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Abstract: Reconstructing the vertical structures of the ocean from sea surface information is of great
importance for ocean and climate studies. In this study, an ensemble machine learning (Ens-ML) model
is proposed to retrieve ocean subsurface thermal structure (OSTS) by using satellite-derived sea surface
data and Argo data in the South China Sea (SCS). The input data include sea surface height (SSH), sea
surface temperature (SST), sea surface salinity (SSS), sea surface wind (SSW), and geographic information
(including longitude and latitude). We select three stable machine learning models, namely, extreme
gradient boosting (XGBoost), RandomForest and light gradient boosting machine (LightGBM) as our
benchmark models, and then use an artificial neural network (ANN) technique to combine outputs
from the three individual models. The proposed Ens-ML model using sea surface data only by SSH,
SST, SSS, and SSW performs less satisfactorily than that considering the contribution of geographical
information, indicating that the geographical information is essential to estimate the OSTS accurately.
The estimated OSTS from the Ens-ML model are compared with Argo data. The results show that the
proposed Ens-ML model can accurately estimate the OSTS (upper 1000 m) in the SCS, which is relatively
more accurate and precise than the individual models. The performance of the Ens-ML model also varies
with season, and better estimation is obtained in winter, which is probably due to stronger mixing and
weaker stratification. This study shows the great potential and advantage of the multi-model ensemble
of machine learning algorithm for the ocean’s interior information retrieving, showing great potential in
expanding the scope of ocean observations.

Keywords: AI oceanography; machine learning; ensemble modeling; ocean subsurface thermal structure;
South China Sea; satellite oceanography

1. Introduction

Ocean temperature, one of the most important variables of seawater, plays a significant
role in marine disasters, marine ecosystems, ocean dynamics, and climate changes [1,2],
for example, it is closely related to the formation of many high impact thermos-dynamical
ocean-atmospheric processes, such as the marine heatwaves [3,4], thermocline layer forma-
tion [5], El Niño evolution [6,7], or deep-water formation [8,9]. To better understand the
role of ocean temperature in marine disaster and ecosystems, ocean circulation and climate
changes, it is essential to identify the ocean subsurface thermal structure (OSTS) accurately.

As the marginal sea of the western Pacific, the South China Sea (SCS) lies under the
influence of the Western Pacific Warm Pool [10,11]. It has an extended continental shelf
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in the south and extends deeper than 5000 m in the central region (Figure 1a). Extended
continental shelves exist along the north boundary and southwest boundary, while the
deeper water is oriented in a southwest–northeast direction across the central part of the
SCS [12]. Due to its unique geographical location and complicated dynamical features,
the temperature structures in the SCS have remarkable characteristics associated with El
Niño-Southern Oscillation (ENSO) [13], Asian monsoon and Pacific western boundary
current system [14,15], which have a far-reaching influence on the regional and global
climate [16,17]. In the climatological mean, sea surface temperature (SST) in the SCS shows
a chiefly southwest–northeast oriented pattern, which is gradually increasing southward
(Figure 1b). Previous studies confirmed that ocean temperature plays a vital role in the
ecosystems, dynamics and thermodynamics of the SCS. For example, ocean temperature
variability can significantly influence the occurrence of marine heatwaves in the SCS [18].
In addition, ocean temperature can also play a role in the processes of air–sea interactions
in the SCS, which can exert noticeable impacts on the East Asian climate [19]. Despite the
importance of the ocean temperature structures in the SCS, it remains a challenging problem
for oceanographers and climatologists to accurately estimate them. Current observations
of OSTS in the SCS are sparse and insufficient, which significantly constrain the studies of
ocean processes. Therefore, the most commonly used methods to estimate the OSTS are
numerical simulation, numerical-based data assimilation and dynamical modeling [20,21];
however, these dynamical models, due to simulating full aspects of the ocean thermal
and dynamical processes that are governed by a suit of equations, are very time and
computationally consuming. How to accurately estimate the OSTS with an acceptable
computational resource is an active area of research.
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Figure 1. (a) Bathymetry (m), and (b) long-term mean (from January 2010 to December 2019) SST
from Argo data in the South China Sea.

In recent decades, the latest technological advances in remote sensing have signif-
icantly improved our understanding of ocean circulation and dynamics by providing
well-sampled surface observations, such as sea surface height (SSH), SST, sea surface salin-
ity (SSS), and sea surface wind (SSW). Several early studies suggested that many ocean
subsurface phenomena have surface manifestations, therefore, satellite-derived sea surface
data can be used to reconstruct the ocean interior [22–26]. In this regard, extensive efforts
have been made to reconstruct ocean interior structures via surface information from satel-
lite data [27–31]. Methods for retrieving ocean interior structures from sea surface data
are often based on linear regression of single or multiple variables [32,33], statistical and
dynamic methods [34], or machine learning methods [24,35,36]. Khedouri et al. [37] used
purely statistical relationships to estimate OSTS from sea surface data, such as sea surface
dynamic height and SST. Based on the empirical orthogonal function (EOF), DeWitt [38]
presented a statistical method to develop the relationship between dynamic height and am-
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plitudes of the first two vertical modes. They pointed out that sea surface dynamic height is
a key parameter to estimate ocean temperature structure. Later, Carnes et al. [23] retrieved
the ocean vertical temperature and salinity structures based on a regression relationship
between sea surface height and ocean vertical temperature structures. Chu et al. [28] de-
veloped a parametric model to retrieve OSTS from SST observations. Based on a “gravest
empirical mode” (GEM), Watts et al. [39] found that the temperature and salinity structures
between 150 and 3000 dbars in the south of Australia can be accurately reconstructed
through GEM. Based on satellite altimetry data, Meijers et al. [34] used the GEM method
to estimate ocean subsurface temperature and salinity structures in the Southern Ocean.
Guinehut et al. [33] achieved good performance in the estimation of temperature and
salinity structures based on satellite-derived data and in-situ measurements through linear
regression methods. Su et al. [40] developed a geographically weighted regression model to
retrieve the ocean subsurface temperature anomaly in the Indian Ocean, which outperforms
the ordinary linear regression model. Yu et al. [41] proposed a ridge regression model to
derive ocean thermal structure in the Bay of Bengal using satellite altimetry data and Argo
in-situ data.

Recently, machine learning technology has been widely used in many fields to solve
specific problems throughout academia, including fields of atmospheric and oceanic sci-
ences [42]. Several early studies have used machine learning models to retrieve ocean
interior structure from multisource surface data. For example, Ali et al. [24] adopted an
artificial neural network (ANN) method to reconstruct the vertical temperature structure
from sea surface data such as SST, SSS, wind stress, net radiation, and net heat flux. They
suggested that the ANN approach has a good performance in estimating OSTS from sea
surface data. Later, Wu et al. [35] used a self-organizing map (SOM) neural network to
retrieve ocean subsurface temperature structures from sea surface data. Combined with
EOF analysis, Chen et al. [43] used a SOM approach to retrieve the subsurface thermal
structure via sea surface data in the Northwestern Pacific Ocean. Su et al. [44] have adopted
a support vector machine (SVM) approach to retrieve the ocean vertical temperature struc-
ture anomaly in the Indian Ocean via sea surface data. This method has also been extended
to estimate subsurface temperature anomalies on a global scale [45]. More recently, they
tried other machine learning approaches such as RandomForest, extreme gradient boosting
(XGBoost), and light gradient boosting machine (LightGBM) to estimate the OSTS from sea
surface data, and all of them have proven to be useful methods [26,46,47]. Han et al. [48]
adopted a convolutional neural network (CNN) to retrieve OSTS in the Pacific using sea
surface data, which yields a good performance. Lu et al. [49] adopted a method that
combines a preclustering process and neural network approach to estimate subsurface
thermal structures. They reported that the pre-clustered neural network method performs
better than the same method without clustering. By using a stacked Long Short-Term
Memory neural network (LSTM) method, a new model is proposed by Nardelli et al. [50] to
estimate ocean hydrographic profiles in the North Atlantic Ocean. Recently, Meng et al. [51]
adopted a CNN network to estimate subsurface and deep ocean temperature fields from
satellite-derived sea surface data. They also proposed a scheme to improve the horizontal
resolution of estimated temperature fields.

As suggested above, machine learning is a useful technology to estimate the subsur-
face thermal structure from sea surface data. The practical utility of estimates of OSTS
derived from sea surface data will depend on the particular problem at hand. The perfor-
mance of machine learning models mainly relies on algorithms and combinations of input
parameters [31]. The optimal parameter combination used in machine learning models is
found to depend on the kind of problem you wish to solve, the number of variables, the
kind of model that would suit it best and so on. Most existing studies related to estimation
of OSTS from sea surface data have focused on large-scale areas, such as global, Pacific
Ocean, and Indian Ocean, but no related studies have been carried out in the SCS. Another
thing to note here is that most of the previous studies were carried out using only indi-
vidual machine learning models to estimate the OSTS, such as ANN, SOM, SVM, CNN,
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XGBoost, RandomForest, and LightGBM, which may not make the perfect estimation for a
given dataset due to their limitations. In recent years, the multi-model ensemble approach
has been used to improve the overall accuracy of the prediction process, which usually
yields better performance than individual models [52–54]. At present, the utilizations of
the ensemble machine learning approach in the estimation of OSTS is still relatively rare.
To resolve limitations in a single method, in this study, we used an ensemble machine
learning (Ens-ML) model to estimate OSTS in the SCS. Based on previous studies, we chose
three stable machine learning models (XGBoost, RandomForest, and LightGBM) as our
basic machine learning model, and then we used an ANN to combine the outputs from
each model. The remainder of the paper is organized as follows: Data and methods are
described in Section 2, results are present in Section 3, and summary and discussion follow
in Section 4.

2. Data and Methods
2.1. Data

The sea surface data used in this study are all from satellite observations, including SST,
SSS, SSH and SSW (decomposed into eastward wind speed (USSW) and northward wind
speed (VSSW) components). In addition, the geographic information including longitude
(LON) and latitude (LAT) are also used in this study.

The monthly SST data are from the National Oceanic and Atmospheric Administration
(NOAA) Optimum Interpolation Sea Surface Temperature (OISST) version 2 products,
which combine AVHRR, AMSR and in-situ observations [55]. The SSS data are obtained
from Soil Moisture and Ocean Salinity (SMOS) Level-3 SSS product [56]. The SSH data mea-
sured by altimeters are obtained from Archiving, Validation and Interpretation of Satellite
Oceanographic (AVISO) data center of CNES (Center National d’Etudes Spatiales) [57]. The
SSW data are from the Cross-Calibrated Multi-Platform (CCMP) wind velocity product,
which apply a variational analysis method to combine data from different sources to syn-
thesize high-resolution surface wind data [58]. The Argo dataset used in this study is the
monthly gridded Argo dataset produced by Roemmich and Gilson [59]. It has a horizontal
resolution of 1◦ × 1◦ and is interpolated to 58 depth levels (upper 2000 m) from January
2004 to present. In this study, the Argo data is used as labeled training data, as well as
validating the accuracy and reliability of the results from models. Table 1 summaries all the
data used in this study. The Study area is located between 5~23◦N latitude and 105~122◦E
longitude. It should be noted that all the above data have been processed into monthly
averages and interpolated onto a grid with a resolution of 0.5◦ longitude and latitude grid
with the same temporal and spatial coverage of the SCS. In addition, only the 2010–2019
time series for all variables have been considered.

Table 1. Summary of the data used in this study.

Index Contents

Study Area South China Sea 105–122◦E, 5–23◦N

Data

SST 2010–2019 NOAA (OISST)

input
SSS 2010–2019 SMOS

SSH 2010–2019 AVISO

SSW (USSW, VSSW) 2010–2019 CCMP

OSTS 2010–2019 RG-Argo output

3D temperature field
Temporal and spatial resolution monthly 0.5◦ × 0.5◦

Vertical layers 2.5–1000 m 44 layers
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2.2. Methods

Recently, the multi-model ensemble method has been widely studied, which has been
demonstrated to yield more favorable results than individual machine learning models in
many applications. In this study, we explore the use of a multi-model ensemble of machine
learning approaches to estimate OSTS in the SCS. Among various ensemble learning
methods, ANN is one of the most popular techniques to combine multiple models due to
its effectiveness and simplicity. Generally, ensemble approaches are algorithm-independent,
and impose no special restrictions on selection of the benchmark models. Based on the
results of previous studies, we selected three stable machine learning models, XGBoost,
RandomForest, and LightGBM as our basic model, all of which have been shown to have
ability to estimate the OSTS [26,46,47,60].

In general, successful utilization of a machine learning application requires data under
the categories: training data, validation data, and testing data. The training data are used
to train the model. The validation data are used to validate the performance of the model
during training and control overfitting almost simultaneously. In this study, all the surface
input data from January 2010 to December 2018 were randomly split into two separate
categories: 70% of the dataset for training and the remaining 30% for validation. As input,
the sea surface data from January 2019 to December 2019 were used to predict the OSTS
in the SCS. Out of the total 120 months of data, we used 75 months of data for training,
33 months of data for validation and 12 months of data for testing.

The flowchart of the proposed Ens-ML model for OSTS estimation in the SCS is
shown in Figure 2. The Ens-ML model procedure involves two main steps: (1) training and
validating the model, (2) estimating with model. The model was trained and validated using
satellite-derived surface data and Argo labeled data before it was applied to reconstruct the
OSTS. Based on previous studies and analyses, we selected SST, SSS, SSH, USSW, VSSW,
and the geographical information, i.e., LON, and LAT, as independent input variables for
machine learning models to estimate the OSTS in the SCS [24,26,47,51]. We first trained
the three individual machine learning models (XGBoost, RandomForest, and LightGBM)
to estimate the OSTS from sea surface data. After that, the outputs of the three machine
learning models were combined using the ANN.
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structure estimation in the SCS.

Model parameter optimization, an important part of machine learning, has a significant
influence on the performance of the models. Some of the most important parameters have
to be carefully optimized to achieve good predictive performance. In this study, we applied
the grid search method to obtain an optimal combination of model parameters for the
machine learning models. The optimal parameter combinations are shown in Table 2.
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Table 2. Optimal combination of parameters of models.

Model Parameters

XGBoost
learning_rate = 0.3, n_estimators = 60, max_depth = 6,
min_child_weight = 1, colsample_bytree = 1, colsample_bylevel = 1,
subsample = 0.8, reg_lambda = 100

RandomForest n_estimators = 150, max_depth = 21, min_samples_split = 70,
min_samples_leaf = 3, max_features = 5, random_state = 10

LightGBM num_leaves = 55, learning_rate = 0.01, n_estimators = 1000, max_depth = 8,
min_child_samples = 20, feature_fraction = 0.8

ANN number of neural network layers = 4, Residual layers = 2,
learning rate = 0.002, batch_size = 1024

For model evaluation, the performance of the Ens-ML model was evaluated quanti-
tatively using statistical measures, i.e., the root mean square error (RMSE hereafter) and
coefficient of determination (R2 hereafter). RMSE describes the specific values of the errors
between the estimated values and observed values, while R2 is used to assess how strong
the linear relationship is between two variables. In the following section, we present a
performance study on the Ens-ML model in the estimation of the OSTS in the SCS.

3. Results

With the optimal combination of parameters, we used three individual machine
learning models (XGBoost, RandomForest, and LightGBM) and the Ens-ML model to
separately estimate the OSTS in the SCS. First, we evaluated the performance and stability
of the Ens-ML model by comparing with three individual models in terms of RMSE and R2,
which were calculated at each depth levels based on the testing data set for 2019 over the
SCS. The vertical distributions of RMSE and R2 for the Ens-ML model and three individual
models are shown in Figure 3.
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different depths based on (a) RMSE (◦C) and (b) R2 in 2019.

The overall trends for RMSE and R2 of the Ens-ML model and three individual machine
learning models are as follows: the RMSE increases from the surface to maximum values
near 70 m depth, and then decreases with depth; whereas an opposite trend is seen in R2,
which decreases from the surface to minimum values near 70 m, and then increases from
70 to 300 m, finally decreases from 300 to 1000 m. Our results show that, at about 70 m,
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the RMSE is relative higher than other depths, whereas R2 is relative lower than other
depths. The depth of 70 m is approximately the depth of the thermocline layer, where the
temperature decreases rapidly with depth, which leads to the difficulty of estimation of the
OSTS [61]. In contrast, the RMSE values of the Ens-ML model are obviously smaller than
those of the three individual models at different depths, while the R2 values of the Ens-ML
model are larger than those of the three individual models (Figure 3). Obviously, the
Ens-ML model yields the highest overall accuracy indicated by the lowest RMSE (0.31 ◦C,
averaged over all depths) and highest R2 (0.89) (Table 3). The second and third are the
LightGBM model and the XGBoost model, respectively. The RandomForest model yields
the lowest estimation accuracy. It should be pointed out that the gaps of R2 below 450 m
between the Ens-ML model and three individual models are larger than the upper layer.
This indicates that the Ens-ML model, when compared with the three individual models,
tends to perform better in the lower layers than in the upper layers.

Table 3. The performance comparison of different models for OSTS estimation per calculated yearly
mean RMSE (◦C) and R2 Values.

OSTS Estimation Models RMSE R2

Ens-ML 0.31 0.89
XGBoost 0.39 0.83

RandomForest 0.40 0.83
LightGBM 0.37 0.84

Another important issue in the estimation is the selection of input variables for models.
Early study has suggested that geographic information can help to improve estimation
accuracy of the OSTS [47]. To examine the influence of geographic information on the
estimation of the OSTS in the SCS, we set up two groups of experiments (cases 1 and 2) with
different input parameter combinations to examine whether geographic information has an
influence on the performance of the Ens-ML model (Table 4). In the first group (case 1), we
select SST, SSS, SSH, USSW, and VSSW as inputs. In addition to these parameters, we also
include LON and LAT as input parameters in the second group (case 2). It can be clearly
seen that the seven-parameter Ens-ML model (case 2) yields a significantly lower RMSE
value than that of the five-parameter model (case 1) at all depths, and higher R2 values
(Figure 4). The vertically averaged RMSE and R2 of the Ens-ML model with the seven-
parameter model are 0.31 ◦C and 0.89, respectively. While for the five-parameter model, the
vertically averaged RMSE and R2 are 0.69 ◦C and 0.79, respectively. It should be noted that
a significant difference in RMSE between the 7-parameter model and 5-parameter model
was observed in the depth range of 250 to 600 m. For the 5-parameter model, the RMSE
tends to increase from 250 to about 370 m, and then decrease with increasing depth. While
for the 7-parameter model, the RMSE tends to decrease with increasing depth. This is an
interesting question and requires further study. The results suggest that adding LON and
LAT improves the estimation accuracy of the Ens-ML model in the SCS.

Table 4. Design of experiments.

Experiments Training Methods

Case 1 (five parameters) OSTS = Ensemble (SST, SSS, SSH, USSW, VSSW)
Case 2 (seven parameters) OSTS = Ensemble (SST, SSS, SSH, USSW, VSSW, LON, LAT)
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Next, we evaluate the performance of the seven-parameter Ens-ML model from
different aspects in detail. First, some results of the Ens-ML-estimated OSTS at 50, 70, 100,
300, 500, and 1000 m depths in 2019 are shown in Figure 5. The Argo-derived OSTS at the
same depths are used for evaluating the Ens-ML estimated OSTS and validate the estimated
results by their differences, which are obtained from the Argo data minus Ens-ML model
estimated data. We find good agreement between the Ens-ML model estimated OSTS and
Argo OSTS maps at different depths. Most of the significant temperature features in the
interior SCS can be effectively predicted from the sea surface data via the ensemble machine
learning approach. For example, both datasets show that the temperature decreases with
increasing depth. At 50 m depth, the temperature range is 22.5~27.1 ◦C, with a front
trending from the southwest to the northeast separating the basin into two roughly equal
water masses—cool water to the northwest, warm water to the southeast. The minimum
temperature is found to the east of Vietnam about 111~113◦E, 13~16◦N, which coincides
with the East Vietnam eddy [14]. The temperature difference between the Argo data
and Ens-ML model estimation at 50 m depth only varies from 0.38 ◦C in the south to
−0.21 ◦C in the north (Figure 5). At 70 m, the temperature varies from 25.0 ◦C in the
northeast to 21.5 ◦C in the west of the SCS, which is also oriented northeast–southwest,
with a positive temperature gradient toward southeastward. The spatial distribution of
temperature difference between the Argo observation and model estimation at 70 m depth
is similar to that of 50 m depth with a relatively large range from −0.43 ◦C to 0.40 ◦C. At
100 m depth, the temperature varies from 21.5 ◦C in the east to 18.5 ◦C in the west of the
SCS with a positive temperature gradient toward southeast. The maximum difference is
observed at about 112~116◦E, 11~14◦N, with a range of 0.21–0.32 ◦C. The results obtained
show that the temperature tends to be stable with increasing depth. At 300 m depth, the
temperature varies from 13.6 ◦C to 15.2 ◦C, while for the 500 and 1000 m depths, the
temperature only varies from 7.6 ◦C to 8.6 ◦C and from 3.9 ◦C to 5.2 ◦C, respectively. Below
500 m depth, the temperature differences between the Argo-derived data and Ens-ML
model estimation become relatively small with a range of −0.05–0.06 ◦C. Comparisons
show that the maximum temperature differences between the Argo observation and model
estimation occur at 50~70 m depth. Our results demonstrate that the proposed Ens-ML
model presents a good performance in the estimation of OSTS in the SCS. A more detailed
assessment of the Ens-ML model performance is given next.
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Here, we quantitatively evaluate the accuracy of the OSTS estimation by the Ens-ML
model using RMSE and R2 as the performance measures (Table 5). The low RMSE and high
R2 mean more reasonable estimation accuracy. As shown in Table 5, the Ens-ML model
shows good performances at all depths, although the performance measures vary with
depth. Although the estimation accuracy shows some differences at different depths, the
Ens-ML model is generally satisfactory. This also indicates that the Ens-ML model achieves
a good performance for OSTS estimation in the SCS.
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Table 5. Vertical distributions of RMSE (◦C) and R2 for Ens-ML model at different depths.

Depth (m) RMSE R2

2.5 0.51 0.86
10 0.49 0.85
20 0.51 0.83
30 0.57 0.77
50 0.72 0.72
70 0.73 0.75

100 0.62 0.87
150 0.45 0.94
200 0.26 0.97
300 0.12 0.99
400 0.11 0.97
500 0.08 0.87
600 0.05 0.83
700 0.04 0.86
800 0.03 0.85
900 0.02 0.85
1000 0.02 0.87

In addition, two sections (zonal section A along 18◦N from 112◦E to 118◦E, and
meridional section B along 113◦E from 5.5◦N to 18.5◦N) were selected to further evaluate
the vertical performance of the Ens-ML model (Figure 6). Zonal section A is an important
section to investigate the influence of Kuroshio intrusion on the SCS [11]. Meridional
section B, located between the tropics and subtropics, is an important section for studying
meridional ocean transport in the SCS. Figure 7 shows the comparison of OSTS from Argo
data and the Ens-ML model estimation along these two sections. It can be clearly seen
that the spatial distribution of the Ens-ML model estimated OSTS exhibits good agreement
with the Argo observations. Most of the main observed features of the vertical temperature
structure are well reproduced by the Ens-ML model. In the upper 200 m, the temperature
change with depth is large, varying from 27 ◦C at the surface to 12 ◦C at about 200 m. Blow
200 m, the temperature only changes slightly varying from 10 ◦C at 300 m to 4 ◦C at 1000 m
with the vertical gradient decreasing with depth.
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Figure 6. The zonal section A (latitude of 18◦N), and meridional section B (longitude of 113◦E) are
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Figure 7. Argo-derived OSTS (left panel), Ens-ML model estimated OSTS (middle panel) and their
differences (Argo minus Ens-ML, right panel) along the zonal and meridional sections in 2019.

For the zonal section (section A), in the upper 50 m, the estimated temperature value is
slightly greater than the Argo value, with differences (Argo minus Ens-ML) up to −0.30 ◦C.
The maximum difference (exceeding 0.35 ◦C) occurs between about 100 to 150 m, where the
Ens-ML model-estimated temperature is relatively smaller than the Argo values. For the
meridional section (section B), relatively large temperature differences (exceeding 0.40 ◦C)
are present in the depth range of 50 to 200 m between 6◦N to 15◦N, with Argo values higher
than the estimated temperature values. Vertically averaged temperature errors for the zonal
and meridional sections over 1000 m are about 0.05 ◦C and 0.06 ◦C, respectively. As the
statistical analysis suggested, more than 98% of the section’s points are within ±0.10 ◦C,
and more than 99% of the section points are within ±0.20 ◦C for the estimation.

A comparison between the Ens-ML model estimated temperature profiles and Argo
profiles in 2019 are also presented in this study. Given the characteristics of bathymetry and
Argo distributions, we selected four 2◦ × 2◦ boxes designated A, B, C, and D in Figure 6 to
further evaluate the performance of the Ens-ML model in the SCS. Box A (116~118◦E and
19~21◦N) is along the continental slope south of China. Box B (117~119◦E and 16~18◦N)
coincides with the West Luzon eddy. Box C (114~116◦E and 11~13◦N) is in the central
southern SCS. Box D (110.5~112.5◦E and 15~17◦N) is identical with the East Vietnam
eddy. Figure 8 shows the temperature profiles in the four boxes from the Ens-ML model
estimation and the Argo observations. We find a good agreement between the Ens-ML
model-estimated profiles and Argo observed profiles. The RMSE between the averaged
profiles from the Ens-ML model estimation and Argo observation are 0.17 ◦C, 0.40 ◦C,
0.61 ◦C, and 0.53 ◦C in boxes A, B, C, and D, respectively (Figure 8). Obviously, the Ens-ML
model accurately reproduces the temperature profiles seen in the Argo observational data.

Scatter plots of temperature from the Argo observations and the Ens-ML model
estimation show that most of the points are more or less evenly distributed around the line
of equal value, giving a low RMSE and a high R2 (Figure 9). These results also suggest that
the estimated results of the Ens-ML model are reliable and performed well in the OSTS
estimation in the upper 1000 m.
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As discussed above, the Ens-ML model has been shown to have good performance
in the yearly mean OSTS estimation over the SCS. A question then arises, how about its
performance in different seasons. Next, we quantitatively assess the performance of the
Ens-ML model for different seasons. February, May, August, and November of 2019 are
selected to represent the winter, spring, summer, and fall seasons of the year. To improve
the comparability of the model accuracy at different depths, we normalized the RMSE
values (NRMSE is the RMSE divided by the standard deviation of the Argo temperature at
that depth). Vertical distributions of the NRMSE and R2 at different depths for different
seasons are shown in Figure 10. On the whole, the Ens-ML performance is clear with
relatively higher NRMSE and smaller R2 in the upper 100 m. The NRMSEs in different
seasons show first a downtrend and then an uptrend with a turning point occurring at
about 200 or 300 m depths. The trend features of R2 are also unstable and fluctuating, which
show an uptrend from the surface to 300 m, and then a downtrend to the 1000 m depth.
These suggest that the accuracy of the Ens-ML model generally decreases with increase of
depth from 300 m. The reason for this variability may be that, in the deeper layer (below
300 m), the ocean phenomena have weaker surface manifestation, which are harder to
interpret from sea surface information. In addition, relatively high NRMSE values in the
upper 100 m might be related to the complex dynamic processes of the upper ocean.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 10. Seasonal performance of the Ens-ML model for ocean subsurface thermal structure esti-
mation at different depths in the SCS in 2019. Cyan indicates February (winter), blue May (spring), 
green August (summer), and magenta November (autumn). Histograms display the NRMSE, and 
the lines display R2. 

It is clearly seen that the prediction accuracy of the Ens-ML model varies with sea-
sons. The vertical average NRMSE (R2) values are 0.26 °C (0.92), 0.30 °C (0.88), 0.37 °C 
(0.86), and 0.26 °C (0.91) for February, May, August, and November, respectively. The 
highest accuracy appears in February, and the lowest accuracy appears in August. The 
OSTS in winter and autumn tends to be stable, and the magnitude of OSTS changes is 
small. The accuracy of the Ens-ML model is relatively high for all four seasons, indicating 
that the Ens-ML model has a good performance in the estimation of OSTS for different 
seasons. 

4. Discussion and Conclusions 
Ocean temperature has a large influence on marine environment and climate, with 

direct and indirect impacts on both natural and human activities, from the ecosystem sys-
tem to the fishing industry. Hence, accurately estimating ocean subsurface thermal struc-
tures is of great importance for marine environmental monitoring, marine disaster pre-
vention and climate changes. At present, machine learning models have been widely used 
to estimate ocean thermal structure. However, until now, most studies of OSTS estimation 
are based on single models, not taking advantage of the potential improvement in estima-
tion resulting from the use of an ensemble of models. To our knowledge, there have been 
no studies reported to use machine learning to estimate the OSTS in the SCS. Therefore, 
in this study, we introduce an ensemble machine learning model based on an ANN, which 
combines outputs from three individual models (XGBoost model, RandomForest model, 
and LightGBM model) to estimate the OSTS in the SCS. 

The Ens-ML model was used to estimate the OSTS in the SCS with sea surface data 
as input and Argo observations for labeling. The performance of the Ens-ML model was 
examined in comparison with three individual models. Our results show that the Ens-ML 
model has the highest prediction accuracy; its average RMSE is 0.31 °C, and its average R2 
is 0.89. The RMSE (R2) values of the Ens-ML model are much smaller (larger) than those 
of the three individual models, indicating that the Ens-ML model performs better than the 
individual models. In addition to SSH, SST, SST, and SSW, geographic information (lon-
gitude and latitude) are two necessary parameters for accurately estimating the OSTS in 
the SCS, significantly improving the estimation accuracy of the Ens-ML model. Spatial 
distribution of the OSTS estimated by the Ens-ML model agrees well with the Argo ob-
servation, most of the observed OSTS features can be effectively detected from sea surface 

0

0.2

0.4

0.6

0.8

1

30 50 100 200 300 400 500 600 700 800 900 1000
Depth (m)

0

0.2

0.4

0.6

0.8

1

RMSE-Feb RMSE-May RMSE-Aug RMSE-Nov

R2-Feb R2-May R2-Aug R2-Nov

Figure 10. Seasonal performance of the Ens-ML model for ocean subsurface thermal structure
estimation at different depths in the SCS in 2019. Cyan indicates February (winter), blue May (spring),
green August (summer), and magenta November (autumn). Histograms display the NRMSE, and
the lines display R2.

It is clearly seen that the prediction accuracy of the Ens-ML model varies with seasons.
The vertical average NRMSE (R2) values are 0.26 ◦C (0.92), 0.30 ◦C (0.88), 0.37 ◦C (0.86),
and 0.26 ◦C (0.91) for February, May, August, and November, respectively. The highest
accuracy appears in February, and the lowest accuracy appears in August. The OSTS in
winter and autumn tends to be stable, and the magnitude of OSTS changes is small. The
accuracy of the Ens-ML model is relatively high for all four seasons, indicating that the
Ens-ML model has a good performance in the estimation of OSTS for different seasons.

4. Discussion and Conclusions

Ocean temperature has a large influence on marine environment and climate, with
direct and indirect impacts on both natural and human activities, from the ecosystem system
to the fishing industry. Hence, accurately estimating ocean subsurface thermal structures
is of great importance for marine environmental monitoring, marine disaster prevention
and climate changes. At present, machine learning models have been widely used to
estimate ocean thermal structure. However, until now, most studies of OSTS estimation are
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based on single models, not taking advantage of the potential improvement in estimation
resulting from the use of an ensemble of models. To our knowledge, there have been no
studies reported to use machine learning to estimate the OSTS in the SCS. Therefore, in
this study, we introduce an ensemble machine learning model based on an ANN, which
combines outputs from three individual models (XGBoost model, RandomForest model,
and LightGBM model) to estimate the OSTS in the SCS.

The Ens-ML model was used to estimate the OSTS in the SCS with sea surface data
as input and Argo observations for labeling. The performance of the Ens-ML model
was examined in comparison with three individual models. Our results show that the
Ens-ML model has the highest prediction accuracy; its average RMSE is 0.31 ◦C, and its
average R2 is 0.89. The RMSE (R2) values of the Ens-ML model are much smaller (larger)
than those of the three individual models, indicating that the Ens-ML model performs
better than the individual models. In addition to SSH, SST, SST, and SSW, geographic
information (longitude and latitude) are two necessary parameters for accurately estimating
the OSTS in the SCS, significantly improving the estimation accuracy of the Ens-ML model.
Spatial distribution of the OSTS estimated by the Ens-ML model agrees well with the
Argo observation, most of the observed OSTS features can be effectively detected from sea
surface data via the Ens-ML model. The accuracy of the Ens-ML model for OSTS estimation
generally decreases with increasing depth from 300 m, which is likely due to stable ocean
stratification in the deeper ocean. The estimation accuracy of the Ens-ML model not only
varies significantly with depth, but also varies with seasons. The vertical average NRMSE
(R2) for February, May, August, and November are 0.26 ◦C (0.92), 0.30 ◦C (0.88), 0.37 ◦C
(0.86), and 0.26 ◦C (0.91), respectively. Obviously, the average NRMSE (R2) in February is
less (greater) than in May, August and November, suggesting that the estimation accuracy
of the Ens-ML model in February is the best. Overall, the performance of the Ens-ML
model is good for all four seasons, indicating that the Ens-ML model has a good seasonal
applicability for the OSTS estimation in the SCS. This study demonstrates that a satellite-
based ensemble machine learning approach to estimate OSTS can be accurate and reliable
across different regions and times.

This study proposed and evaluated a multi-model ensemble approach to extend the
satellite-derived oceanic data from the sea surface to subsurface. Our results show that this
ensemble approach is robust and effective at estimating the OSTS in the SCS. However, it should
be noted, the Ens-ML model, as a statistical method, enables us to estimate OSTS within the
ranges of input parameters; this may lead to an underestimation of some extreme events. The
reason for this is that the labeled OSTS of the Ens-ML model is in the range of input data for
labeling. For any input data, the Ens-ML model can only estimate the OSTS that lies in the
range of the input data used to train it. For those extreme events with OSTS exceeding the range
of labeling data, the Ens-ML model may underestimate the temperature.

To extend this multi-model ensemble approach to the global scale, it is necessary
to validate the model with different regions and data, and with better machine learning
models. Besides different machine learning techniques, another important factor affecting
estimation accuracy is the selection of input variables. It should be noted that the input
variables used in this study might not be optimal combination for model. For example,
previous studies have shown that wind stress, instead of wind speed, has a more significant
impact on ocean temperature structure [62–64]. It would be interesting in future work to
examine the different effects of wind stress and wind speed on OSTS estimation using a
machine learning model. Once the OSTS has been accurately estimated, it can be used
for practical applications, such as marine disaster prediction and acoustic propagation
estimations [65]. Besides, application of the proposed multi-model ensemble approach
to the estimation of other critical oceanic parameters, such as ocean subsurface salinity
structure, oceanic density fields, and other oceanic variables, can be investigated as well.
These are left for future study.
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