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Abstract: Fine particulate matter (PM2.5), which can cause adverse human health effects, has been
proven as the first air pollutant in China. In situ observations with ground-level monitoring and
satellite-based concentrations have been used to analyze the variations in PM2.5. However, variation
analyses based on these two kinds of measurement have mainly focused on the concentration itself
and ignored the effects on the population. Therefore, this study not only investigated these two kinds
of measurements, but also performed weighted population analyses to study the variations in PM2.5.
Firstly, daily models of timely structure adaptive modeling (TSAM) were constructed to simulate
satellite-derived PM2.5 levels from January 2013 to December 2016. Secondly, population-weighted
concentrations were calculated based on TSAM-derived PM2.5 surfaces. Finally, observed, TSAM-
derived, and population-weighted concentrations were used to analyze the variations in PM2.5. The
results showed the different importance of various input parameters; AOD had the highest rank.
Additionally, TSAM models demonstrated good performance, fitting R ranging from 0.86 to 0.91,
and validating R from 0.82 to 0.89. According to the air quality standard in China, TSAM-derived
PM2.5 showed that the increase in area lower than Level II was 29.03% and the increase in population
was only 14.81%. This indicates that the air quality exhibited an overall improvement in spatial
perspective, but some areas with high population density showed a relatively low improvement
due to uneven distributions in China. The population-weighted PM2.5 concentration could better
represent the health threats of air pollutants compared with in situ observations.

Keywords: air pollution; AOD; spatial–temporal variations; environmental modeling; population
exposure

1. Introduction

Fine particulate matter (PM2.5) with micro particle sizes can cause serious health con-
sequences, such as morbidity, mortality, and cardiovascular and respiratory diseases [1–4].
Except these hazards, it could also be the corrosion of materials [5]. With rapid economic
development and urbanization in recent decades, China has been facing the growing prob-
lem of poor atmospheric environment [6,7]. Air pollution not only poses threats to public
health but also affects daily production and life, such as atmospheric visibility reductions
and the destruction of the urban landscape [7,8].

To improve air quality, national and local governments have promulgated a series of
plans and policies since 2012. Among them are the 12th Five-Year Plan on Air Pollution
Prevention and Control in Key Regions (abbreviation: Key Regions) and the most recent
Chinese Ambient Air Quality Standard (CAAQS) released on 10 September 2013. At the
same time, nationwide air quality monitoring networks have gradually been established
since 2013. Increasing numbers of studies have been conducted to analyze the temporal–
spatial variations in PM2.5 based on ground-level monitoring measurements [9–11].
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However, site-based observations, which collect concentrations of air pollutants from
fixed sites, merely reflect ambient PM2.5 concentrations at limited distances around the
ground monitoring stations and hardly reflect spatial variations in air pollutants [12]. Ad-
ditionally, researchers have focused on spatial interpolation methods to reveal regional
variations in PM2.5, e.g., Kriging and inverse distance weight interpolation [13,14]. Spatial
interpolation methods can derive surfaces of PM2.5 concentrations. However, the uncer-
tainties in these methods could be high when varying topography, meteorology, and local
emissions among the monitoring sites are not accounted for [14–17].

A previous study proved that remote sensing could provide more information about
the Earth’s climate parameters (e.g., aerosols, temperature, pressure, etc.) [18]. Previous
studies have proved that aerosol optical depth (AOD) and PM2.5 have similar particle sizes,
which provide the theoretical basis of modeling between PM2.5 and satellite AOD [19,20].
At the same time, AOD with wide spatial coverage and acceptable accuracy which is
satellite-retrieved can provide planar data from the macro scale and supplement ground
observations. It has been increasingly utilized to simulate the regional distribution of
PM2.5 [6,21,22]. Spatial–temporal statistical modeling is one of the most popular methods
in PM2.5 concentration predictions and includes simple linear regression [23,24], multiple
linear regression (e.g., land use regression (LUR) [14,17], geographically weighted regres-
sion (GWR) [21,25], linear mixed effect (LME) [26,27], timely structure adaptive modeling
(TSAM) [22]), and artificial intelligence models (e.g., ANN) [16,28–30]. While the con-
tributing strength of model predictors (i.e., variables) are allowed to change in these daily
modeling process, all these models (no matter whether they are linear or non-linear) for
individual days over a study period have a fixed structure. In fact, both the models’ predic-
tors and their contributing strengths could vary with time. Then, TSAM takes temporal
variations and magnitudes of predictors into consideration in the modeling process and
provides a novel solution for continuously mapping the distributions of PM2.5 [22].

Existing research has mainly focused on the variations in in situ or satellite-derived
concentrations of PM2.5 and then analyzed its spatial and temporal characteristics. Popula-
tion density in China is not evenly distributed, and Hu demonstrated that 93.77% of the
population live south-east of this “Hu Line”, which is a contrast line of population density
proposed by Hu in 1935 [31]. Regions with high population density would therefore have
higher population exposure risks with the same concentrations of pollutants. Additionally,
when analyzing the effect of air pollution, we not only need to analyze concentration
variations in air pollutants, but we also need to consider population exposure.

Therefore, the main aims of this study are: (1) to simulate the satellite-based distribu-
tion of PM2.5 from 2013 to 2016 with the TSAM modeling framework; (2) to analyze the
spatial–temporal variations in observed and TSAM-derived PM2.5; and (3) to compare the
difference between observed and population-weighted PM2.5 levels for Key Regions.

2. Materials and Methods
2.1. Study Area

This research selected mainland China as the study area (Figure 1), and especially the
Key Regions, including the Beijing–Tianjin–Hebei Delta, the Yangtze River Delta, and the
Pearl River Delta, as well as 10 city clusters (the cluster of Central Liaoning, Shandong
Province, Wuhan region, Changsha–Zhuzhou–Xiangtan, Chengdu–Chongqing, Straits
Fujian, central and northern areas of Shanxi, Shaanxi Guanzhong, and Gansu–Ningxia, and
the city of Urumqi in Xinjiang).
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Figure 1. Study area.

2.2. Data Collection and Pre-Processing
2.2.1. In Situ Site-Based PM2.5 Measurements

Hourly ground PM2.5 concentrations were collected from the official database, which
had 661 fixed sites in 2013 and 1436 by the end of 2016. These were measured with the
tapered element oscillating microbalance method (TEOM). Invalid and error measurements
caused by instrument calibration failure and power failure were reduced based on the
Chinese National Ambient Air Quality Standards (CNAAQS, GB3095-2012). In this process,
repeatedly reported records for several successive hours, significantly abnormal measure-
ments (e.g., more than 1000 µg/m3 or less than 0 µg/m3), or fewer than 20 records of PM2.5
concentrations in a day were deleted. As a result, about 1% of records were discarded as
abnormal during the study period. Screened hourly PM2.5 measurements were averaged
into daily values for each monitoring station. To maintain a consistent spatial resolution
of PM2.5 with the predictor of AOD, these daily PM2.5 values were recalculated based on
the 10 km grid cells. Additionally, PM2.5 concentrations were calculated for grid cells with
screened hourly observations which matched the satellite overpass times.

2.2.2. Satellite AOD

Moderate Resolution Imaging Spectroradiometer (MODIS) AOD products (National
Aeronautics and Space Administration (NASA), Washington, DC, USA) are global MODIS
Level 2 Aerosol Products Collection 6 (C6, NASA, Washington, DC, USA), which have been
validated with AOD measurements from 33 Aerosol Robotic Network (AERONET, estab-
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lished by NASA, Washington, DC, USA, and PHOtométrie pour le Traitement Opérationnel
de Normalisation Satellitaire, Lille, France) sites in China. The Level 2 C6 MODIS AOD of
Terra (NASA, Washington, DC, USA, equatorial crossing time at 10:30 a.m.) and Aqua (equa-
torial crossing time at 13:30 p.m.) with a spatial resolution of 10 km were collected from
1 January 2013 to 31 December 2016. The combined Dark Target (DT) and Deep Blue (DB)
AODs at 550 nm wavelength in C6 (MODIS parameter name: AOD_550_Dark_Target_Deep_
Blue_Combined, NASA, Washington, DC, USA) with the highest quality assurance confi-
dence flags (QA = 3) were screened as AOD values on specific days. To improve the spatial
coverage, Terra AOD (MOD04) and Aqua AOD (MYD04) were extracted and combined,
following an existing research method [22,32,33].

2.2.3. PM2.5 Emission Data

Due to the unavailability of the national emission inventory, land use, traffic networks,
and demographic data were regarded as alternatives for indirectly characterizing the PM2.5
emissions. Population raster data with a resolution of 1 km in 2010 were collected and
annually updated concerning the county-level population growth rate from 2013 to 2016.
The variables of land use included the percentage of built-up area, forest area, grass area,
and water area. The traffic variable was the total road length. Additionally, population
density values were treated as proxy variables of demographic data.

2.2.4. PM2.5 Dispersion Conditions Data

It has been acknowledged that meteorology and topography are key factors that
can directly influence the dispersion of PM2.5 [21,34]. About 900,000 daily meteorologi-
cal records, including wind speed (WS, m/s), precipitation (PE, mm), relative humidity
(RH, %), temperature (TEMP, K), and pressure (PS, hPa), were obtained from 824 sites of
the meteorological monitoring network. Abnormal values were discarded in this process
based on the quality control code and standard outlier elimination. These meteorological
factors were interpolated with the inverse distance-weighted method into a 10 km raster.
Moreover, as an indicator of topography, digital elevation model (DEM) data from the
Shuttle Radar Topography Mission (SRTM) were collected with a spatial resolution of 90 m.

2.3. TSAM Modeling
2.3.1. Structure of the TSAM Model

TSAM, a model which has been proven to be effective in PM2.5 concentration estima-
tions, was employed for satellite mapping in this study; details of TSAM were presented
by Fang et al. [22]. The general formulation of TSAM is expressed in Equation (1), which
consists of the dependent variable of PM2.5 and independent variables including AOD,
emission-related predictors, and dispersion-condition-related predictors.

PM2.5 = f(Satellite, Emissions, Dispersion) (1)

In this case, PM2.5 indicates the daily PM2.5 concentrations; Satellite means the daily
satellite-retrieved AOD; Emissions refers to the proxy variables of land use, road length,
and population; and Dispersion includes variables of meteorology and topography. The
basic structure for the daily TSAM model can be written as in Equation (2).

PM2.5gd = α0,gd + α1,gdAODgd +
13

∑
i=2

αi,gdVari,gdt + ξgd (2)

where PM2.5gd represents the daily ground PM2.5 measurements at cell g on day d, α0,gd
is the location-specific intercept, α1,gd~α13,gd are the location-specific slopes for the cor-
responding predictors, AODgd is used as a required variable for a specific model which
denotes the MODIS AOD value, the flag t in the predictor means that the predictor is not
constantly considered in the final model, and whether the predictor is selected or not will
be determined based on the daily model performance. Var with the index i from 2 to 6 rep-
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resents the meteorological conditions, including wind speed, precipitation, temperature,
pressure, relative humidity: Var with an index of 7 denotes the topography condition with
the value of elevation; Var with an index of 8 is the total road length within the buffer with
a radius of 5 km; Var with an index, i, from 9 to 12 represents the percentages of built-up,
forest, grass, and water areas within the 5 km buffer around the site, respectively; and Var
with an index of 13 denotes the population. ξgd is the error term. Time average maps of all
these input variables (Figures S1–S12) are provided in the Supplementary Materials.

2.3.2. TSAM Model Fitting, Validation, and Prediction

Firstly, all spatial data used in this study were unified to the same projection coordinate
system (Asia_Lambert_Conformal_Conic). Then, the daily PM2.5 values were resampled to
10 km for consistency with the size of the AOD pixel. Based on the in situ sites for regula-
tory PM2.5 observations, variables of land use, road length, and population density were
extracted using the buffer and overlay analysis of ArcGIS 10.1. The buffer radius for land
use and road length was set as 5 km. The monitoring daily meteorological measurements
were also processed into 10 km resolution using the IDW method. Subsequently, these
variables were finally extracted to daily sample files. Details of the variable extraction and
calculations were presented in our previous study [22]. The stepwise regression method
was used to select the predictors in the specific modeling day. The optimal model structure
was determined in line with comparison results of indicators of model performance (e.g.,
R2, RMSE, etc.) among different model structure combinations and used to fit the TSAM
model for specific days.

Tenfold cross-validation tests were carried out, which randomly selected 90% as the
modeling set and 10% as the validating set from the total samples for each modeling day.
We repeated this step ten times until all samples used as validation sets were used to test
the model robustness and modeling performance; detailed information refers to existing
work [35]. Indicators, including the RMSE, mean prediction error (MPE), relative prediction
error (RPE, which is defined as the RMSE divided by the mean observed value of samples),
relative mean prediction error (RMPE, which is defined as the MPE divided by the mean
observed value of samples), and R2, were used to indicate the performance of the TSAM
model. Finally, a 10 km fishnet was created, with 92,122 grid cells in total. PM2.5 values
for each fishnet cell were estimated based on the validated TSAM model and associated
modeling variables.

2.4. Calculation of Population-Weighted PM2.5 Concentration

In this study, we not only considered the variations in PM2.5 observations and TSAM-
derived concentrations analyzed, but also evaluated the exposure risk to PM2.5. We cal-
culated population-weighted concentrations as indicators of exposure based on TSAM-
derived PM2.5 concentrations [36]; the equation is shown below:

PopCon =
∑n

i=1 Popi × Coni

∑n
i=1 Popi

(3)

where PopCon represents the population-weighted concentration of the target region, Popi
represents the population in grid i, and Coni is the TSAM-derived PM2.5 concentration in
grid i.

3. Results
3.1. Analysis of TSAM Model Structure

Based on the framework of the TSAM model [22], 972 daily models were successfully
constructed from 1 January 2013 to 31 December 2016. Additionally, the remaining days
could not be modeled owing to the lack of sufficient samples. The modeling results
demonstrated that AOD was the key variable with the highest rank among all the input
parameters. The meteorological variables (wind speed, relative humidity, and precipitation)
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and land-use variables (e.g., percentage of built-up, forest, and grass) also exhibited high
ranks. Other input parameters were relatively less used.

The spatial distributions of the intercept, variable coefficient, and corresponding
standard error of the daily fitting model (e.g., 16 May 2016) are shown in Figure 2, presenting
significant spatial aggregation. Intercepts ranged from 9.02 to 171.38, with a mean value
of 29.79. The coefficient of AOD ranged from −0.2021 to 0.0058, and wind speed ranged
from −31.08 to 15.55. A positive value of the variable coefficient indicated that it played a
positive effect on PM2.5, and vice versa. The standard error of the intercept ranged from
2.49 to 29.75. Standard errors of the AOD coefficient ranged from 0.0035 to 0.028, and the
values of wind speed ranged from 0.7227 to 9.4729. The standard error of coefficients, which
measured the reliability of each coefficient estimate, were relatively lower than values of
coefficients. At the same time, the residual standard deviations of the TSAM model in the
modeling day ranged from −2.66 to 4.84; 97.76% of the modeling samples had residual
standard deviations between −2.5 and 2.5.

Figure 2. Spatial distribution of coefficient and standard error of TSAM fitting (e.g., 16 May 2016).
(a,c,e) show the intercept, coefficient of AOD, and wind speed, respectively. (b,d,f) show the standard
errors of the corresponding intercept and coefficient.
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3.2. Fitting and Validation of TSAM Models

Figure 3 demonstrates annual scatter plots of TSAM model fitting and validation from
2013 to 2016. The correlation coefficients of TSAM fitting were 0.91, 0.89, 0.88, and 0.86 for
2013, 2014, 2015, and 2016, respectively. Correspondingly, the values were 0.89, 0.86, 0.84,
and 0.82 for cross-validation for each year. Additionally, MPEs of fitting ranged from
10.82 to 13.34 µg/m3, and the values of validation ranged from 12.10 to 15.78 µg/m3. These
indicators showed that the model exhibited good performance to simulate the relationship
between PM2.5 and explanatory variables.

Figure 3. Scatter plot of TSAM model fitting and cross-validation from 2013 to 2016. (a,c,e,g) represent
the scatter of TSAM fitting for 2013, 2014, 2015, and 2016, respectively. (b,d,f,h) represent validating
result. The dotted line represents the 1:1 line and the solid line represents the trend line. The legend
represents the density of sample.
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According to Table 1, the RMSEs and MPEs of TSAM fitting and cross-validation
were generally the maximum in winter and the minimum in summer. The maximum
RMSEs of fitting and cross-validation were 18.23 and 20.48 µg/m3, 15.86 and 17.33 µg/m3,
15.46 and 16.68 µg/m3, and 16.52 and 17.75 µg/m3 in winter for 2013, 2014, 2015, and 2016,
respectively. The corresponding minimum values were 12.97 and 14.92 µg/m3, 12.99 and
14.53 µg/m3, 11.46 and 12.59 µg/m3, and 10.07 and 11.27 µg/m3 in summer. These results
were also echoed by the indicators of RPEs and RMPEs.

Table 1. Statistical indicators of fitting and cross-validation of TSAM modeling at seasonal scale. N
represents the sample number and Mean (µg/m3) denotes the mean value of PM2.5 concentrations.
The units of the RMSE and MPE are µg/m3.

Fitting Cross-Validation

Year Season N Mean RMSE MPE RPE RMPE RMSE MPE RPE RMPE

2013

Spring 6451 66.80 14.58 10.55 21.04% 15.79% 16.82 12.84 25.18% 19.22%
Summer 7133 47.54 12.97 9.45 27.28% 19.87% 14.92 11.02 31.38% 23.18%
Autumn 11,958 70.79 16.16 12.25 22.83% 17.31% 18.38 14.16 25.97% 20.00%
Winter 11,593 94.39 18.23 14.43 19.31% 15.29% 20.48 16.42 21.69% 17.39%

2014

Spring 16,972 61.56 14.57 11.25 23.67% 18.27% 16.19 12.65 26.29% 20.54%
Summer 14,147 49.26 12.99 9.91 26.37% 20.11% 14.53 11.24 29.49% 22.83%
Autumn 17,574 57.20 14.58 11.12 25.50% 19.45% 16.42 12.70 28.71% 22.21%
Winter 18,123 69.73 15.86 12.71 22.75% 18.22% 17.33 14.01 24.86% 20.01%

2015

Spring 25,116 49.37 13.31 10.47 26.96% 21.21% 14.41 11.42 29.18% 23.14%
Summer 20,475 38.31 11.46 8.91 29.91% 23.25% 12.59 9.86 32.86% 25.72%
Autumn 20,857 46.88 13.23 10.32 28.22% 22.02% 14.43 11.38 30.79% 24.28%
Winter 11,212 58.68 15.46 12.32 26.34% 21.00% 16.68 13.44 28.43% 22.90%

2016

Spring 19,325 44.95 13.17 10.23 29.29% 22.76% 14.39 11.29 32.01% 25.12%
Summer 19,673 31.43 10.07 7.66 32.03% 24.37% 11.27 8.64 35.87% 27.49%
Autumn 18,222 45.23 13.18 10.23 29.13% 22.63% 14.60 11.46 32.28% 25.34%
Winter 5596 74.80 16.52 13.44 22.09% 17.96% 17.75 14.59 23.72% 19.51%

3.3. Temporal Variations in Observed and TSAM-Derived PM2.5

Figure 4 shows the seasonal average values of TSAM-derived and observed PM2.5.
Overall, TSAM-derived PM2.5 concentrations were lower than in situ observed values.
National annual means of TSAM-derived and site-based PM2.5 both showed a declin-
ing trend from 2013 to 2016. They decreased from 64.80 to 43.46 µg/m3 and 74.76 to
50.23 µg/m3, respectively. PM2.5 concentrations demonstrated a significant seasonal reg-
ularity with the highest in winter and the lowest in summer. Winter was the season
with the worst air quality, with TSAM-derived PM2.5 values of 84.34, 62.82, 56.79, and
69.18 µg/m3 in 2013, 2014, 2015, and 2016, respectively. This could be due to poor pollution
diffusion conditions, such as the low temperature and decreases in boundary layer height.
In contrast, summer was the cleanest season, with the TSAM-derived values of 40.28,
38.47, 32.91, and 28.59 µg/m3, respectively. The monthly mean values also demonstrated
significant periodic features. The highest monthly means of PM2.5 appeared in January,
and the lowest appeared in June, July, and August, for every year during the study period.
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Figure 4. Seasonal average values of TSAM-derived and in situ observed PM2.5.

3.4. Spatial Variations in TSAM-Derived PM2.5

Figure 5 shows the spatial distributions of TSAM-derived annual means over mainland
China from 2013 to 2016. The blank regions in Figure 5 mean that there were no available
annual mean values of TSAM-derived PM2.5, which was due to the missing satellite AOD
with the influences of cloud or surface conditions (e.g., ice, snow, etc.). In Figure 5, PM2.5
exhibits significant spatial aggregation. Overall, heavily PM2.5-polluted areas were centrally
located in the north plain, center eastern part, the Sichuan Basin, and the Tarim Basin. The
Beijing–Tianjin–Hebei urban agglomeration (BTH) was one of the most heavily polluted
regions, with annual PM2.5 levels ranging from 45 µg/m3 to 105 µg/m3. Meanwhile, the
Shandong Peninsula urban agglomeration and the Chengdu–Chongqing metropolitan area
also had non-ignorable levels of PM2.5 pollution, with annual means around 45~95 µg/m3.
The spatial distributions of PM2.5 also demonstrated obvious heterogeneous characteristics.
Specifically, there were significant differences in PM2.5 between the areas north and south
of the Yangtze River; generally, the former levels were higher than the latter. At the same
time, there were also clear differences within the same administrative region. For Beijing,
the values of PM2.5 ranged from 40 to 70 µg/m3 in 2016. In terms of the spatial distribution,
areas with high concentrations (Dongcheng, Xicheng, Chaoyang District, etc.) were located
in the centers of the cities, and areas with low concentrations were located towards the
north-west, such as Yanqing, Miyun, and Huairou District. Additionally, according to
differences in TSAM-derived PM2.5 between 2013 and 2016, over 85% of areas exhibited
declines greater than 10 µg/m3 in the study area. The decline in PM2.5 ranged from 10 to
30 µg/m3. The Chengdu–Chongqing metropolitan region also exhibited a strong decline in
PM2.5 levels, with average decreases of about 15 to 30 µg/m3.
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Figure 5. Spatial distributions of TSAM-derived annual means of PM2.5. (a–d) correspond to 2013,
2014, 2015, and 2016, respectively.

3.5. PM2.5 Variation Analysis Based on Percentage of Area and Population

Summaries of the percentage of area and population exceeding and under air quality
Level II standard (annual mean PM2.5 concentration lower than 35 µg/m3) based on TSAM-
derived PM2.5 are shown in Figure 6. As Figure 6a shows, 73.14%, 72.26%, 60.94%, and
51.42% of areas suffered annual PM2.5 levels over the Level II standard for 2013, 2014,
2015, and 2016, respectively. The areas with clear air quality (the annual mean of PM2.5
lower than 35 µg/m3) were increased from 1.19% to 30.22%. Correspondingly, in Figure 6b,
98.68%, 97.48%, 90.46%, and 82.83% of the population lived in environments with annual
mean concentrations higher than the Level II standard for 2013, 2014, 2015, and 2016,
respectively. The proportion of the population who lived in an environment with PM2.5
levels lower than the Level II standard increased by 14.81%.
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Figure 6. Statistics of the percentages of area and population over and under air quality Level
II standard (annual mean PM2.5 concentration lower than 35 µg/m3). (a) Percentage of area and
(b) percentage of population.

3.6. Comparison between Observed and Population-Weighted PM2.5 Values for Key Regions

The national population-weighted PM2.5 values decreased from 71.99 µg/m3 to
48.04 µg/m3, with a decrement of 33.27%. To compare the differences among observed
and population-weighted PM2.5, Table 2 demonstrates the concentrations in 13 Key Regions
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for 2013 and 2016. PM2.5 concentrations in the Key Regions exhibited similar declining trends
and different magnitudes based on two kinds of values. Eight out of thirteen regions had
a decline in observed PM2.5 over 20 µg/m3 from 2013 to 2016. Specifically, the decline in
observed PM2.5 levels in Wuhan region was 45.19 µg/m3, which was the highest among
the 13 Key Regions from 2013 to 2016. In contrast, the decline in Gansu–Ningxia was only
3.94 µg/m3, which was the lowest. The decline in population-weighted PM2.5 in Urumqi,
Xinjiang, with a value of 39.05 µg/m3, was the highest among the 13 Key Regions. The central
and northern areas of Shanxi had a 9.79 µg/m3 decline in population-weighted PM2.5.

Table 2. Observed and population-weighted PM2.5 in Key Regions (unit: µg/m3).

Regions 2013 2016 Difference between 2013 and 2016

ExpCon ObsCon ExpCon ObsCon ExpDiff ObsDiff

BTH Delta 87.55 85.41 62.64 67.02 −24.91 −18.39
Wuhan Region 86.25 104.95 55.57 59.76 −30.68 −45.19
Shandong Province 85.68 97.01 60.62 60.52 −25.06 −36.49
Chengdu–Chongqing 84.37 75.37 48.51 52.44 −35.86 −22.93
Shaanxi Guanzhong 83.99 94.11 53.78 58.66 −30.21 −35.45
Yangtze River Delta 77.74 71.28 52.25 51.24 −25.49 −20.04
Changsha–Zhuzhou–Xiangtan 74.58 77.90 48.41 54.66 −26.17 −23.24
Urumqi, Xinjiang 72.59 71.00 33.54 31.62 −39.05 −39.38
Pearl River Delta 64.76 70.04 42.19 41.80 −22.57 −28.24
Gansu–Ningxia 60.14 53.12 42.98 49.18 −17.16 −3.94
Central and northern areas of Shanxi 58.67 62.77 48.88 56.96 −9.79 −5.81
Central Liaoning 57.39 52.23 44.18 41.02 −13.21 −11.21
Straits Fujian 47.09 42.43 35.45 33.86 −11.64 −8.57

ExpCon represents the population-weighted PM2.5 concentration; ObsCon represents the observed PM2.5. ExpDiff
is the differences of population-weighted PM2.5 between 2013 and 2016; ObsDiff is the differences of observed
PM2.5 between 2013 and 2016.

4. Discussion

This study estimated the spatial–temporal distributions of satellite-derived PM2.5 in
four consecutive years from January 2013 to December 2016 in mainland China. Indica-
tors R2 and RMSE of the TSAM model were 0.80 and 22.78 µg/m3, which showed better
performances compared to the research of Ma et al. (R2 = 0.79, RMSE = 27.42 µg/m3) [37].
Li et al. proposed a national-scale generalized regression neural network (GRNN) model [38],
to simulate PM2.5 in the period from February 2013 to December 2014. This model showed
good performance, with fitting R = 0.895 and cross-validated R = 0.816 during the study pe-
riod. In comparison, our model showed a slight improvement with the fitting R (0.91~0.89)
and cross-validating R (0.89~0.86) during the same study period and in the same area. The
advantages of TSAM proved that taking the temporal variations and magnitude of predic-
tors into consideration in the modeling process could improve the prediction capability of
a statistical model.

To assess the model uncertainty of TSAM, statistic results of standard errors of different
variable combinations for modeling samples on 16 May 2016 are demonstrated in Table S1.
Among 65 variable combinations, the minimum, lower quartile, average, upper quartile,
and maximum values of the model with AOD as the only explanatory variable were 0.23,
8.47, 8.48, 8.62, and 8.66 µg/m3, respectively. With the addition of meteorological factors
in explanatory variables, not all of these factors could reduce the model uncertainty. The
z-score of temperature with the spatial autocorrelation (Moran’s I) test was 37.51 Standard
Deviations (std), which indicated that it had a significant spatial autocorrelation, and then it
was not included in the TSAM model. Among the meteorological factors, only wind speed
was added in the list of explanatory variables, and the model uncertainty decreased. This
means that the wind speed, which could change the dispersion condition, had a significant
effect on PM2.5 variations. The addition of the precipitation variable did not reduce the
standard error, which could be due to its transient effects on PM2.5 such as the hourly
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scale, but the TSAM model in this study was developed with the daily scale. With the
quantitative comparison of the standard error of 65 variable combinations, we found the
model performance did not necessarily get better as the variables increased. The screening
of explanatory variables is an important process for PM2.5 simulation. With the screening,
the explanatory variables of the TSAM model in this study day were defined as AOD, wind
speed, percentage of forest, and percentage of water.

Both TSAM-derived and observed PM2.5 values exhibited a significant decline during
the study period, which proved that implementing air pollution prevention and control
policies had a significant effect on improving the air quality. The annual and monthly
concentrations of TSAM-derived PM2.5 were lower than those observed for each region.
The reasons for this could be that in situ observations revealed PM2.5 levels near the ground
monitoring station, which were generally located in urban areas with high PM2.5 pollutant
emissions.

TSAM-derived PM2.5 showed a strong signature of seasonal variations, with the
highest concentrations in winter and the lowest concentrations in summer, and intermediate
ranges in spring and autumn during the study period. Winter heating could be the main
cause of the high PM2.5 levels, especially in northern and western China. During seasons
when more heating was needed, the pollutant emissions sharply increased, and the PM2.5
concentration rose correspondingly. In addition to free heating policies, the Spring Festival,
which lasts from January to February, could be another key cause of seriously increased
pollution in winter. During the Spring Festival, people set off large quantities of fireworks
in celebration. Thus, PM2.5 concentrations sharply increase in January, which is the most
polluted month of the year. Meanwhile, there were some areas, especially in northern
China, which suffered serious PM2.5 pollution in spring (from March to May) due to dust
storms. The percentage of polluted area increased by 29.03%, whereas the percentage of the
population living under the Level II standard only increased by 14.81% during the study
period. The difference between the percentages of area and population is attributable to
the spatial heterogeneity of population distribution, i.e., some regions had relatively low
population density and their air quality had been improved from 2013 to 2016. Moreover,
the spatial continuity of air pollutant concentrations may be another reason for this result.
This means that the implementation of air pollution prevention and control measures could
not only directly improve local air quality, but also affect surrounding air quality at the
same time.

The population-weighted PM2.5 concentrations of the 13 Key Regions showed declines
of more than 10 µg/m3 from 2013 to 2016, except for the central and northern regions of
Shanxi. Correspondingly, the declining proportion in population-weighted PM2.5 was more
than 15%. The declines in in situ observations of PM2.5 ranged from 3.94 to 45.19 µg/m3 for
the 13 Key Regions. Ground-level monitoring measurements could only represent air pol-
lutant concentrations in limited ranges around the stations; however, population-weighted
PM2.5 not only considered the wider spatial range but also took the population into consid-
eration, which could better represent the health threats of air pollutants compared with
merely in situ observations.

The population-weighted PM2.5 with a spatial resolution of 10 km could offer support
for the large-scale analysis of air pollutant variations, but is relatively coarse to reflect
features of the local variation in PM2.5. Urban air quality has clear spatial differentiations
among small intra-urban scenarios. The limitations of operational satellite product could be
improved with the development of a satellite retrieval algorithm. Moreover, the temporal
variation analyses of PM2.5 were implemented under relatively long-term temporal scales,
such as monthly, seasonal, and annual. Long-term temporal scales could be used to
represent the global trends in PM2.5 variation, as well as to capture the short-term variation.
With the development of stationary satellites, the temporal scale of satellite products can be
improved to hourly with continuous sequences, which would capture dynamic variation
in air pollutant levels. Additionally, this would greatly enhance the significance of satellite-
based modeling and estimations of PM2.5 for real-time air pollution exposure assessments.
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More importantly, satellite data coverage could cause misunderstandings in annual mean
difference analyses. For example, the value for Central Liaoning exhibited an increasing
trend from 2013 to 2014 due to the low coverage of AOD systems in the winter of 2013 and
a relatively high coverage in the winter of 2014. Thus, new algorithms for remedying the
coverage of satellite-based AOD values are also urgently required for contemporary PM2.5
modeling and estimation.

5. Conclusions

This study developed a national daily TSAM model for PM2.5 concentration prediction
using variables of satellite AOD, meteorology, land-use, etc., from January 2013 to December
2016. The TSAM model demonstrated good performance by taking timely variations and
magnitudes of predictors into consideration in the modeling process. The TSAM-derived
PM2.5 could represent a large spatial range and reported consecutive spatial variations,
which complements site-based observations of PM2.5. Both in situ observations and TSAM-
derived concentrations proved that the air quality showed great improvements from
2013 to 2016, due to the implementation of air pollution prevention and control policies.
According to the air quality Level II standard, the majority of the population was subjected
to PM2.5 concentrations above this standard. The population based on the satellite-derived
concentrations represents a complementary indicator to analyze the concentrations of air
pollutants.
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