “land-

slide susceptibility map prediction (multiprocessing)” tools can be used under ArcGIS 
and ArcGIS Pro, it is recommended that they be used with ArcGIS Pro. Since Python 2.7 
installed in ArcGIS is generally 32-bit, it has extremely limited use of memory resources 
and can only use a maximum of 2G of memory when processing massive data. If it exceeds 
2G, a “Memory Error” will appear. Meanwhile, the Python 3 environment used by ArcGIS 
Pro is 64-bit, which can use more memory than the 32-bit Python, and therefore the 
“Memory Error” rarely occurs. 

Table 3 shows the computation statistics of various tools in ArcGIS and ArcGIS Pro 
software for Wuqi County, respectively. For evaluation, all the experiments are conducted 
on a Windows PC ×64 with a 2.30 GHz Gen Intel Core i7-11800H CPU, a 4 GB GeForce 
RTX 3050 Ti Laptop graphic card and 16 GB of RAM. 

  

Figure 12. Classification map of landslide susceptibility in Wuqi County.

Table 2. Statistical analysis of each susceptibility class in Wuqi County.

Classes Area (km2) Proportion (%) Landslide Density (Number/km2)

Very low 924.43 24.28 0.04
Low 948.24 24.90 0.08

Moderate 794.02 20.85 0.14
High 648.42 17.03 0.28

Very high 493.02 12.94 0.77

3.6. Toolbox Operation Efficiency Evaluation

Although the “landslide susceptibility map prediction (single process)” and “landslide
susceptibility map prediction (multiprocessing)” tools can be used under ArcGIS and
ArcGIS Pro, it is recommended that they be used with ArcGIS Pro. Since Python 2.7 installed
in ArcGIS is generally 32-bit, it has extremely limited use of memory resources and can
only use a maximum of 2G of memory when processing massive data. If it exceeds 2G, a
“Memory Error” will appear. Meanwhile, the Python 3 environment used by ArcGIS Pro
is 64-bit, which can use more memory than the 32-bit Python, and therefore the “Memory
Error” rarely occurs.

Table 3 shows the computation statistics of various tools in ArcGIS and ArcGIS Pro
software for Wuqi County, respectively. For evaluation, all the experiments are conducted
on a Windows PC ×64 with a 2.30 GHz Gen Intel Core i7-11800H CPU, a 4 GB GeForce
RTX 3050 Ti Laptop graphic card and 16 GB of RAM.

Table 3. Computation statistics of various tools with different software in Wuqi County.

Tool ArcGIS ArcGIS Pro

Topographic factor calculation 58 s 42 s
Convert line vector data to continuous raster factor 1 min 9 s 34 s

Rainfall data processing 57 s 50 s
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Table 3. Cont.

Batch clipping of each factor layer 18 s 17 s
Non-landslide data generation 2 s 1 s

Data sample production * landslide 5 min 22 s/4 min 46 s 4 min 34 s/4 min 29 s
non-landslide 4 min 56 s/4 min 32 s 4 min 19 s/4 min 15 s

Dataset split * 0.5 s/0.5 s 0.5 s/0.5 s
PCC and IGR calculation 1 min 16 s 57 s

Image generation to be predicted * 3 min 38 s/2 min 45 s 1 min 32 s/1 min 13 s
Model training and performance evaluation of SVM 1 h 55 min 32 s 1 h 8 min 8 s

Landslide susceptibility map prediction
(single process) 2 h 53 min 15 s 1 h 26 min 47 s

Landslide susceptibility map prediction
(multiprocessing) 21 min 51 s 20 min 12 s

Total † 5 h 19 min 27 s/2 h 48 min 3 s 2 h 58 min 39 s/1 h 52 min 4 s

Notes: “Data sample production”, “dataset split” and “image generation to be predicted” tools must be run twice.
* indicates that the first run time and the second run time, and † shows the total single process running time and
the total multiprocessing running time.

As shown in Table 3, the total time of the SVM-LSM toolbox for the ArcGIS single
process is 5 h 19 min 27 s and that for the ArcGIS Pro single process is 2 h 58 min 39 s, which
improves running efficiency by 44.08%. The main gap in running time is concentrated in
the operation of the “susceptibility map prediction” tool. At the same time, the total time
of the SVM-LSM toolbox in ArcGIS multiprocessing is 2 h 48 min 3 s and the total time
in ArcGIS Pro multiprocessing is 1 h 52 min 4 s, which improves running efficiency by
33.31%. The main difference in the running time is concentrated in the step of the “model
training and performance evaluation of SVM”. The abovementioned two differences are
mainly due to their difference in the number of bits. Therefore, it is recommended that the
toolbox in ArcGIS Pro is run with 64-bit Python. In addition, under the ArcGIS platform,
the running time of the “landslide susceptibility map prediction (multiprocessing)” tool is
2 h 48 min 3 s and the running time of the “landslide susceptibility map prediction (single
process)” tool is 5 h 19 min 27 s, which shortens running time by nearly 2 h 31 min 24 s and
improves running efficiency by 47.39%. Under the ArcGIS Pro platform, the running time
of the “landslide susceptibility map prediction (multiprocessing)” tool is 20 min 12 s and
the running time of the “landslide susceptibility map prediction (single process)” tool is 1 h
26 min 47 s, which shortens running time by nearly 1 h 6 min 35 s and improves running
efficiency by 76.72%. This shows that the multiprocessing prediction tool for the sliding
window in this tool can greatly improve the efficiency of susceptibility mapping.

3.7. Model Selection: SVM

As mentioned earlier, SVM is used in the toolbox. To assess whether it is optimal to
employ SVM, comparisons with two other commonly used models, namely, decision tree
(DT) and random forest (RF), are performed. Table 4 shows the operation efficiency and
AUC values of different models. The DT model requires two parameters to be adjusted:
max_depth and min_samples_leaf ; the RF model requires five parameters to be adjusted:
max_depth, max_features, n_estimators, min_samples_leaf and min_samples_split; and the SVM
model requires two parameters to be adjusted: gamma and C. For the grid search method,
the greater the number of model parameters, the higher the model training time complexity,
and the more time-consuming the model tuning is. In terms of model accuracy, for the
same training and testing datasets in Wuqi County, the AUC of the optimal RF model
is 0.8372, the AUC of the optimal SVM model is 0.8029, and the AUC of the optimal DT
model is 0.7774. The AUC values of SVM and RF model are both higher than 0.8, indicating
that these two models can better reflect the landslide susceptibility in this area. Therefore,
compared with the three models, the SVM model is friendlier to beginners, with fewer
parameters to be adjusted, short running time and high accuracy. Therefore, we choose the
SVM model to build the LSM toolbox.
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Table 4. The operation efficiency and AUC values of different models.

Model Number of Parameters Training Time Complexity LSM Prediction (Multiprocessing) AUC

DT 2 O(m ∗ n) 4 min 28 s 0.7774
RF 5 O(m ∗ n ∗ l ∗ k ∗ j) 1 h 21 min 25 s 0.8372

SVM (this study) 2 O(m ∗ n) 20 min 12 s 0.8029

Notes: O represent the time complexity; m, n, l, k and j represent the number of optional values of different
parameters, respectively.

4. Conclusions

This paper develops a tool known as the SVM-LSM toolbox, which integrates the whole
process of landslide susceptibility mapping. The toolbox consists of three sub-toolboxes:
(1) influence factor production, (2) factor selection and dataset production, and (3) model
training and prediction. The tool can be integrated into ArcGIS 10.1 (or higher) as well as
ArcGIS Pro. The interface is user-friendly, easy to implement and provides multiprocessing
prediction, which greatly improves prediction efficiency. In order to assess the performance
of the toolbox, Wuqi County (an area highly prone to Loess landslides) is selected as the
study area. Six basic factors are selected and a total of fourteen landslide influencing factors
are obtained based on the influencing factor production tool. In the selection of influencing
factors, the slope and relief amplitude factors are eliminated according to the results of PCC
and IGR. Finally, the model training tool is used to obtain the optimal model according to
various evaluation indexes and generate a susceptibility map of the study area.

The results show that the model has good prediction performance and high prediction
accuracy. The susceptibility areas of Wuqi County are mainly concentrated along rivers
severely affected by soil erosion. In short, the SVM-LSM toolbox optimizes the complex
susceptibility mapping process, avoids the cross-platform operation of traditional workflow
and greatly shortens the prediction time of the susceptibility map. At present, the toolbox
has only been tested with ArcGIS and ArcGIS Pro software on the Windows system. In the
future, it will be integrated into other commonly used GIS processing software, such as
QGIS, for expansion. Furthermore, more machine learning models can be incorporated,
and automatic parameter tuning function can be developed to further improve the user-
friendliness and universality of the toolbox.
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