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Abstract: Predicting the parameters of upcoming earthquakes has always been one of the most
challenging topics in studies related to earthquake precursors. Increasing the number of sensors and
satellites and consequently incrementing the number of observable possible earthquake precursors in
different layers of the lithosphere, atmosphere, and ionosphere of the Earth has opened the possibility
of using data fusion methods to estimate and predict earthquake parameters with low uncertainty.
In this study, a Mamdani fuzzy inference system (FIS) was proposed and implemented in five case
studies. In particular, the magnitude of Ecuador (16 April 2016), Iran (12 November 2017), Papua
New Guinea (14 May 2019), Japan (13 February 2021), and Haiti (14 August 2021) earthquakes were
estimated by FIS. The results showed that in most cases, the highest number of anomalies was usually
observed in the period of about one month before the earthquake and the predicted magnitude of
the earthquake in these periods was slightly different from the actual magnitude value. Therefore,
based on the results of this study, it could be concluded that if a significant number of anomalies are
observed in the time series of different precursors, it is likely that an earthquake of the magnitude
predicted by the proposed FIS system within the Dobrovolsky area of the studied location will happen
during the next month.

Keywords: earthquake precursor; fuzzy inference system (FIS); earthquake magnitude; swarm
satellite data

1. Introduction

Due to the loss of life and heavy material damage of powerful earthquakes, many
efforts have been made to predict the principal parameters of earthquakes, i.e., at least
the date, magnitude, and location. However, this goal seems still far, and nowadays, it is
still not possible to make a prediction of an earthquake. To be able to better understand
the preparation phase of an earthquake, several studies have been conducted for decades.
For example, in interpreting several possible precursors, a possible general model called
“Dilatancy” was proposed by Scholz et al. [1]. For this purpose, any abnormal change in the
physical and chemical observables in different layers of the Earth (lithosphere, atmosphere,
and ionosphere) in the absence of other causes can probably be considered as one of the
possible signs of an impending earthquake, and hence, it can be classified as an earthquake
precursor candidate [2–5]. Therefore, for several decades, different parameters have been
proposed to be altered before the occurrence of an earthquake: for example, Wyss [6]
identified seismic, ground deformation, and magnetic alteration by investigating a very
long time series before the M7.1 Sitka 1972 earthquake; Fraser-Smith et al. [7] claimed that
extremely low frequency (ELF)/very low frequency (VLF) anomalies were detected from
ground observatories some weeks before the M7.1 Loma Prieta earthquake occurred in
1989; Molchanov et al. [8] reported disturbances in VLF signal transmissions before the
M7.2 Kobe 1995 earthquake. Wu and Tikhonov [9] searched for a systematic occurrence
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of atmospheric jet streams in China and the northwestern part of the Pacific seismic belt
before the M6+ earthquakes from 2006 to 2021. Shou and Fang [10] formulated a model
proposing that earthquakes can release thermal vapor (geoeruption), inducing the forma-
tion of clouds. Such “earthquake clouds” can be distinguished from other geological or
weather phenomena as they are supposed to suddenly appear, being vapor-based, having
a fixed source, and displaying a high-temperature and high-pressure state. The location of
geoeruption would predict the epicentre, the amount of vapor, the magnitude, and the time
after a complete geoeruption empirically could predict the time of the earthquake within
days of precision [10]. With the launch of various satellites with different sensors such as
optical and radar as well as accelerometers, magnetometers, electric field detectors, particle
tracers, calorimeters, etc., the number of readable precursors for earthquakes has increased.
The large availability of big data archives has permitted researchers to identify a chain of
processes in the lithosphere, the atmosphere, and the ionosphere before the occurrence of
several earthquakes in the world, such as M7.8 Nepal 2015 [11], the M6.0 and 6.5 Italy 2016
seismic sequence [12], the M7.5 Indonesia 2018 earthquake [13], and the M7.1 Ridgecrest,
California 2019 earthquake [14]. Statistical proof of the existence of ionospheric precursors
analysing DEMETER and Swarm satellites has also prompted some worldwide investiga-
tions of M5.5+ (or M4.8+ in the case of DEMETER) shallow earthquakes [15–19]. Creating
cloud computing systems such as Google Earth Engine (GEE) has greatly helped to analyse
various precursors without the necessity of downloading their corresponding raw data [20].
It can be reasonable that as the number of anomalies observed in different precursors
increases, the degree of uncertainty in predicting the parameters of upcoming earthquakes
decreases. An investigation of 12 earthquakes from magnitude 6.1 to 8.3 that occurred
between 2014 and 2016 identified a linear relationship between ionospheric anomalies
identified by Swarm and the magnitude of the incoming earthquake [21]. Fortunately, the
number of classical and intelligent anomaly detection methods in the time series of various
precursors has improved considerably [22,23]. Therefore, it is necessary to use methods
to fuse the results of these predictors to estimate earthquake parameters. In this study, a
fuzzy inference system (FIS) was proposed to estimate the magnitude of the impending
powerful earthquakes.

Case Studies

In particular, we investigated here five strong earthquakes to evaluate the proposed
fuzzy system for earthquake magnitude estimation. Table 1 summarises the real charac-
teristics of the five analysed earthquakes and Figure 1 shows their location and their focal
mechanism. A powerful earthquake of magnitude Mw = 7.8 occurred on 16 April 2016 at
23:58:36 UTC (LT = UTC + λepicenter/15 = 18:38:55) on the coast of Ecuador, approximately
27 km south-southeast of Muisne in the province of Esmeraldas at a depth of 20.6 km [24].
We also analysed as another case study an Mw = 7.3 strong earthquake that took place at
18:18:17 UTC (LT = 21:22:07) on 12 November 2017 along the border region between Iran
and Iraq close to the town of Sarpol-e Zahab (34.911◦N, 45.959◦E, 19.00 km depth) [25].
The third analysed earthquake had a magnitude Mw = 7.6 and happened at 12:58:25 UTC
(LT = 23:08:48) on 14 May 2019, 46 km South-Southeast of Namatanai in Papua New Guinea
(4.051◦S, 152.597◦E) at a shallow estimated depth of about 10 km [26]. The fourth strong
earthquake of Mw = 7.1 occurred at 14:07:50 UTC (LT = 23:34:55) on 13 February 2021 near
the east coast of Honshu, Japan (37.727◦N, 141.775◦E, 44 km depth) as the result of thrust
faulting near the subduction zone interface plate boundary between the Pacific and North
America plates [23]. We analysed another strong earthquake of Mw = 7.2 that happened at
12:29:08 UTC (LT = 7:35:12) on 14 August 2021 (18.434◦N, 73.482◦W, 10 km depth).
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Table 1. The characteristics of the investigated earthquakes (reported by United States Geological
Survey, http://earthquake.usgs.gov/ (accessed on 5 June 2022)).

Region Date Time (UTC) Geographic Latitude,
Longitude Magnitude (MW) Focal Depth (km)

Ecuador 16 April 2016 23:58:36 0.382◦N, 79.922◦W 7.8 20.6

Iran 12 November
2017 18:18:17 34.911◦N, 45.959◦E 7.3 19

Papua New
Guinea 14 May 2019 12:58:25 4.051◦S, 152.597◦E 7.6 10

Japan 13 February 2021 14:07:50 37.73◦N, 141.77◦E 7.1 44

Haiti 14 August 2021 12:29:08 18.434◦N, 73.482◦W 7.2 10
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Figure 1. Map of the investigated earthquakes with overplot of main plate boundaries (red lines).
For each seismic event, the “beachball” with the estimated focal mechanism solution from USGS
is reported.

2. Methodology

Fuzzy logic is a set of mathematical principles for knowledge representation based on
degrees of membership. Unlike two-valued Boolean logic, fuzzy logic is multi-valued. It
deals with degrees of membership and degrees of truth [27]. Fuzzy logic uses a continuum
of logical values between 0 (completely false) and 1 (completely true). In 1965, Lotfi Zadeh
published his famous paper “Fuzzy sets” [28]. Zadeh extended the work on possibility
theory into a formal system of mathematical logic and introduced a new concept for
applying natural language terms. This new logic for representing and manipulating fuzzy
terms was called fuzzy logic [27].

A fuzzy inference system (FIS) is a way of mapping an input space to an output space
using fuzzy logic. An FIS tries to formalise the reasoning process of the human language
by means of fuzzy logic (that is, by building fuzzy IF-THEN rules). FIS methods are used
to solve decision problems, i.e., to make a decision and act accordingly. The FIS is based
on converting a set of numerical variables (i.e., crisp) to a set of fuzzy variables. This is
obtained using a series of logical rules and linguistic variables. These rules are organised in
the “IF-THEN” format and constitute the FIS’s core. Before applying these rules, the input

http://earthquake.usgs.gov/
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and output variables must be fuzzified, and the conversion is conducted using membership
functions. Membership functions are mathematical functions that illustrate an element’s
membership in a fuzzy set [29].

The structure of an FIS is as follows (see also Figure 2):

• Fuzzification module: transforms the system inputs, which are crisp numbers, into
fuzzy sets. This is done by applying a fuzzification function.

• Knowledge base: stores IF-THEN rules provided by experts.
• Inference engine: simulates the human reasoning process by making fuzzy inferences

on the inputs and IF-THEN rules.
• Defuzzification module: transforms the fuzzy set obtained by the inference engine

into a crisp value.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

membership functions. Membership functions are mathematical functions that illustrate 
an element’s membership in a fuzzy set [29]. 

The structure of an FIS is as follows (see also Figure 2): 
• Fuzzification module: transforms the system inputs, which are crisp numbers, into 

fuzzy sets. This is done by applying a fuzzification function.  
• Knowledge base: stores IF-THEN rules provided by experts.  
• Inference engine: simulates the human reasoning process by making fuzzy inferences 

on the inputs and IF-THEN rules.  
• Defuzzification module: transforms the fuzzy set obtained by the inference engine 

into a crisp value.  

 
Figure 2. Structure of a fuzzy inference system. 

Fuzzy inference methods are classified into direct methods and indirect methods. 
Direct methods, such as Mamdani’s approach, are the most commonly used. In 1974, Brit-
ish E.H. Mamdani applied fuzzy logic and fuzzy reasoning to real life for the first time 
[30].  

The realisation process of the Mamdani FIS flow chart in this study is shown in  
Figure 3. The choice of the membership function for input variables depends on user 
knowledge about the system behaviour. The Gaussian membership function “gaussmf” 
is applied to map the daily value of every precursor into [0..1] numerical range. 

Figure 2. Structure of a fuzzy inference system.

Fuzzy inference methods are classified into direct methods and indirect methods.
Direct methods, such as Mamdani’s approach, are the most commonly used. In 1974, British
E.H. Mamdani applied fuzzy logic and fuzzy reasoning to real life for the first time [30].

The realisation process of the Mamdani FIS flow chart in this study is shown in Figure 3.
The choice of the membership function for input variables depends on user knowledge
about the system behaviour. The Gaussian membership function “gaussmf” is applied to
map the daily value of every precursor into [0 . . . 1] numerical range.

It should be noted that for each precursor time series, the median and the inter-quartile
range of data are calculated to construct their upper and lower bound in order to separate
potentially seismic anomalies from the background of natural variations. The upper and
lower bounds of the mentioned range can be calculated using the following equations:

xhigh = m + k× iqr (1)

xlow = m− k× iqr (2)

Dx = (

(
x−m

iqr

)
− 1) ∗ 100 (3)

where x, xhigh, xlow, m, iqr, and Dx are the parameter value, upper bound, lower bound,
median value, inter-quartile range, and differential of x, respectively. It should be noted
that the Dx value is considered the input value in FIS. Therefore, the input (precursor)
ranges from 0 to 100. It is clear that the number of input variables is equal to the number of
analysed precursors for each case study. The range of input variables for each precursor
is divided into four parts corresponding to semantic subsets: weak, moderate, intense,
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and very intense (Figure 4). The Gaussian membership function is also applied for the
earthquake magnitude output value. The predicted earthquake magnitude ranges from 0 to
9. This range is divided into four orders of magnitude, which are semantic sets composed
of the following four subsets: weak, moderate, strong, and powerful (Figure 5). This
study used the Mamdani reasoning method, established rules, and then applied the “min”
implication method. All rules were applied to input and output values, and then the results
of implications (conclusions) were aggregated using the “max” method. The defuzzification
method used in this study was largest of maximum (LOM). After defuzzification, the final
output was proposed as the predicted earthquake magnitude.
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3. Observations

Table 2 shows the analysed precursors concerning each case study. It is seen that 50,
47, 61, 58, and 51 precursors were investigated for Ecuador, Iran, Papua New Guinea, Japan
and Haiti earthquakes, respectively. The details of the investigated data and implemented
methods are found in [23–26]. As mentioned before in the methodology section, the Dx
values for all detected anomalies during the quiet solar and geomagnetic activities were
obtained and applied as input data for the proposed fuzzy inference system.

Table 2. The analysed precursors (D: day, N: night, Ne: electron density, Te: electron temperature,
STEC: slant TEC, VTEC: vertical TEC, LST: Land Surface Temperature, AOD: Aerosol Optical Depth,
AOT: Aerosol Optical Thickness).

Precursor
Ecuador [24] Iran [25]

Papua New
Guinea [26]

Japan
[23] Haiti

Layer Satellite Parameter

Ionosphere (plasma) Swarm A Ne (D&N)
√ √ √ √ √

Te (D&N)
√ √ √ √ √

STEC (D&N) - -
√ √

-

VTEC (D&N) - -
√ √

-

Swarm B Ne (D&N)
√ √ √ √ √

Te (D&N)
√ √ √ √ √

STEC (D&N) - -
√ √

-

VTEC (D&N) - -
√ √

-

Swarm C Ne (D&N)
√ √ √ √ √

Te (D&N)
√ √ √ √ √

STEC (D&N) - -
√ √

-

VTEC (D&N) - -
√ √

-

Swarm A–C Ne (D&N)
√ √ √ √ √

Swarm A–C Te (D&N)
√ √ √ √ √

CSES Ne (D&N) - -
√

-
√

Te (D&N) - - - -
√



Remote Sens. 2022, 14, 3203 7 of 16

Table 2. Cont.

Precursor
Ecuador [24] Iran [25]

Papua New
Guinea [26]

Japan
[23] Haiti

Layer Satellite Parameter

GPS TEC
√ √ √

-
√

Ionosphere (magnetic) Swarm A MS (D&N)
√ √ √ √ √

MVx (D&N)
√ √ √ √ √

Mvy (D&N)
√ √ √ √ √

MVz (D&N)
√ √ √ √ √

Swarm B MS (D&N)
√ √ √ √ √

MVx (D&N)
√ √ √ √ √

Mvy (D&N)
√ √ √ √ √

MVz (D&N)
√ √ √ √ √

Swarm C MS (D&N)
√ √ √ √ √

MVx (D&N)
√ √ √ √ √

Mvy (D&N)
√ √ √ √ √

MVz (D&N)
√ √ √ √ √

Atmosphere MODIS AOD
√

- - - -

Climatological
data AOT

√ √ √ √ √

CO
√ √ √ √ √

SO2
√ √ √ √ √

DMS
√

-
√ √ √

CH4 -
√

- - -

Atmosphere (surface) MODIS LST (D&N)
√

- - -

Lithosphere Seismic data Eqs
magnitude

√ √ √ √ √

Eqs number
√ √ √ √ √

Number of Precursors (D&N) 50 47 61 58 51

In order to investigate the three geo-layers, we included data from earthquake cat-
alogues or lithosphere and from Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2 [31]) and methane data for the Iran earthquake retrieved
from the AIRS instrument onboar the NASA Earth observation system satellite Aqua [32]
and from low Earth orbit (LEO) satellites such as Swarm [33] or CSES [34] missions to
investigate the ionosphere. A sketch of the techniques of the investigation in this paper of
earthquake catalogues and atmospheric data is given in the following.

3.1. Earthquake Catalogues

In order to obtain higher quality results, regional catalogues are preferred over global
ones as they are able to provide a more complete catalogue, i.e., to have a lower magnitude
of completeness. Despite this, for Papua New Guinea and Haiti case studies, we did not find
local catalogues, so we used the United States Geological Survey (USGS) global earthquake
catalogue. We note that Haiti is in a region well-covered by the seismic network of USGS,
and Papua New Guinea provides a sufficient number of events due to its intrinsically
high seismicity rate. For Ecuador, we retrieved the earthquake catalogue from “Instituto
Geofísico de la Escuela Politécnica Nacional” (download from https://www.igepn.edu.ec/
(accessed on 30 April 2022). For the Iran earthquake catalogue, we used the one provided
by Mousavi-Bafrouei and Mahani [35], which includes the period investigated in this

https://www.igepn.edu.ec/
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paper. Finally, we retrieved the Japan Meteorological Agency (JMA) Unified Hypocenter
Catalog for the Japan earthquake. For all the catalogues, we extracted the events within
1000 km distance from the investigated case study, and we checked the completeness of
magnitude (Mc) by the software Z-Map [36]. We found that the best completeness was
achieved by the Japanese catalogue (Mc = 1.1), and the worst was in the case of Papua New
Guinea (Mc = 4.3) as reported in Supplementary Materials Figure S1 with the Gutenberg–
Richter [37] distribution for each case study. After selecting only the earthquakes with
magnitude M ≥Mc, we computed two time series for each case study: one with the daily
number of seismic events and a second one with the maximum recorded daily magnitude.
Such time series were then truncated on the day before the mainshock and passed to the
FIS algorithm. For the figures, we reported the observed magnitudes also during and after
the mainshock.

3.2. Atmospheric Data Preparation

To investigate eventual atmospheric anomalies, we selected four parameters from the
MERRA-2 climatological archive: aerosol optical thickness (AOT), SO2, CO, and dimethyl
sulfide (DMS). The last parameter had negligible concentration above land areas, so for
the Iran earthquake, we substituted it with CH4 measurements. All the parameters were
analysed by the algorithm MERRA-2 analysis to search for seismic precursors (MEANS)
fully described in [38]. Essentially, we retrieved the time series of the specific parameter
in the year affected by the earthquake and a historical time series from the mean values
estimated in the other available years (generally from 1980 to 2021). The obtained time
series are included in the Supplementary Materials in Figures S2–S21, but the specific
discussion is considered out of the scope of this paper. In fact, with such a time series, we
provided four additional inputs from the atmosphere for the FIS algorithm as the daily
deviation of the specific parameter, i.e., the time series in the year of the earthquake minus
the historical one.

3.3. Results Applying FIS to the Five Investigated Earthquakes
3.3.1. Ecuador 2016

Figure 6a illustrates the variation in the number of anomalies (green curve), (b) the
variation in the predicted earthquake magnitude (red curve), and (c) the variation in the
maximum daily observed earthquake magnitude (blue curve) for the Ecuador earthquake
(16 April 2016) from 1 November 2015 to 30 April 2016. In all panels, the x-axis represents
the day relative to the earthquake day which is indicated as a vertical dotted line. Figure 6b
indicates that the FIS predicted a magnitude Mw = 7.02 earthquake 38 days before the event
(the black dotted ellipsoid in Figure 6b). It should be noted that the maximum number
of anomalies (N = 10) was observed on this date (Figure 6a). The reported earthquake
magnitude was Mw = 7.8 (Figure 6c).
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3.3.2. Iran 2017

Figure 7a shows the daily variation in the number of detected anomalies (green curve)
among 47 precursors and (b) the variation in the predicted earthquake magnitude (red
curve) for the Iran earthquake (12 November 2017) from 1 August to 30 November 2017.
The maximum number of detected anomalies (N = 13) was observed 19 days before the
earthquake (Figure 7a). FIS estimated an earthquake with magnitude Mw = 7.02 (the black
dotted ellipsoid in Figure 7b). The registered magnitude of the actual earthquake was
Mw = 7.3.
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3.3.3. Papua New Guinea 2019

Figure 8a indicates the daily variation in the number of anomalies (green curve) and
(b) the variation in the predicted earthquake magnitude (red curve) for the Papua New
Guinea earthquake (14 May 2019) from 1 January to 30 June 2019. Figure 8a shows that the
maximum number of anomalies (N = 21) was observed 32 days prior to the earthquake.
FIS predicted an impending earthquake with a magnitude of 9 32, 33, and 35 days before
the mainshock.
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3.3.4. Japan 2021

Figure 9a shows the variations in the number of anomalies (green curve) and (b)
the variation in the predicted earthquake magnitude (red curve) for the Japan earthquake
(13 February 2021) from 1 September 2020 to 18 February 2021. FIS predicted the magnitude
of the impending earthquake with the values of Mw = 7.30, 6.85, 7.51, 7.47, and 7.51 on 6,
8, 19, 31, and 32 days preceding the earthquake, respectively (marked by the black dotted
ellipsoid in Figure 9b). A noticeable number of anomalies (N = 16) was observed 31 and
32 days before the earthquake. The maximum number of detected anomalies (N = 20) was
observed 119 days before the earthquake when FIS predicted an earthquake with magnitude
Mw = 7.508. The reported magnitude of the mentioned earthquake was Mw = 7.1. It should
be noted that FIS predicted an impending earthquake with a magnitude of Mw = 7.75
3 days after the earthquake and 32 days before the next powerful earthquake (Mw = 7.0)
that happened close to the first epicentre at 38.452◦N, 141.648◦E, 43.0 km depth, 09:09:43
UTC on 20 March 2021 (indicated by the black arrow (4) in Figure 9b).
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Figure 9. (a) Variation in the number of anomalies (green curve), (b) variation in the predicted
earthquake magnitude (red curve), and (c) variation in the observed earthquake magnitude (blue
curve) for the Japan earthquake (13 February 2021) from 1 September 2020 to 18 February 2021.
In both panels, the x-axis represents the day relative to the earthquake day, indicated as a vertical
dotted line.

3.3.5. Haiti 2021

Figure 10a illustrates the variation in the number of anomalies (green curve), (b) the
variation in the predicted earthquake magnitude (red curve), and (b) the variation in the ob-
served earthquake magnitude (blue curve) for the Haiti earthquake (14 August 2021) from
1 June to 31 August 2021. Figure 10b shows that the FIS predicted magnitude Mw = 7.24,
6.44, and 7.60 earthquakes 38, 40, and 45 days before the event, respectively (marked
by a black dotted ellipsoid in Figure 9b). It should be noted that the maximum number
of anomalies (N = 19) was observed 40 and 45 days before the main shock (Figure 10a).
Actually, the reported earthquake magnitude was Mw = 7.2 (Figure 10c).
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x-axis represents the day relative to the earthquake day, indicated as a vertical dotted line.



Remote Sens. 2022, 14, 3203 12 of 16

3.4. Validation of FIS

In order to evaluate the efficiency of the FIS system, a confutation analysis was
performed. Among the analysed case studies, the Iran earthquake was selected, and the
time series of 41 different precursors in the same time period set one year before the
earthquake was analysed. Figure 11a shows the variations in the number of anomalies
(green curve) and Figure 11b the variations in the predicted earthquake magnitude (red
curve) from 1 August to 30 November 2016. It is worth noting that the maximum predicted
earthquake magnitude by FIS was Mw = 3.42. Figure 11a shows no noticeable anomalies
close to the selected day (12 November 2016), i.e., one year before the Iran 2017 mainshock.
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In order to finally validate and refine the obtained result, a plot of the estimated
earthquake magnitude versus the observed one is reported in Figure 12. Here, all five case
studies are shown with a black dot, and in addition, the validation case was taken into
account. For this last case, we considered the maximum observed magnitude as the one of
the event that occurred on 26 October 2016 at 39.485◦N, 54.509◦E, 26 km depth and with a
magnitude of 5.4. We performed a robust linear fit of the six experimental points shown
as the red line. The M7.8 Ecuador 2016 case study was considered an outlier by the linear
fit and thus excluded by the computation. The goodness of the fit was evaluated by the
adjusted coefficient of determination that even with the low number of degrees of freedom
(dof = 4) confirmed the reliability of the fit as R2 was slightly greater than 0.9.

Finally, we tried to use the fit to apply a correction to the estimated magnitude obtained
from the FIS algorithm, and we report in Table 3 the calculated values. The correction was
applied by inverting the linear fit equation, i.e.:

corrected magnitude =
estimated magnitude + 9.37

2.37
(4)
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Table 3. Estimated magnitudes and comparison with the real one after correction.

Case Study Estimated
Magnitude by FIS

Corrected
Magnitude

Real
Magnitude

Error in the
Estimation of the
Magnitude after

Correction

Ecuador 2016 7.02 6.92 7.8 0.88

Iran 2017 7.92 7.30 7.3 0.0046

Papua New
Guinea 2019 9.00 7.75 7.6 0.15

Japan 2021 7.53 7.13 7.1 0.032

Haiti 2021 7.60 7.16 7.2 0.038

It is outstanding to note that after the correction, all the predicted magnitudes were
equal to the real one within one decimal digit, except for the case of Ecuador, where the
estimated magnitude remained too low with a magnitude that was estimated to be 0.9 less
than the real one.

4. Conclusions

Creating an earthquake prediction system requires estimating the event location,
future time, and magnitude with low uncertainty. Fortunately, with the increase in the
number of geosphere observables and various anomaly detection methods, significant
progress has been made in studies related to the possible earthquake precursors. Using
data fusion algorithms leads to a more accurate estimation of earthquake parameters.
In the first step, the deviation values (Dx) of different possible precursors’ time series
from the allowable limits were calculated for each studied area for several parameters of
the lithosphere, atmosphere, and ionosphere. In most case studies, the highest number
of anomalies in different precursors occurred about one month before the investigated
M > 7 earthquakes. Therefore, it can be mentioned that by observing a significant number
of anomalies (N > 5) in a study area, an earthquake could have a higher probability of
occurrence in the next 1 to 40 days. To estimate the magnitude of the earthquake, a data
fusion system based on the Mamdani fuzzy inference system was proposed. The Dx values
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were considered as input data to the FIS. The results showed that the predicted magnitude
values differed slightly from the recorded ones. It is worth noting that the two most
recent earthquakes that occurred in 2021 in Japan and Haiti had a good estimation of the
magnitude, probably due to the improved satellite coverage by joint analysis of Swarm and
CSES missions. The Dobrovolsky equation (R = 100.43·M, where R is the radius in kilometres
of the earthquake preparation zone and M is the earthquake magnitude [39]) based on
the estimated magnitude of the FIS could also be used to predict the affected area of the
impending earthquake.

It is important to note that in this work, we tried to estimate only the magnitude
of the impending earthquake, but due to differences in physical and tectonic settings of
each event, the pattern of eventual precursors can be different. For example, the focal
mechanism is expected to play a role in the preparation phase of each earthquake as several
works have proposed and searched for preliminary pieces of evidence [18,40]. The present
work investigated a limited number of earthquakes with different focal mechanisms. Fu-
ture research needs to clarify and better explore such aspects, including the geological,
topographic, and overall tectonic settings to study the pre-earthquake anomaly patterns.
We expected that the estimated values of the incoming earthquake magnitude could be
improved. To conclude, the FIS method with the applied correction seems a very promising
tool, and future studies can confirm or improve the methodology, expand the prediction
to other parameters of the earthquakes, and extend it to smaller magnitude events follow-
ing the approach successfully applied to worldwide M5.5+ by De Santis et al. [16] and
Marchetti et al. [18].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14133203/s1, Figure S1: Gutenberg-Richter distributions of the
investigated earthqaukes title. Figures S2 to S21: Atmospheric time series of the analysed parameters
before the five earthquake case studies.
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