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Abstract: Water is a vital component of life that exists in a variety of forms, including oceans, rivers,
ponds, streams, and canals. The automated methods for detecting, segmenting, and mapping surface
water have improved significantly with the advancements in satellite imagery and remote sensing.
Many strategies and techniques to segment water resources have been presented in the past. However,
due to the variant width and complex appearance, the segmentation of the water channel remains
challenging. Moreover, traditional supervised deep learning frameworks have been restricted by
the scarcity of water channel datasets that include precise water annotations. With this in mind,
this research presents the following three main contributions. Firstly, we curated a new dataset for
water channel mapping in the Pakistani region. Instead of employing pixel-level water channel
annotations, we used a weakly trained method to extract water channels from VHR pictures, relying
only on OpenStreetMap (OSM) waterways to create sparse scribbling annotations. Secondly, we
benchmarked the dataset on state-of-the-art semantic segmentation frameworks. We also proposed
AUnet, an atrous convolution inspired deep learning network for precise water channel segmentation.
The experimental results demonstrate the superior performance of the proposed AUnet model for
segmenting using weakly supervised labels, where it achieved a mean intersection over union score
of 0.8791 and outperformed state-of-the-art approaches by 5.90% for the extraction of water channels.

Keywords: deep learning; remote sensing; water channel extraction; segmentation; Landsat-8 satellite;
Google Earth Engine

1. Introduction

With the progressive advancement of remote sensing technology, imagery acquired
via remote sensors (mounted on unmanned aerial vehicles (UAVs) or satellites) has sig-
nificantly contributed towards disaster/emergency management, object detection, and
urban/rural planning systems [1,2]. As a result, in order to effectively support various

Remote Sens. 2022, 14, 3283. https://doi.org/10.3390/rs14143283 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14143283
https://doi.org/10.3390/rs14143283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7760-3374
https://orcid.org/0000-0003-3672-8100
https://orcid.org/0000-0002-5693-5353
https://orcid.org/0000-0002-8769-8506
https://orcid.org/0000-0002-5364-645X
https://orcid.org/0000-0002-5896-8677
https://doi.org/10.3390/rs14143283
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14143283?type=check_update&version=1


Remote Sens. 2022, 14, 3283 2 of 18

spatial applications, it is necessary to extract and segment the inland water and water
channel canal network.

Surface water mapping has long been a popular use of remote sensing. Previously,
researchers presented numerous automated and semiautomatic frameworks centered on
rule-based solutions [3–5], machine learning algorithms [6,7], and a hybrid of these two
techniques [8]. More recently, the work has been conducted through deep learning algo-
rithms as well [9–13]. In general, rule-based solutions establish fixed thresholds about
specific spectral channels or leverage multiband indices, while machine learning algorithms
tweak learnable parameters on data to develop optimal class separations [9]. One issue
with present water index-based methods is that the optimal threshold levels defined to
differentiate water and nonwater classes vary greatly depending on the portion of the
globe being scanned, limiting their worldwide applicability [9]. Other advanced rule-based
solutions that generate superior water maps [4,5] require complicated rules and contextual
information to tackle these issues, such as glacier inventory datasets, digital elevation
models, and moderate-resolution imaging spectroradiometer (MODIS) data. However,
despite employing an optimal threshold for a certain region, significant differentiation
problems persist in rule-based solutions related to water, snow, and terrain shadows [5].

Moreover, several machine learning and deep learning methods have been investigated
in the literature to develop algorithms capable of reliably classifying water bodies [7–13].
In addition, the multispectral water index (MuWI) and machine learning algorithms have
been employed to determine accuracy rather than a threshold method, yielding comparable
results in flood mapping [14]. Furthermore, many methods based on standard artificial
neural networks (ANNs) learn the spectral properties of water pixels without considering
geometry and surface texture. While such methods have been effective at regional and
local scales, generalizing them to the global scale has been problematic, given that water
and land features differ significantly among geographies [3,9].

Recent advancements in ANN research have demonstrated the efficacy of deep learn-
ing methods in handling various segmentation [15–17], detection [18–21], and classifica-
tion [22,23] tasks. In particular, the use of convolutional neural networks (CNNs) has
resulted in substantial progress in image recognition [24]. Recent approaches for training
end-to-end CNNs have allowed per-pixel annotation of images [16], thus significantly
improving the state-of-the-art (SOTA) methods to perform semantic image segmenta-
tion [25–28]. The success of CNNs can be attributed to the convergence of novel network
architectures capable of learning hierarchies of features with excellent generalization po-
tential, the accessibility of huge datasets, and fast hardware processing. Generally, large
datasets comprising images of daily settings, such as Microsoft COCO [29] and Ima-
geNet [24], have been used in numerous image recognition applications [30]. However,
there is still room for improvement for CNN applications using large-scale remote sensing
datasets, such as the Landsat archives [9]. Despite certain promising research on remote
sensing using CNNs [31–33], including some denser deep learning models for interesting
classification tasks [34,35], the possibility of employing very large-scale Landsat images,
even on a global scale, has yet to be fully explored.

Landsat archives feature remotely sensed data with worldwide coverage for more than
four decades and are freely accessible. Landsat 8 (L8), a present Landsat satellite, requires
16 days to complete a full trip around the Earth, including an 8-day relative offset. As a
result, Landsat imagery can update the surface water maps every 8 days. However, the
scarcity of accurately labeled Landsat data has limited the usefulness of CNNs for surface
water mapping and related applications. The Global Land Cover Facility (GLCF) recently
publicized a global inland water dataset [5], created by utilizing a variety of methodologies
and data, including MODIS-based water mask, Landsat water, vegetation indices, and
topography indices from digital elevation models.

In this paper, we adopt deep learning techniques that have previously been effectively
employed for the semantic segmentation of daily images for the segmentation of water
channels. For this purpose, we curated a local dataset using multispectral Landsat imagery
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and OpenStreetMap (OSM) to generate the ground-truth labels in the form of scribble
annotations of the water channels, as shown in Figure 1c. OSM provides centerlines of the
water channels, which are easy to obtain compared to pixel-level annotations (Figure 1b)
that are time-consuming, labor-intensive, and expensive.
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ground-truth labels, and (c) OSM-based sparse scribbled annotations.

Moreover, we specifically treat water extraction as an image segmentation task and
use similarities between daily-life photos and remotely sensed images while compensating
for discrepancies in the proposed CNN topology. We demonstrate that water bodies can be
reliably mapped and segmented at the global scale with an adequately trained end-to-end
CNN on multispectral Landsat imagery and their corresponding annotations. The major
contributions of the research are five-fold, which are as follows:

1. We present a novel CNN-based architecture termed AUnet to perform semantic
segmentation and surface water mapping at multiple scales using very high-resolution
(VHR) multispectral imagery. The proposed AUnet architecture is inspired by a well-
known encoder–decoder model (U-net [25]), yet it contains critical variations that
tailor our model to the intended application, including atrous convolution blocks
at each encoder level, evaluation at a large range of scales, and the layer-to-layer
connectivity.

2. The integrated atrous convolution blocks in the proposed AUnet model enable en-
coding the geometrical, textural, and spectral properties of water bodies in their
global context. These properties aid in distinguishing water from the cloud, ice, snow,
and landscape shadows, unlike the need for a local variable threshold in traditional
rule-based systems.

3. We introduce a novel water channel dataset derived from the Landsat imagery of the
Pakistan region, which is used for training and validation purposes of the proposed
model. Moreover, the corresponding water channel ground truths are arranged using
the OSM mapping tool, which helps generate weakly supervised and scribble annota-
tions (centerlines) of water channels. The newly curated dataset offers a diversified
landscape and can serve as a basis for large-scale training, facilitating further works
relevant to deep-learning-based water channel segmentation and mapping.

4. We introduce a simple yet effective postprocessing mechanism based on median
filtering and convolutional blurring to remove the noisy and stray pixels and further
improve the AUnet model’s segmentation performance by 2.48%.

5. The segmentation performance of AUnet is evaluated both qualitatively and quan-
titatively, where it produced outstanding water mapping results. The proposed
framework outperformed other SOTA solutions with a 0.8791 mean intersection over
union score, achieving 3.23% higher water channel segmentation accuracy.

The remaining paper is structured as follows: Section 2 presents the dataset details
used in this study, Section 3 details the proposed methodology adopted in this research and
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AUnet architectural design. Section 4 explains the experimental setup and network training
details. The simulation results are demonstrated in Section 5, and Section 6 concludes
the paper.

2. Dataset Details
2.1. Dataset Curation and Preprocessing

In this study, we curated a local dataset of water channels in Pakistan. The choice of the
study area is due to the scarcity of similar studies for training and validation across Pakistan.
The dataset was prepared using the L8 satellite imagery from the Landsat program, which
is a collaborative project between the United States Geological Survey (USGS) and the
National Aeronautics and Space Administration (NASA) [36]. Since 1972, the Landsat
program has been continually monitoring the Earth. The Landsat satellites provide thermal
and hyperspectral data every two weeks by imaging the whole Earth’s surface at 30 m
resolution [37,38].

The L8 satellite was launched in February 2013. It consists of the Operational Land
Imager (OLI) camera and the Thermal Infrared Sensor (TIRS), which may be used to
investigate the temperature of the Earth’s surface and observe global warming [36–38]. L8
works in the visible light and various infrared spectrum bands to provide decent-resolution
imaging of the Earth’s terrestrial region and polar areas ranging between 15 and 100 m.
It collects over 700 images per day, increasing from 250 images each day on Landsat 7.
The signal-to-noise radiometric (SNR) performance of the OLI and TIRS sensors is also
increased, allowing for 12-bit quantization of data and additional bits for effective land
characterization [36–38]. It contributes to Copernicus land monitoring investigations, which
include plant observation, soil and water cover, detection of land cover change, coastal
regions, and local waterways [36–38].

The exact preprocessing approach is detailed in [39], which is based on the rapid
combination of multitemporal data and pixel-wise detection of the cloud. Figure 2 shows
the specific distribution of regions in the study area of Pakistan, along with their VHR
samples and the total number of patches in each region.

2.2. Weakly Supervised Technique for Generating Ground-Truth Labels

The word weakly is used to deliberately claim that our work may be termed as weakly
supervised since we used the OSM tool to generate the corresponding ground-truth labels
of the water channels. The OSM is a free online mapping project [40] that is weakly defined
in developing countries such as Pakistan compared to developed countries. Thus, the
proposed dataset may better be referred to as a weakly labeled dataset. Moreover, the
OSM-based ground-truth data only provides the centerline annotations instead of the
entire water region. Hence, if the training dataset is weakly labeled, i.e., does not provide
complete (pixel-wise) annotations, or lacks some information, the semantic segmentation
task should also be referred to as weakly supervised.

The purpose of OSM is to produce a free-to-edit worldwide atlas with simple navi-
gation tools for popular mobile devices. Users using portable navigation systems, aerial
images, satellite data, and other free information may contribute to OSM maps. Users
may even engage in the design if they have some knowledge of the subject matter. The
map’s vector data are approved under open dataset authorization. In actuality, because
of how OSM data are created, groundwater channel characteristics may be inconsistent
with the OSM data. Demetriou’s study [41] has demonstrated the inconsistency of OSM
data. However, these discrepancies are regarded as permissible in a massive water channel
extraction task. Moreover, OSM is rasterized because it is a vector database.
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In this study, we assumed that the overall length and size of the water canals remain
the same between 1 January 2021 and 1 December 2021, and based upon this assumption,
we took the median value of each water pixel to obtain full coverage hyperspectral data
of the study area in 2021. Adopting this strategy of averaging pixel values may also
help prevent oversaturation and poor vegetation levels with strong physiological and
morphological variations [42]. Furthermore, considering the subpixel extraction accuracy
and resolution of the L8 data pixels, a buffer with a radius of 20 m was created in 2021 using
the OSM data, representing the water channel region pixels with one and the non-water
channel area pixels with zero. Moreover, we employed the random forest approach [43]
for land cover classification, which was performed using the Google Earth Engine (GEE)
platform. Finally, in the study region, we layered all of the extracted and processed data
and split them into equally sized blocks (288× 288 size patches). The data were patched
according to the VHR images. Table 1 contains information about the dataset utilized for
training and validation in the proposed research.
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Table 1. Dataset details and specifications.

Region Image Resolution Patches Training Validation Testing

Balochistan
VHR-1 10,600 × 9080 1116 670 223 223
VHR-2 10,601 × 8036 972 583 195 194
VHR-3 5056 × 4909 289 173 58 58

Gilgit–Baltistan

VHR-1 2936 × 1707 50 30 10 10
VHR-2 7380 × 3778 325 195 65 65
VHR-3 4403 × 1517 75 45 15 15
VHR-4 11,212 × 2792 342 205 69 68
VHR-5 4811 × 2564 128 77 26 25

Khyber Pakhtunkhwa

VHR-1 4261 × 2757 126 76 25 25
VHR-2 3568 × 2228 84 50 17 17
VHR-3 7950 × 3644 324 194 65 65
VHR-4 5546 × 6594 418 251 84 83

Punjab

VHR-1 9663 × 7106 792 475 159 158
VHR-2 9296 × 7468 800 480 160 160
VHR-3 9459 × 7469 800 480 160 160
VHR-4 11,823 × 6978 984 590 197 197
VHR-5 6116 × 3573 252 151 51 50

Sindh
VHR-1 9459 × 7097 768 461 154 153
VHR-2 12,557 × 8854 1290 774 258 258

Total 19
VHR - 9935 5960 1991 1984

2.3. Pixel Label Balancing

After obtaining the training labels, we analyzed the frequency of water and back-
ground pixels. Ideally, there should be no difference in the frequency of pixels belonging to
different classes in the training data. However, the training pixel frequencies in our dataset
for both classes (background and water) are significantly imbalanced, as shown in Figure 3.
This is due to the fact that the background region takes up the most space in the image
patch as compared to water channel pixels.
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As a result, there is a need to rectify the imbalance since the network learning pro-
cess is skewed toward the dominant class, and this imbalance might severely affect the
learning process. To overcome this and balance out the water class pixels, we used the
inverse frequency weighting that computes each class weight by taking the inverse of the
corresponding class frequency as expressed in Equations (1) and (2):

Cw =
1

Freq
, (1)

Freq =
P

Tp
, (2)

where Cw signifies the class weights given in the AUnet model’s final layer to compensate
for the class imbalance, P denotes the number of pixels for an individual class, and Tp
represents the total pixels in the training dataset.

3. Proposed Methodology

In this work, we propose a deep-learning-based framework called AUnet for the
extraction of water channels using the VHR satellite imagery. Moreover, we curated a local
dataset in the study area of Pakistan for training and validation purposes. Figure 4 shows
the high-level overview of the working flow of the proposed method. Further, the details
on the dataset, preprocessing, and network architecture are presented in the subsequent
subsections.
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3.1. AUnet Network Architecture

In the proposed work, the original VHR satellite images are split into 288× 288 size
patches, which serve as the network training and validation data, as shown in Table 1.
Moreover, the proposed AUnet is designed to preserve the detailed spatial information
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in the input data, considering the natural properties of the water channels, such as fine
connectivity and complex patterns in the varying terrains of mountains, lands, forests,
and plateaus. The AUnet architecture is illustrated in Figure 5. It is inspired by the SOTA
semantic segmentation framework called U-net [25]. It comprises an encoder or contracting
module (left side) and a decoder or expansive module (right side), which are explained in
the following subsections.
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3.1.1. AUnet Encoder

The AUnet encoder is based on the standard CNN architecture. To generate the
subsequent feature maps of an input patch P, each encoder depth in the contracting path
uses two 3× 3 convolution operations, as expressed in Equations (3) and (4):

M[x, y] = (P ∗ K)[x, y], (3)

M[x, y] = ∑
i

∑
j

K[i, j]P[x− i, y− j], (4)
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where K is the kernel size, and M[x, y] is the resulting feature map with indices for rows
and columns denoted by x and y. Following that, the weights of the water channels are
adjusted using the ReLU activation (RA) to eliminate the negative values as expressed:

RA(M) =

{
M, if M > 1
0, otherwise

∀M = {i, j|i ∈ x, j ∈ y}, (5)

Moreover, in contrast to the original U-net [25] architecture, the proposed AUnet model
employs atrous convolution blocks to perform broader and context-aware processing while
preserving the same spatial resolution of features. Given the slenderness, connectedness,
diversity, and length of water channel canals, it is critical to expand the feature’s receptive
field along the network’s contracting path while maintaining precise information. One
solution to that is to use pooling layers, which may enhance the receptive field. However,
pooling operations can also diminish the center features’ resolution and result in the loss of
spatial information. As a result, atrous convolution blocks in AUnet use several dilated
convolutions stacked in cascade mode and skip connections to traverse the high-level
feature maps to the corresponding decoder depths. Each block is composed of four 3 × 3
atrous convolutions, where the dilation rate is increased from 1 to 4 in each succeeding
convolution operation, as expressed in Equation (6):

MO[x, y] = ∑
i

∑
j

K[i, j]MI [x + d× i, y + d× j], (6)

where MI is the input feature maps, and MO is the output feature maps to the atrous con-
volution blocks of the AUnet model. d denotes the dilation factor for atrous convolutions,
and K represents the convolutional kernel.

The outputs from the atrous convolution blocks at each encoder depth are also trans-
ferred to the corresponding decoder depth to provide high-level feature representation and
facilitate the upsampling process. Afterward, a max-pooling operation is performed using
a 2× 2 kernel with stride 2 at each encoder depth to downsample the feature maps. More-
over, at every downsampling stage, the number of feature channels is doubled. Overall,
the contracting path in AUnet has 4 downsampling layers, where a 288× 288 input patch
reduces to 18× 18 feature maps at the output.

3.1.2. AUnet Decoder

The expansive or decoder path of AUnet is the same as the original U-net [25], which
is computationally efficient. In the AUnet decoder, every step consists of two 3× 3 con-
volutions, each followed by a ReLU, concatenated with the cropped feature map from
the corresponding contracting path. Next, the feature maps are upsampled using a 2× 2
transposed convolution [15,16] that halves the number of feature channels. The cropping
operation is required since each convolution operation results in a loss of border pixels.
The AUnet decoder restores the downsampled feature maps of size 18× 18 to the original
resolution of 288× 288. A 1× 1 convolution is employed in the last layer to map every
64-component feature representation to two classes (Water Channels and Background).

3.2. Postprocessing

The segmented water channel pixels at the AUnet output are often noisy. As a result,
we add a postprocessing phase to remove stray pixels and smooth the segmented labels.
For this purpose, we first extracted the mask containing water channel pixels and then
used disk-shaped structural components to perform the erosion operation. Following that,
we used nonlinear median filtering to minimize noise while preserving water channel
boundaries. Additionally, we performed 2D convolution to blur the water channel mask,
which is then binarized using the thresholding technique to remove the noisy and stray
pixels from the segmentation.
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4. Experimental Setup
4.1. System Specifications

The experiment was conducted using the MATLAB R2021b platform, installed on a
Windows 10 system with an Intel Core i7-10875H processor running at 2.30 GHz, 16 GB of
RAM, and an NVIDIA GeForce 1080 graphics card.

4.2. Evaluation Metrics

We assessed AUnet’s performance for accurate segmentation of water channels using
VHR satellite images. The segmentation performance of AUnet in a single patch was
measured through various performance metrics, defined through the predicted pixels
convention, as shown in Figure 6. Tp, Fp, Tn, and Fn in Figure 6 represent the true-positive,
false-positive, true-negative, and false-negative pixels, respectively. Tp shows the precise
segmentation of water channel pixels by the proposed AUnet model for a given input patch.
Tn represents the pixels when the AUnet correctly omits the non-water channel labels from
a given input patch. Fp and Fn depict the inaccurate segmentation results. Fp are the cases
where the AUnet model incorrectly segments the pixels as water channels that are actually
not the water channel pixels. On the contrary, Fn depicts the cases when the AUnet model
incorrectly predicts the water channel pixels as non-water channel pixels.
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The proposed research deals with the water channel extraction problem, which actually
presents the segmentation problem of binary image patches. In image segmentation, there
are many criteria to measure segmentation accuracy. In this work, we considered the
following evaluation metrics:

4.2.1. Mean Pixel Sensitivity

Mean pixel sensitivity is defined as the percentage of pixels in a patch that are accu-
rately labeled. It is computed as expressed:

MPS =
TP

TP + FN
(7)
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4.2.2. Mean Pixel Prediction

Mean pixels prediction shows the average percentage of each class of pixels in the
patch that are accurately labeled. It is computed as:

MPP =
TP

TP + FP
(8)

4.2.3. Mean Intersection over Union

Mean intersection over union is the average percentage of each class of pixels in image
that are classified correctly. It is computed as:

MIoU =
TP

TP + FP + FN
(9)

4.2.4. Mean Dice Similarity Coefficient

Mean Dice similarity coefficient is a standard similarity measuring function that is
often applied to determine the correlation between two samples. It is computed as:

MDSC =
2 ∗ TP

(TP + FN) + (TP + FP)
(10)

4.3. AUnet Training Details
4.3.1. Loss Function

In this research, we used the dice loss function for training the AUnet model. It is
computed as expressed in Equation (11):

LDice = 1− 2 ∑C
c=1Wc ∑E

e=1(Pc,eGc,e)

∑C
c=1Wc ∑E

e=1
(
P2

c,e + G2
c,e
) (11)

where P and G denote the pixel-labels of AUnet’s segmented patch and the corresponding
ground truth, respectively. C = 2 are the two classes (water and nonwater), E represents
the spatial dimensions of P . Wc is the per class weighting factor, which governs the
contribution of each class to the overall loss. Wc is important because it counterbalances
the influence of the dominant class on the segmentation performance. It is computed as
expressed in Equation (12):

Wc =
1(

∑E
e=1 Gc,e

)2 (12)

4.3.2. Network Training and Hyperparameter Selection

The AUnet model’s training phase was performed using 5960 patches, which were
randomly selected from all five regions of the local dataset, as shown in Table 1. Moreover,
we used the Adam optimizer [44] for updating AUnet’s parameters. The mini-batch size
and total epochs were, respectively, set to 128 and 80, enabling the model to complete the
training phase in 3680 iterations with 46 iterations in every epoch. Further, 1991 separate
patches were utilized to validate AUnet’s training performance. We specified the validation
frequency as ten epochs, allowing the AUnet model to validate eight times on the unseen
data patches. It is worth noting that the hyperparameters to train the AUnet model were
finalized using Bayesian optimization across 30 objective function evaluations in an effort to
reduce the training error on the validation set. Table 2 shows the hyperparameter specifics
of the AUnet model used for training and the relevant ranges for searching these using
Bayesian optimization.



Remote Sens. 2022, 14, 3283 12 of 18

Table 2. AUnet training hyperparameter.

Tuned Parameter Value

Training Patches 5960
Validation Patches 1991

Optimizer Adam
Initial Learning Rate 0.001 [1× 10−4 to 1× 10−1]

Weight Decay 0.0003 [3 × 10−6 to 3 × 10−2]
Mini-Batch Size 128 [16 to 256]

Total Epochs 80
Iterations per Epoch 46

Total Iterations 3680
Validation Frequency 10

5. Experimental Results

The proposed AUnet was evaluated qualitatively and quantitatively for precise seg-
mentation and extraction of water channels. The AUnet model was trained using the OSM
mapping tool, which provides weakly supervised and scribbled annotations (centerlines)
of water channels. Moreover, we compared the performance of the AUnet with other
SOTA deep-learning-based semantic segmentation models, including FCN [24], U-net [25],
SegNet [26], and DeepLabv3+ [27]. The training hyperparameters for all the models were
determined and fine-tuned using the Bayesian optimization algorithm.

5.1. Qualitative Evaluation

We first analyzed the performance of the trained AUnet model qualitatively by ran-
domly considering five patches of the VHR Punjab-5 image, as shown in Figure 7a. The
five patches were selected from different regions of the image. Here, it can be observed
that the segmented pixels by the proposed AUnet model (Figure 7c) in each case are nearly
identical to the corresponding ground truths (Figure 7b), with some noisy and stray pixels
belonging to the water channels class. These noisy pixels were then filtered using the
adopted postprocessing scheme to obtain the smooth segmented regions, as shown in
Figure 7d. The overlapped ground truth and segmented pixels are shown in Figure 7e,
where the green color denotes the oversegmented pixels, and magenta shows the under-
segmented pixels. Moreover, Figure 7f shows the overlaid extracted water channels on the
original images using the proposed AUnet model.

Next, the segmentation performance of the proposed AUnet model was qualitatively
compared with different SOTA models. The results are shown using randomly selected
two patches from all five geographical regions in the local dataset, as shown in Figure 8.
Here, the performance of the proposed AUnet model looks adjacent to the other SOTA
models. Moreover, it can be observed that the proposed model better segmented the finer
water channel details as shown in the 7th, 8th, and 12th rows of Figure 8. Qualitatively, the
proposed AUnet model showcased comparable performance, where the water channels
segmented regions by the AUnet model overlap well with the corresponding ground truths.
The exact degree of overlap using different evaluation metrics is presented next.
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the undersegmented (false negative) pixels, and green indicates the oversegmented (false positive)
pixels, (f) extracted and overlaid water channels on (a).
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Figure 8. Comparison of water channel segmentation results by the AUnet and other SOTA solutions
using different study areas of Pakistan in the local dataset: (a) raw input patches, (b) ground-truth
pixel labels, (c) FCN-32s [24], (d) FCN-8s [24], (e) U-net [25], (f) SegNet [26], (g) DeepLabv3+ [27],
and (h) AUnet.



Remote Sens. 2022, 14, 3283 15 of 18

5.2. Quantitative Evaluation

The performance of the proposed AUnet model was quantitatively assessed through
various evaluation metrics. First, we presented the segmentation results over the complete
test dataset containing a total of 1984 patches, as shown in Table 1. Here, the segmentation
performance is shown separately for both Background (BG) and Water Channels (WC)
classes using the four commonly used evaluation metrics for the semantic segmentation
task. Moreover, we reported the segmentation performance with and without the post-
processing stage. It can be observed that the performance of the proposed framework
improves by 2.48% with postprocessing, considering the MIoU metric.

Moreover, the value of each metric represents the mean score, averaged over the entire
testing dataset (1984 patches). As observed from Table 3, the proposed AUnet achieved
considerable results for both classes despite the huge class imbalance and disparity between
the number of pixels for each class. Moreover, the performance of the proposed AUnet is
particularly appreciable considering the challenging dataset as used in this study, which
offers a variety of terrains and varying weather conditions. Specifically, the proposed
model achieved the mean pixel specificity score of 0.9941, which shows AUnet’s efficient
performance in correctly ruling out the nonexisting class pixels.

Table 3. Water channel segmentation performance by the proposed AUnet.

Class
Without Postprocessing With Postprocessing

MPS MPP MioU MDSC MPS MPP MioU MDSC

BG 0.9865 0.9998 0.9864 0.9932 0.9891 0.9999 0.9891 0.9945
WC 0.9985 0.7299 0.7291 0.8421 0.9992 0.7697 0.7692 0.8696

Combined 0.9925 0.8649 0.8578 0.9177 0.9941 0.8848 0.8791 0.9320

BG = Background class, WC = Water Channels class.

Next, we compared the segmentation performance of the proposed AUnet with other
SOTA frameworks, as shown in Table 4. Here, we present the performance comparison
separately with respect to each geographical region and segmentation class considering the
MioU metric. It can be observed from Table 4 that the proposed AUnet model achieved
better results as compared to the other models for four out of five geographical regions
and outperforms the second-best method [27] by 12.14% in aggregate segmentation of
Water Channels class pixels. In particular, the proposed AUnet model showcased the best
performance for the Punjab region. It achieved an MioU score of 0.8540, outperforming
the second-best results by 26.46% in segmenting the water channel regions. Whereas it
showcased third-best performance for the Gilgit–Baltistan region, lagging behind the best
results by 13.81% for segmenting Water Channels class pixels. The decline in segmentation
performance for the Gilgit–Baltistan region is perhaps due to its different geographical
landscape compared to other regions, which are relatively more similar. Moreover, the
Gilgit–Baltistan region contains the least number of training patches and a much more
diversified environment, such as snowy mountainous terrains. However, this could be
improved in the future by incorporating a sufficient amount of such instances and a more
balanced dataset. Nevertheless, considering the overall performance, the proposed model
achieved an MIoU score of 0.8791, exceeding the second-best [27] performance by 5.90%
for extracting the water channels.
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Table 4. Comparative evaluation of the proposed AUnet with other SOTA methods. Bold font shows
the best results. The second-best performance is underlined.

Model Class Balochistan Gilgit–Baltistan Khyber Pakhtunkhwa Punjab Sindh Overall

FCN-32s
[24]

BG 0.9290 0.9770 0.9590 0.9576 0.9609
0.7383WC 0.4932 0.5362 0.5218 0.4791 0.5691

FCN-8s
[24]

BG 0.9474 0.9818 0.9680 0.9718 0.9698
0.7709WC 0.5623 0.5834 0.5633 0.5527 0.6089

U-net
[25]

BG 0.9482 0.9800 0.9674 0.9630 0.9730
0.8035WC 0.6392 0.6277 0.6359 0.5887 0.7120

SegNet
[26]

BG 0.9496 0.9832 0.9688 0.9741 0.9761
0.8159WC 0.6339 0.6605 0.6324 0.6526 0.7277

DeepLabv3+
[27]

BG 0.9561 0.9858 0.9742 0.9775 0.9776 0.8301
WC 0.6559 0.6908 0.6737 0.6753 0.7340

Proposed BG 0.9831 0.9847 0.9891 0.9931 0.9953
0.8791WC 0.7809 0.6070 0.7560 0.8540 0.8479

BG = Background class, WC = Water Channels class.

6. Conclusions

The segmentation of surface water is critical because water serves to maintain aquatic
and terrestrial environments as well as a variety of human needs. This study delivers a
newly curated water channel dataset of the Pakistan region using Landsat 8 imagery and
OSM data. We also introduce AUnet, a deep-learning-based network for surface water
mapping and water channel segmentation based on the sparse scribbling annotations
supplied by OSM data. Given the narrowness, connectedness, variety, and length of
water channel canals, the suggested AUnet model includes atrous convolutions at each
encoder level to increase the features receptive field throughout the network’s contracting
course while retaining accurate information. The proposed AUnet model was thoroughly
evaluated in a variety of terrestrial contexts, providing a mean intersection over union
score of 0.8791 for exact water channel segmentation throughout the full testing dataset.
However, our study has some limitations, such as it obtained relatively lower water channel
segmentation accuracy for patches with clouds or haze. In the future, we plan to adopt
a comprehensive preprocessing stage for removing clouds or dehazing of VHR satellite
imagery prior to feeding the network for training and validation.
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