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Abstract: Autonomous UAV 3D reconstruction has been widely used for infrastructure inspections
and asset management. However, its applications on truss structures remain a challenging task
due to geometric complexity and the severe self-occlusion problem of the truss structures when
constrained by camera FOV, safety clearance, and flight duration. This paper proposes a new flight
planning method to effectively address the self-occlusion problem to enable autonomous and efficient
data acquisition for survey-grade 3D truss reconstruction. The proposed method contains two
steps: First, identifying a minimal set of viewpoints achieves the maximal reconstruction quality
at every observed surface of the truss geometry through an iterative optimization schema. Second,
converting the optimal viewpoints into the shortest, collision-free flight trajectories while considering
the UAV constraints. The computed flight path can also be implemented in a multi-UAV fashion.
Evaluations of the proposed method include a synthetic truss bridge and a real-world truss bridge.
The evaluation results suggested that the proposed approach outperforms the existing works in terms
of 3D reconstruction quality while taking less time in both the inflight image acquisition and the
post-flight 3D reconstruction.

Keywords: UAV; flight planning; path planning; truss bridge; 3D reconstruction; photogrammetry;
particle swarm optimization

1. Introduction

Truss structures have been widely used in bridges and other civil infrastructure. These
trusses consist of many interconnected components such as beams, girders, bracing, gusset
plates, and other elements. Unmanned aerial vehicles (UAVs) have been recognized as an
effective tool for inspecting bridge structures [1–3]. Three-dimensional photogrammetric
reconstruction using autonomous UAVs has also gained traction in recent years. The
reconstructed high-quality 3D models allow a better understanding of bridge conditions
than using fragmented 2D images [4–6].

However, UAV inspections, either through remote control or simple automated way-
point flight paths (i.e., orbit, lawn mowing, etc.), are challenging to achieve the desired
quality and completeness of the 3D reconstruction of truss structures [7]. The primary
challenge is how to handle the complexity and self-occlusion problem of the truss geometry
under the constraints of camera field-of-view (FOV), safety clearance, and flight duration.

Over the past years, advanced flight planning solutions have been proposed for the
automated inspection and 3D reconstruction of bridges. Most of the works configured
the camera viewpoints to back-and-forth sweep the structural surfaces efficiently [8–12].
For example, Morgenthal et al. [2] densely reconstructed bridge piers in three steps: First,
the method sliced each pier structure vertically at given intervals. Then, a dense set of
horizontal camera views was sampled at each slice. Finally, the camera views across the
sliced structures were connected vertically by a spiral path. Phung et al. [10] configured
the orthogonal viewpoints along bridge surfaces based on the required ground sampling

Remote Sens. 2022, 14, 3200. https://doi.org/10.3390/rs14133200 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3796-0633
https://orcid.org/0000-0001-5964-3391
https://doi.org/10.3390/rs14133200
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133200?type=check_update&version=3


Remote Sens. 2022, 14, 3200 2 of 22

distance (GSD) and image overlapping. Discrete particle swarm optimization (DPSO)
was employed to find the shortest path to connect these viewpoints. Bolourian and Ham-
mad [12] scanned the bridge deck with varied densities of the camera views based on the
critical level of defects at the deck surface. The method used the ray-tracing algorithm
to avoid the occlusion caused by the on-site obstacles, which guarantees the quality of
the collected images. A limitation of these sweep-based techniques is that the methods
assume the structures majorly consist of planar surfaces (for viewpoints to scan along).
This assumption does not hold for the truss structures due to the geometrical variances and
the complexity of the truss components. In addition, sweeping the image views along the
structural surface often encourages collecting overly redundant images, which reduces the
efficiency during both the inflight image acquisition and the post-flight image processing
without increasing the reconstruction quality.

For aerial multi-view stereo (MVS) reconstruction of the buildings and civil struc-
tures, many works handled the views and path planning through optimization due to the
increased robustness to counter structures with varied geometries while ensuring path
optimality [13–19]. Bircher et al. [15] and Shang et al. [19] configured the viewpoint search
space based on the camera parameters and the model geometry. The methods iteratively
optimized the trajectories in the continuous space to find the shortest inspection path
from an initial randomly sampled camera trajectory. However, these sampling-based
methods were designed for efficient coverage inspections, and they cannot ensure high-
quality aerial photogrammetry because of the lack of stereo-matching constraints. For
aerial photogrammetric reconstruction, a core problem is to maximize the reconstruction
quality while reducing the image redundancy. Many studies in this category followed the
next-best-view (NBV) planning, where the vantage viewpoints are incrementally selected
from an ensemble of candidate camera views [20–22]. For example, Schmid et al. [13]
constructed a spherical view hull to define a discrete list of candidate viewpoints around
a building. The NBV list is then recursively selected from the candidates based on the
coverage, the overlapping, and the redundancy constraints. Hoppe et al. [14] proposed
a similar method. Besides the image coverage and overlapping requirements, the study
also incorporated the triangulation angles into the candidate view selection, reducing the
poorly triangulated points in the final reconstruction. To maximize the reconstruction
performance at each flight, Roberts et al. [16] integrated the selection of the good views and
the routing between them as an integrated optimization problem. The study framed the
problem as submodular and sequentially selected the best orientations and the positions of
the NBV list. Hepp et al. [17] improved this method [16] by using information gain (IG) to
measure the marginal reward of each viewpoint. The method combined the selection of the
camera positions and the orientations, which achieved a better reconstruction performance.
A notable limitation of these NBV techniques is that the methods relied on user-defined
discrete candidate viewpoints. Unlike the 3D reconstruction of buildings where the candi-
date set can be defined as Overhead views naively surrounding the building geometries,
trusses are composed of many slim, self-occluded, and non-planar components (i.e., beams,
girders, connectors, etc.). Thus, it is difficult to determine a suitable-sized candidate set
while ensuring complete coverage at every truss side.

A new UAV flight planning method is proposed to overcome these challenges by
finding the optimal trajectories that maximize the reconstruction quality at truss surfaces.
Table 1 summarizes the comparison between the proposed method and the state-of-the-
art in terms of the efficiency, the accuracy, the optimization strategy, the applications,
and the type of structures surveyed to demonstrate our contributions. Compared to the
sweep-based techniques [23–25], the proposed method takes fewer images and achieves
a higher reconstruction quality by incorporating the MVS quality assurance principles
(i.e., accuracy, completeness, and level of details.) at the planning phase. Unlike the NBV
methods [13,16,17] where the vantage viewpoints were selected from a pre-determined
discrete candidate set, the proposed method iteratively resamples the whole candidate set in
the continuous space, increasing the searchability of finding the optimal viewpoints subset.
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Additionally, the method computes the shortest flight paths subject to the UAV capacity
constraints (i.e., battery capability, autopilots limitation), enabling the more automated
truss bridge reconstruction by single/multiple UAVs. Evaluation of the proposed method
includes both a synthetic and a real-world truss bridge. The results showed that the
proposed method outperforms both the recent sweep-based method [23] and the state-of-
the-art NBV [17] in terms of the higher model quality with the increased automation and
the fewer images/distance traveled in the air.

Table 1. Summary of existing literatures and the comparison with ours.

Studies Input
Model

View Planning Path Planning

Applications
Types of

Struc-
turesMethods

Image
Redun-
dancy

Model
Coverage

Reconstruction
Quality

Search
Space

Shortest
Path

Multi
Flights/
UAVs

Bircher
et al. [15] 3D Sampling-

based No Yes No Continuous Yes No Inspection Building,
Others

Shang
et al. [19] 3D Sampling-

based No Yes No Continuous Yes No Inspection Building,
Others

Eschmann
et al. [26] 3D Sweep-

based No Yes No Discrete No No Inspection Building

Tan
et al. [25] 3D Sweep-

based No Yes No Discrete Yes No Inspection Building

Peng
et al. [24] 3D Sweep-

based No Yes Yes Discrete Yes No 3D
Reconstruction

Building,
Others

Zheng
et al. [23] 2.5D Sweep-

based No Yes No Discrete Yes Yes 3D
Reconstruction Building

Schmid
et al. [13] 3D NBV Yes Yes No Discrete Yes No 3D

Reconstruction Building

Hoppe
et al. [14] 3D NBV Yes Yes Yes Discrete \ \ 3D

Reconstruction Building

Roberts
et al. [16] 3D NBV Yes Yes Yes Discrete Yes Yes 3D

Reconstruction
Building,
Others

Hepp
et al. [17] 3D NBV Yes Yes Yes Discrete Yes Yes 3D

Reconstruction
Building,
Others

Eschmann
et al. [11] 3D Sweep-

based No No No Discrete \ \ Inspection Motorway
Bridge

Morgenthal
et al. [2] 3D Sweep-

based No No No Discrete Yes No 3D
Reconstruction

Motorway
Bridge

Lin
et al. [9] 2D Sweep-

based No No No Discrete No No 3D
Reconstruction

Motorway
Bridge

Phung
et al. [10] 3D Sweep-

based No Yes No Discrete Yes No Inspection Motorway
Bridge

Bolourian
and Ham-
mad [12]

3D Sweep-
based No Yes No Discrete Yes No Inspection Motorway

Bridge

Khaloo
et al. [7] \ \ \ \ \ \ \ \ 3D

Reconstruction
Truss

Bridge

Ours 3D Sampling-
based Yes Yes Yes Continuous Yes Yes 3D

Reconstruction
Truss

Bridge

2. Method Overview

Figure 1 shows the overview of the truss bridge reconstruction using the proposed
flight planning method. The method assumes an existing rough geometrical model of
the bridge, which can be extracted from the web (Google Maps in our case) using third-
party tools (e.g., OpenStreetMap). The extracted model is an unstructured triangular
mesh (in KMZ format) containing both the bridge and the surroundings. It is notable
that compared to the existing literature that relies on an initial flight to obtain the model
geometry [16,17], this strategy keeps the flight planning process offsite, reducing the overall
surveying duration.
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Figure 1. Overview of truss bridge reconstruction based on the proposed method.

The obtained model is further processed to explore the camera/UAV search space
around the bridge and the observable truss surface points for the subsequent view and
path planning (Section 3). The proposed method first computes the optimal viewpoints
that maximize the reconstruction quality at each observable surface point by selecting
the best subset from an iteratively resampled candidate set (Section 4). The candidate is
a set of densely sampled oblique viewpoints (i.e., multiple orientations at each position)
initialized within the UAV free space while considering the camera/inspection parameters.
After the optimization, the method converts the discrete viewpoints into single or multiple
smooth flight trajectories subject to UAV constraints (i.e., aerodynamics, battery capacity,
memory usage, and safety distance to the on-site objects) (Section 5). These trajectories are
then transformed into the world coordinates (e.g., WGS84) and uploaded to the onboard
autopilot system for the automated inflight image acquisition using single or multiple
UAVs (Section 6.2). A photogrammetric reconstruction software will use the acquired
high-quality images to generate a truss bridge’s geo-referenced, high-fidelity 3D model
(Section 6.3).

3. Initialization
3.1. Input Parameters

Several important parameters must be defined as the inputs of the proposed method.
In this study, we classify these parameters into four categories: (1) the UAV parameters,
(2) the camera parameters, (3) the inspection requirements, and (4) the safety concerns.
The UAV parameters include the physical properties of the selected UAV, such as the
overall flight duration, the designed inflight speed, and the maximal number of executable
waypoints in each flight. The camera parameters describe the properties of the onboard
camera system, including the horizontal angle-of-view (AOV), the resolution of the onboard
camera, and the gimbal pitch rotation limits. Because the in-plane rotations do not change
the image contents, we locked the gimbal roll angle at 0◦ and aligned the gimbal yaw
with the UAV orientation. The inspection requirements are factors that control the quality
of the collected images: they are the maximal/saturated GSD and the incidence angle.
The safety concerns are parameters that define the UAV flyable space. They include the
safe clearance to site objects, the minimum height above the ground level (AGL), and
whether the UAV is enabled to fly through the truss. Fly-through-truss is a binary coefficient
that defines whether the spaces within the truss structure are available for UAVs to pass
through. These spaces enable the UAVs to inspect the truss bridge’s interior surfaces better.
However, most consumer-grade UAVs cannot fly closely around metal structures (e.g., steel
truss) because electromagnetic disturbances can affect the onboard sensing system (i.e.,
compass) and corrupt the GPS positioning capabilities. Therefore, for safety, we enable
the fly-through-truss option only when the UAV onboard navigation system can handle the
signal interference. The symbols, descriptions, and the default values of the parameters are
listed in Table 2 below.
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Table 2. Summary of the input parameters, the symbols, the descriptions, and the default values.

Categories Parameters (Symbols) Description Value

UAV
Parameters

Flight speed (A)
The designed travel speed

between waypoints 1.5 m/s

Flight duration (B)

The maximum duration of
each flight is constrained by
the onboard battery capacity

(data from DJI Inspire 1).

15 mins

Number of waypoints (W)

The maximum number of
waypoints can be uploaded to
the autopilot system at once

(data from DJI Inspire 1).

99

Camera
Parameters

Horizontal angle of view
(HAOV)

The horizontal angle of view
of the onboard camera 90◦

Image resolution (R)
The resolution of the camera

captured images [4000, 3000]

Gimbal pitch limits
([ϕ−, ϕ+])

Lower and upper bounds of
the gimbal pitch rotation [−90◦, 30◦]

Inspection
Requirements

Maximal ground sampling
distance (GSDmax)

The largest acceptable size of
the scene represented by each

pixel for feature extraction
and matching

8 cm/pixel

Saturated ground sampling
distance (GSDsat)

The satisfied size of the scene
represented by each pixel for

feature extraction and
matching

1 cm/pixel

Maximal incidence angle
(θmax)

The largest acceptable angle
between the camera ray and
the normal of the scene for

feature extraction and
matching

65◦

Saturated incidence angle
(θsat)

The satisfied angle between
the camera ray and the

normal of the scene for feature
extraction and matching

15◦

Safety
Concerns

Safe distance tolerance (Ds)

The minimal distance between
the center of the UAV and

on-site object considering the
GPS positioning error and

signal interference

5 m

Minimal height AGL (Hmin)

The minimal height above
ground to avoid the ground
effect and the potential site
objects (e.g., trees, vehicles)

7 m

Fly-through-truss (ρ)

A user-controlled parameter
defines whether the selected
UAV can fly at the interior of

the truss bridge

0

3.2. Preprocessing

Based on the input parameters, the initial model extracted from Google Maps is
pre-processed to define the UAV configuration space, the search space of the admissible
viewpoints, and the truss surface points for visibility/quality evaluation.

3.2.1. UAV Configuration Space

The UAV configuration space is the free space accessible by a UAV. Due to the external
noise (e.g., GPS errors, wind, signal interference, etc.), a safety tolerance (Table 2) between
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the model and the selected UAV must be maintained. Since the input model format is a
triangular mesh, the space inaccessible by a UAV can be defined by extruding the safety
tolerance along the normal at every surface of the mesh. New mesh surfaces (highlighted
as orange in Figure 2a) that cover every side of the bridge with the defined tolerance are
then constructed by connecting the adjacent extruded points. Positions located within this
mesh or intersected with the mesh surfaces are considered collisions.

Figure 2. Model preprocessing: (a) the surface meshes that define the UAV configuration space
(colored in orange) and whether UAVs are allowed to fly within the truss (colored in yellow); (b) the
resampled convex hull for candidate viewpoints sampling (only the exterior mesh is shown); (c) the
truss surface points (randomly colored) that guides the subsequent viewpoints planning.

To define the free space within the truss, another surface mesh that covers the interiors
of the truss structure (highlighted as yellow in Figure 2a) is developed. This mesh can be
manually created or downscaled from the convex hull (detailed in Section 3.2.2). It is worth
noting that this mesh is created only when the fly-through-truss option is disabled.

3.2.2. Viewpoints Search Space

The viewpoints search space is a subset of the UAV configuration space where the
baseline observation quality of the collected images is guaranteed. Thus, only the free
spaces surrounding the truss surfaces within certain distances should be considered. To
achieve that, we performed the Quickhull algorithm [27] to generate a watertight convex
hull that tightly covers the input truss. The convex hull was then resampled into a uniformly
distributed triangular mesh using approximated centroidal voronoi diagram (ACVD) [28].
Figure 2b shows the triangle mesh for generating the candidate viewpoints set. For each
triangular surface, a candidate viewpoint can be generated using the sampling-based
coverage algorithm [15]. This strategy encourages the uniform sampling of the candidate
set, which provides a good initialization for the subsequent optimization.

Please note that the candidate set only covers the exterior of the truss. To also sample
the candidate viewpoints at the interior of the truss (when the fly-through-truss mode is
activated), we reversed the normal of the convex hull and resampled the surface mesh.
The result is a double-sided triangular mesh where viewpoints can be sampled within the
free space at both sides of the truss. In this study, we set the interior/exterior convex hull
to contain 100/500 triangle surfaces, respectively, for the candidate viewpoints sampling
(Section 4.1).

3.2.3. Truss Surface Points

The surface points are visible points located at the surface of the bridge truss structure.
These points are utilized to measure each viewpoint’s visibility and quality. Given the
input model of the truss structure, Poisson disk sampling [29] was employed to sample
the surface points at the model surfaces evenly. The normal of each point is computed as
the average of the surface normal at each local Poisson disk. Figure 2c shows the sampled
surface points at the truss surface.
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4. View Planning

Figure 3 shows the workflow of the proposed view planning method. The method was
developed in an iterative optimization schema: starting with a randomly initialized set of
oblique viewpoints (i.e., multiple candidate view orientations at each sampled position) that
covers the truss geometry (Section 4.1), the method selects (Section 4.2) a vantage viewpoint
subset from the candidates based on the MVS geometric criterion. The selected subset is
further refined to explore better solutions (Section 4.3) and then utilized to resample the
candidate set for the subset viewpoints selection in the next iteration (Section 4.4). The
above steps are wrapped into an adaptive particle swarm optimization (APSO) framework
such that both the candidate and the refine subsets are iteratively optimized. The details of
each step of the proposed method are discussed in the following paragraphs.

Figure 3. Workflow of the view planning method: (a) Sampling a set of candidate viewpoints
with added view orientations at each position; (b) Selecting the subset of the viewpoints from the
candidate set (non-selected viewpoints are grayed out); (c) Refining the selected subset based on
resampling (highlighted in black) and mutation (highlighted in dashed circles) operations; (d) The
refined viewpoints are used to iteratively guide the resampling of the candidate viewpoints until the
termination condition is met.

4.1. Candidate Viewpoints Generation

The candidate viewpoints are generated in two steps: (1) one admissible viewpoint
is sampled within the search space of each triangle surface (i.e., convex hull); (2) multiple
oblique orientations are added at each view position to enhance the searchability.

4.1.1. Admissible Viewpoints

Mathematically, let m (m ∈
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) be a triangle surface of the convex mesh, we define a
viewpoint v (v ∈ V) is admissible if the following constraints are satisfied Equation (1):

λ(v, m) ≤ GSDmax
θ(v, m) ≤ θmax

ϕ(v, m) ∈ [ϕ−, ϕ+]
π(v, ρ) = 1
〈(v) ≥ Hmin

(1)

where λ computes the GSD of a viewpoint to the surface given the camera FOV and image
resolution, θ measures the incidence angle between the viewpoint and the normal of surface
plane, and ϕ is the gimbal rotation angle. We set the initial orientation of each viewpoint as
a ray casting from the viewpoint to the center of the triangle. π is a binary function that
measures if the designed viewpoint is located within the UAV configuration space (i.e., no
collision). 〈 ensures the altitude of the viewpoint is AGL. These constraints formulate the
viewpoint search space at each triangle surface.
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4.1.2. Oblique View Orientations

Due to the limited camera FOV and the complex truss geometry, a single view orien-
tation might be insufficient to cover every truss surface. Thus, we add extra orientations
at each sampled position to increase the searchability. Given the initial orientation of the
admissible viewpoint, the oblique orientations are symmetrically generated based on two
parameters: α and β. α measures the adjacent angles between the extra orientations. The
smaller of α, the more oblique orientations are generated. β denotes the angle between the
original and the oblique orientation. The larger β indicates the increased exploration ability
of the oblique orientations. It is noted that the oblique orientations must also follow the
gimbal constraints, and the orientations with the pitch angle located outside the gimbal
limits must be rejected. Figure 4 illustrates the oblique orientations (arrows in yellow)
generated under the selection of different α and β. In this study, we set α = 90◦ and β = 30◦

based on the experiments (detailed in Section 7.4.3).

Figure 4. The collection of oblique orientations (arrows in yellow) from the initial one (arrow in cyan)
based on the combination of different α and β. Highlighted is the selected combination based on
the experiments.

4.2. Viewpoints Subset Selection

The initially sampled candidate set contains a redundant number of viewpoints. In
this section, we describe how to select the best subset from the candidate viewpoints. The
method is developed based on the multi-view stereo quality insurance principle that only
the geometric consistent images contribute to the final reconstruction [30]. In the following
paragraphs, we first present the quality-efficiency metric that measures the reconstruction
quality given a set of ordinary viewpoints (i.e., one view orientation at each position). The
metric also identifies/ranks the contribution of each viewpoint. Next, we propose a greedy
view selection algorithm to efficiently select the best subset from the candidate oblique
viewpoints based on the metric.

4.2.1. Quality-Efficiency Metric

The quality-efficiency (FQE) metric is formulated as the weighted sum of the recon-
struction quality (FQ) and the reconstruction efficiency (FE) as Equation (2) below:

FQE(P, V) = σFQ(P, V) + (1− σ)FE(V) (2)

where σ ∈ [0, 1] is a constant coefficient that balances these two terms. In this study, we set
σ = 0.8 based on a thorough experiment (detailed in Section 7.4.3). The presented metric
encourages high-quality reconstruction from a small set of viewpoints to be obtained. In
the following, we discuss the computation of each term in detail.
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Reconstruction quality predicts the MVS quality at each surface point given a set of
viewpoints. Due to the absence of the pixel-level contents at the planning phase, the metric
is computed based on the geometric priors at the image level [30,31] where the following
principles are considered:

Principle 1. Each surface point must be covered by at least two high-quality images in
terms of sufficient GSD and the incidence angles for feature extraction and
matching.

Principle 2. Small baselines between the matched images can cause large triangulation
errors for depth interpretation.

Principle 3. Redundant images are uninformative views that do not reduce the depth
uncertainty while can increase the computation workload.

Based on the above-mentioned principles, we formulate the quality metric as Equation (3)
below:

FQ(P, V) = ∑p∈P Q(p,V)
|P|

Q(p, V) = max
k

∑v∈Vp τ(p, v)·q(p, v)

Vp = { v | ∠vpv̂ ≥ µ ; p ∈ P; v, v̂ ∈ V; v 6= v̂}
q(p, v) = (1−ω)

(
1− |d(p,v)−dsat |

dmax

)
+ ω

(
1− |θ(p,v)−θsat |

θmax

) (3)

where Q measures the quality of a truss surface point p (p ⊆ P) as the sum of the k
best observations (Principle 3). We set k equal to 3 due to the increased robustness of the
three-view reconstructions at texture-less surfaces [32]. τ is a binary function that detects if
the point p is visible from v. q measures the observation quality of each viewpoint, which is
computed as the average (ω = 0.5) of two factors: (1) the view-to-point distance; and (2) the
view-to-point incidence angle (Principle 1). These two factors are normalized and saturated
based on the input parameters. Vp denotes the subset of viewpoints V

(
Vp ⊆ V

)
where

the baselines at p follow the stereo-matching constraints (Principle 2). Based on [33], we
empirically set µ = 15◦ in this study. Figure 5 illustrates the geometries of the viewpoints
to a surface point.

Figure 5. The geometry between a set of viewpoints vi and a surface point p where vi ∈ Vp,
i = 1, 2, 3, 4. (The shaded regions respectively denote the spaces formed by the saturated angles (in
green) and the saturated distances (in blue).)

Reconstruction Efficiency measures the ratio of the non-selected viewpoints over the
complete viewpoints set V (as in Equation (4)). This metric encourages reducing the
redundant images for efficient aerial reconstruction.
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FE(V) = 1− |V
∗ |
|V|

V∗ =
{

v
∣∣ FQ(P, v) > 0; v ∈ V

}
FQ(P, v) = FQ(P, V)− FQ(P, V− v)

(4)

where FQ(P, v) is the quality of the viewpoint v to every surface point P. V∗ is the subset
of V that contributes to the reconstruction quality FQ (with FQ(P, v) > 0).

4.2.2. Greedy Views Selection

Selecting the viewpoints subset from an oblique set involves the selection of the
viewpoint positions as well as the best orientation at each position. Clearly, enumerating
every possible combination is expensive. To make the problem tractable, we propose a
greedy algorithm that includes three steps as follows:

Step 1. Measuring FQE of the oblique viewpoints with the initial orientation at each view
position (Section 4.2.1). The output subset V∗ is considered as the baseline for the
view selection in the next step.

Step 2. Selecting one viewpoint in the baseline and substituting the current orientation
with one oblique orientation. The current orientation of the viewpoint is updated
if FQE is increased. Iterative this process to all oblique orientations at the position.

Step 3. Repeating Step 2 at every viewpoint in V∗. Stop the operation until every view-
point has been visited or the overall quality does not increase a certain number of
times (i.e., 5).

Clearly, the sequence of the viewpoints being selected (as in Step 2) significantly affects
the outcome. To avoid the results being biased to a bad sequence, we perform multiple
runs of Step 2 in parallel with the viewpoints selected in random order at each run. Among
the different runs, the viewpoints subset V∗ with the maximal FQ is chosen as the output of
the algorithm.

4.3. Viewpoints Subset Refinement

The viewpoints subset refinement is to perform the local search to better exploit the
problem space. The main idea is to adjust the viewpoint v∗ in V∗ where FQ(P, v∗) is low.
The proposed refinement method is performed based on two operations (as in Figure 3
(c)): In the first operation, we resample the viewpoints with quality FQ(P, v∗) less than a
pre-defined threshold (i.e., 0.2). The viewpoints are updated if FQ(P, V∗) is increased. In
the second operation, a ratio (i.e., 25%) of the viewpoints with the lowest quality in V∗

are selected and incrementally mutated at positions within a defined radius (i.e., 5m). We
update the mutated viewpoint if the FQ(P, V∗) is increased. Preliminary results showed
that this refinement step can improve the FQ(P, V∗) at an average of 6–8% in each iteration
without increasing the size of V∗.

4.4. Candidate Viewpoints Resampling

The refined subset V∗ is near-optimal only if the candidate set covers or partially covers
the true optimal viewpoints. However, enumerating every possible candidate in the 3D
continuous space is impractical due to the scale and the geometric complexity of the truss
structures. Thus, we iteratively resample the candidate viewpoints such that the randomly
initialized candidate set eventually converges to the optimal or near-optimal solutions
(i.e., cover the optimal viewpoints). In this study, we wrap the resampling procedure into
the APSO framework [34]. Compared to the conventional PSO, APSO is selected due to
the increased convergence speed and exploitability in solving multimodal optimization
problems. Specifically, we define each candidate set (Section 4.1) as a particle and the
quality-efficiency metric of the refined subset (Section 4.2) as the fitness. Equation (5) shows
the resampling mechanism based on APSO.
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vt+1
pos ← vt

pos + ut+1

ut+1 ← ut + δ1χ + δ2∇
(

vg
pos, vt

pos

)
∇
(

vg
pos, vt

pos

)
=

{
vg

pos − vt
pos, i f vg ∈ V∗g

0, otherwise

(5)

where vpos is the position of a viewpoint, u is the particle velocity at v. t denotes
the number of iterations, and g is the global best particle (i.e., viewpoint subset V∗ with
maximal FQ(P, V∗)). δ1 and δ2 (δ1 = 0.8, δ2 = 0.5 ) are coefficients that control the update
behavior at each viewpoint. χ is a standard normal distribution N(0, 1) along each axis
of the Euclidean space. ∇(·) is the function that measures the difference between the
position of a viewpoint in a particle and the correspondent position in the global best (i.e.,
viewpoints at the same triangle surface). We set the function to return 0 if the viewpoint
does not belong to V∗. Notably, the presented Equation (5) only updates/resamples the
positions of the viewpoints. The initial and oblique orientations at each updated position
need to be recomputed afterward using the same strategy as in Section 4.1.

5. Trajectory Planning

This section converts the optimized viewpoints into the UAV executable trajectories
(as shown in Figure 6a). The method starts with constructing a complete, undirect graph,
with each node indicating the position of a viewpoint and each edge as the distance of the
collision-free path between every pair of the view positions. As shown in Figure 6b–d, the
edge distance between each pair of the viewpoints is computed in three steps: (1) Connect
the viewpoints with a straight line and check if this line collides with the on-site obstacles;
(2) If a collision is found, the informed rapidly exploring random tree star (RRT*) [35] is
employed to efficiently reroute the path. If the path does not converge a given number of
iterations, we recognize the path segment as not accessible, and a significant penalty is
assigned to the edge. (3) For each rerouted path, B-spline curve interpolation [36] is applied
to smooth the path segment for the UAV path following at the desired speed. The distance
of the smoothed path is then measured as the cost of the edge between the viewpoints.

Figure 6. The flowchart of UAV trajectory planning (a) and the detailed steps of the edge distance
measurements procedure (b–d): (b) connect start (dot in red) and end (dot in blue) waypoints with
straight line, check if collisions exist (dot in green); (c) perform informed RRT* (in green) to reroute
the path (in purple); (d) smooth the collision-free path using B-spline curve interpolation.

Based on the constructed graph, the trajectory planning problem is then formulated
as a capacitated vehicle routing problem (CVRP) [37]. To simplify the problem, we set the
vehicle type and capacity as homogeneous, and let the routes start and end at the same spot
(i.e., drone departure/landing). Two factors are considered the major capacity constraints
of the problem. The first is the UAV battery capacity, which is a determinant of how long
can the UAV stay in the air. The second is the autopilot limitation, which restricts the
maximal number of waypoints to be uploaded per flight. Many autopilot systems (e.g.,
DJI) have such constraints for safety concerns. Unlike the battery constraint, the waypoint
limit does not require the UAV to land, but needs the drone to be located in proximity to
receive the users’ input signal for continuing the mission.
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In this study, we employ the Lin–Kernighan–Helsgaun (LKH-3) [38] as the problem
solver. The solver utilizes the improved symmetric transformation and five-opt move
generator to efficiently compute the paths while handling the battery/memory constraints.
The output is single or multiple routes, each route starts/ends at the same spot and travels
through a subset of viewpoints under the imposed constraints. It is possible that the
outputted paths still contain sharp corners that may not be tightly followed by the UAV at
the desired speed. Under such conditions, the path can be either re-smoothed using the
B-spline algorithm or manually checked/adjusted by the operator at the pre-flight stage.
While the presented method is initially developed for a single UAV to sequentially fly the
paths (with battery replacement). The method can be easily extended for multiple UAVs
to fly in parallel by adjusting the flight speed of the UAVs at regions where the paths are
intersected [39].

6. Implementation Details

In this section, we discuss the implementation details of the proposed method, in-
cluding the visibility detection for quality evaluation, the procedures of automated flight
execution, and the 3D reconstruction pipeline.

6.1. Visibility Detection

For each viewpoint, we compute the visible surface points to evaluate the correspon-
dent contribution to the quality metric. The presented visibility detection method considers
not only the occlusions as is mostly done, but also the inherent image triangulation proper-
ties. This strategy reduces the computation load and avoids considering the poorly matched
camera views. Given the camera parameters (as in Table 2), we construct a viewing frustum
to simulate the camera FOV at each viewpoint. The visibility detection is performed in
three steps:

Step 1. We examine every surface point by checking whether the point is located within
the frustum.

Step 2. We cast a ray from the viewpoint to each surface point within the frustum and
check whether the ray is intersected with any truss components. The surface
points without intersections are visible from the viewpoint.

Step 3. For each visible point, we measure the incidence angle between the point nor-
mal and the camera ray. Only the points with incidence angles smaller than a
predefined angular threshold (θmax ) are triangulable by the viewpoint.

Figure 7 illustrates the proposed visibility detection using a single viewpoint and
a synthetic truss bridge. In this study, the visibility detection is implemented based on
Octree-based collision detection [40] using VTK [41].

Figure 7. Visibility detection method: The surface points in red are covered by the camera FOV (i.e.,
viewing frustum) but not visible (i.e., occluded by other structures); The surface points in blue are
visible by the camera view, but the incidence angles are too large, which might result in poor image
matching results; The points in green are visible and triangulable that passes the visibility detection.
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6.2. Flight Execution

Because the flight trajectories were originally computed in the local coordinates, they
need to be transformed to the World Geodetic System (WGS84) to be executable by a UAV.
To achieve this, several ground control points close to the truss bridge to be inspected
are manually surveyed using a GPS receiver. The transformation can then be found by
correlating these GPS positions to the correspondent points in the local coordinates. Due
to the relatively small scale of most bridges, rigid body transformation (i.e., assume the
surface is flat) is used to map the transformations from the local coordinates to WGS84.

After the transformation, the viewpoints are uploaded into UgCS [42], a ground
station software, for the automated inflight waypoints following and image acquisition.
The software contains a hardware-in-the-loop simulator that can perform the pre-flight
check before the field deployment. In this study, we use the DJI Inspire 1 as the flight
platform to execute the missions, and the DJI Zenmuse X3 for the aerial image collection.
Inspire 1 can fly for around 15 min when the wind speed is moderate. We restrict each
flight to only use at most 80% of the battery capacity (i.e., 12 min) for safety concerns. It
is noted that DJI drones have the limit of at most 99 waypoints to be uploaded per flight,
which is another capacity constraint to be considered in the trajectory planning (Section 5).

6.3. 3D Reconstruction

After the flight executions, the collected aerial images are imported into 3D reconstruc-
tion software. In this study, Agisoft Metashape [43] is selected since it has been previously
used for the 3D reconstruction of bridge structures with fewer artifacts [1]. When the GPS
of each image is available, reference matching is enabled to accelerate the image alignment
process. To obtain the detailed reconstruction, we set the quality of both the image align-
ment and dense point cloud as high with the depth map as aggressive to actively filter out
the noises in the final reconstruction.

7. Evaluation
7.1. Experimental Setup

The performance of the proposed method is evaluated based on both a synthetic
and a real-world truss bridge. Evaluation using the synthetic bridge has the advantage
of controlling the environmental factors (e.g., reflection, illumination change, shadows,
moving objects, etc.), which are often considered as noises in image-based reconstruction.
In this study, Unreal Engine 4 (UE4) is selected to render the synthetic environment due to
its ability to provide photo-realistic scenes at high levels of details (LoDs). UnrealCV [44],
an open-source computer vision SDK, is employed to render the image at each camera
footprint. The selected synthetic truss bridge (as shown in Figure 8a) is a highway bridge
across a valley. The bridge truss structure, which was downloaded from the Unreal
Marketplace [45], has a dimension of 66.7 m× 16.1 m× 12.0 m. It is noted that the original
package only contains the bridge superstructures; we import the deck surface and the
surrounding environment to simulate the real-world condition. Because the synthetic
environment is noise-free, the fly-through-truss option is enabled (ρ = 1) in the evaluation.

The selected truss bridge for the real-world experiment is an abandoned railway bridge
(as shown in Figure 8b). The bridge has a dimension of 40 m× 4.7 m× 8.2 m, which is not
accessible by the human at the time of the inspection due to safety concerns. It is noted
that the inner space of the bridge is insufficient for the UAV to pass through (i.e., safety
tolerance), even without considering the magnetic interference. Thus, the fly-through-truss
(ρ = 0) is disabled in the real-world environment.
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Figure 8. (a) Synthetic truss bridge and the detailed views of the selected regions; (b) the aban-
doned truss bridge to be surveyed, which is restricted to human access due to safety concerns (the
detailed view).

7.2. Comparison

Based on the authors’ knowledge, there is no reported flight planning method specif-
ically designed for the 3D reconstruction of truss bridges. Thus, a baseline and a state-
of-the-art method for building reconstruction are selected to evaluate the performance of
the proposed method in the simulated environment. In this study, the Overhead flight,
composed of an orbit path with the camera surrounding the center of the scene followed by
a lawnmower path providing the bird views, was selected as the baseline approach. This
path can be easily reproduced using commercial flight planning software [42,46,47]. The
overlap between the adjacent viewpoints is 80% to ensure dense image registration. The
NBV method presented in [17] is employed for the state-of-the-art approach. The method
incrementally adds the viewpoints with the largest marginal reward from a graph of the
candidate cameras. The orbit path obtained from the Overhead flight is used to initialize the
optimization. Compared to our method, the original implementation of [17] used different
strategies and implementation libraries for the space representation (i.e., occupancy map),
the collision detection/avoidance, and the visibility detection that might affect the result.
To avoid confusion, we implement the NBV using the exact implementation strategies as
our work such that the final results are only affected by the optimization algorithms. The
method [17] limits the viewpoints planning in a single flight (i.e., battery constraints) that
might result in incomplete reconstruction. Thus, in the simulation, we set UAV flight time
as unlimited and leave the evaluation of the trajectory planning to the field experiment.

For the field experiment, both the reconstruction quality as well as the efficiency of the
inflight image acquisition and the post-flight image processing are discussed. Thus, we
select a sweep-based, multi-UAV-supported route planning method [23] as the previous
state-of-the-art. The method designed three routes to tightly cover the structure from
different perspectives while considering the photogrammetric constraints (i.e., GSD, camera
angles, overlapping, etc.). Due to only one UAV being available (i.e., DJI Inspire 1) in the
field experiment, the planning adjustment step (for multi-UAV cooperation) was skipped.
Since the method does not include the collision avoidance algorithm, a manual check is
needed to guarantee the safety of the mission. All the experiments were executed on a PC
desktop with Intel CPU E5-2630, 64G memory running on Ubuntu 18.04.

7.3. Quality Evaluation

Evaluation of the reconstruction quality includes a visual and quantitative comparison.
The visual comparison focuses on the observations of the texture smoothness and the
artifacts in each reconstruction, especially in the complex geometric regions (e.g., truss
interiors, connections, and slim beams). The quantitative evaluation measures the geometric
fidelity between the reconstruction and the ground truth. The evaluation includes three
major steps: First, the reconstruction model is cropped and filtered only to contain the
regions covered in the ground truth (i.e., truss bridge). Second, a coarse-to-fine alignment
is used to transform the coordinates of the reconstruction into the ground truth. The
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coarse alignment is performed by the rigid transformation from a set of correspondence
points. Based on the coarse alignment, the fine transformation is computed using iterative
closest point (ICP) registration [48]. It is noted that the reconstructed models might contain
outliers. Thus random sample consensus (RANSAC) [49] is employed such that the refined
transformations are robust to such outliers. Third, the F-Score, as presented in [50], is used
to measure the fidelity of the finely aligned model. F-Score is composed of the harmonic
mean of two indicators: Precision, and Recall, given a distance threshold. Precision
measures the accuracy of the reconstruction by averaging the errors of each reconstructed
point to the ground truth. In contrast, Recall evaluates the reconstruction completeness by
measuring whether each point in the ground truth is covered by the reconstruction. A high
F-Score indicates a reconstruction that has both high model accuracy and completeness.
The formula of F-Score (F), Precision (P), and Recall (R) are presented in Equation (6)
below. We refer the readers to [50] for the details of the indicators. Due to each F-score
being computed with a distance threshold, thus we report the quantitative evaluation based
on the F-scores across a range of distance thresholds (χ).

F(χ) = 2P(χ)R(χ)
P(χ)+R(χ)

P(χ) = 100
|K| ∑kεK

(
ek→g∗ < χ

)
R(χ) = 100

|G| ∑gεG

(
eg→k∗ < χ

) (6)

where K and G, respectively, denote the points set of the source and the target models. e
is the error metric that measures the distance of a point in the source model to its closest
point (represented as *) in the target model.

For the synthetic bridge, the ground truth model is known. Thus, the F-score can
be directly computed by comparing the reconstruction to the ground truth. For the field
experiment, terrestrial laser scanning (TLS) is used to obtain the ground truth model of
the bridge. In this study, the Leica BLK360 laser scanner is selected. The scanner can
obtain millimeter accuracy at a distance of fewer than 10 m, which is sufficient to obtain a
high-fidelity 3D model of the truss bridge. Figure 9 shows the 2D view of the TLS scanned
truss bridge and the on-site scanning spots. The 3D model is registered from 27 scans, with
most of the scans conducted on the bridge. The entire survey took around four hours for
on-site data collection and another five hours for the offsite data transmission and point
cloud registration.

Figure 9. A 2D view of the terrestrial laser scanned truss bridge. The 27 red dots denote the positions
at each scan, and the links indicate the registration between the scans. The colors of the links
denote the overlapping quality between the scans (Green: at least 75% overlapping; Yellow: at least
50% overlapping).
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7.4. Results
7.4.1. Synthetic Bridge

Figure 10 shows the trajectories computed using the Overhead, NBV, and our method
(ρ = 0, 1) on the synthetic bridge. To make a fair comparison, we restrict the upper bound
of NBV as the number of images generated with our method, such that the methods
generate the same number of images. It observed that Overhead and NBV only compute
the viewpoints surrounding the truss geometry. Instead, our method (ρ = 1) enables the
trajectories to pass through the truss (detailed view in Figure 10), and provides better
observations of truss interiors. Table 3 summarizes the statistic of the runtime of flight
planning, number of images, and the flight distance computed with each method. Clearly,
Overhead requires significantly less running time with a fewer number of images and the
flight distance needed when compared to other methods. Compared to the NBV where
the candidate viewpoints are fixed, our method iteratively optimizes the viewpoints in
the continuous space at the cost of the longer runtime. In addition, setting ρ equal to one
increases both the runtime and the number of images. However, because the proposed
method can be computed offsite at the pre-flight stage, the increased runtime might cause
minimal effects on the field deployment.

Figure 10. The viewpoints and the trajectories generated using different methods.

Table 3. The comparison of the runtime, number of images, and the flight distance on the
synthetic bridge.

Methods Flight Planning
Runtime (min) Number of Images Flight Distance (m)

Overhead 5 142 1039
NBV 39 152 1212

Ours (ρ = 0) 51 152 1346
Ours (ρ = 1) 66 181 1522

Figure 11 shows the visual comparison of the reconstructions using different methods,
including the detailed views of three challenge areas as highlighted in Figure 8a. The
results showed that our method (ρ = 0) generates more visually appealing results at
vertical/diagonal web members and the surface connections (second and fourth columns
in Figure 11) when compared to both the Overhead and the NBV. In addition, the textures
at the interiors of the top chords/struts (as third column in Figure 11) are only recovered
by our method, especially when ρ equals one. Table 4 presents the measured F-Score
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at varied distance thresholds (χ = 0.05, 0.1, 0.2). The results validate the observations
that our method outperforms the other two at every distance threshold. Enabling the
fly-through-truss option shows the best result, which indicates that collecting the images
from the inside of the truss can indeed improve the overall reconstruction quality.

Figure 11. The full-bridge view (first column) with the number of points (M: Million) and the detailed
views (second, third, and fourth columns) of the 3D reconstruction of the synthetic bridge using
different methods. First row: Overhead; second row: NBV; third row: Ours (ρ = 0); and fourth row:
Ours (ρ = 1).

Table 4. Quantitative comparison of the synthetic truss reconstruction between different methods.

Method
F-Score (P ,R)

χ=0.05 χ=0.1 χ=0.2

Overhead 55.11 (62.07, 49.55) 74.95 (89.99, 64.21) 88.60 (96.56, 81.86)
NBV 57.51 (61.08, 54.34) 78.33 (90.10, 69.28) 90.93 (96.74, 85.79)

Ours (ρ = 0) 62.25 (63.68, 60.88) 82.45 (91.85, 74.80) 92.86 (97.35, 88.77)
Ours (ρ=1) 67.53 (66.74, 68.33) 85.49 (93.62, 78.65) 93.78 (97.81, 90.07)

7.4.2. Real-World Bridge

Figure 12 compares the flight trajectories computed with Zheng et al. [23] and our
method. Because Zheng et al. [23]’s method was originally developed for the 3D recon-
struction of building structures; the method takes more images. Table 5 shows the statistics
of both the inflight inspection and the post-flight reconstruction. Clearly, our method takes
shorter time both on-site and offsite.

In Figure 13, a detailed comparison between the reconstructed models and the laser-
scanned model is presented. Since the TLS model is obtained by scanning the bridge
interiors, it shows the different color intensities when compared to the photogrammetry,
where the images are taken from the external side. To make a fair comparison, the models
need to be reconstructed from a similar number of images. Thus, we generate the recon-
struction model with images taken only at routes 1 and 3 in Zheng et al.’s method [23].
The selected routes form similar flight patterns as the Overhead that can be utilized to
represent the typical flight in the real-world experiment. The routes generate a total of
133 images, which is close to ours. It is evident that although both methods recover the
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major truss structures. The model obtained from routes 1 and 3 presents the worst result in
terms of the point cloud density and recovering the model details (e.g., slim beams, joints,
and truss interiors.). The low density of the point cloud shows the insufficient coverage
at the truss surface. Compared to Zheng et al. [23], our reconstruction has higher density
and preserves more structural details with much fewer artifacts. For example, the holes in
the top chord and the boundaries of the diagonal beams are much better recovered by our
method (detailed views in the third column in Figure 13). Table 6 presents the F-Score of
the truss reconstructions as opposed to the TLS. The results demonstrate that our method
slightly outperformed Zheng et al. [23] in terms of both the Precision and Recall, with less
than half of the images being used, which validates both the efficiency and effectiveness of
the proposed method.

Figure 12. The flight trajectories using Zheng et al. [23] and our method. The colors denote the
trajectories of different UAVs/flights for the mission execution.

Table 5. Comparison of the statistics on flight execution and 3D reconstruction.

Methods Flights Number of
Images

Flight Duration
(min)

3D Reconstruction
Duration (min)

Zheng et al. [23]

1 85 (62) 11.3

156.2 (75.6)
2 71 (71) 10.2
3 77 (-) 10.4
4 64 (-) 9.6

Total 297 (133) 42.5

Ours

1 48 10.6

63.4
2 39 8.4
3 43 9.3

Total 120 28.3
Note: Values in brackets relate to routes 1 and 3 only in Zheng et al.’s method.

7.4.3. Further Results

In this subsection, we evaluate the performance of several parameters based on
the results from both the synthetic and the real-world bridges. First, the effects of the
weight coefficients σ on the optimization performance is evaluated. Figure 14 (Left) shows
the quality metric FQ and the number of collected images |V∗| under different σ. The
figure showed that in contrast to |V∗|, which increases monotonically as σ, FQ gradually
decreases when σ close to one. Such results might be affected by the fact that the over-
redundant images can cause diminished return. Because a smaller number of images
is preferred for efficient reconstruction, we set the weight coefficient at 0.8 as a good
trade-off between the reconstruction quality and the efficiency. Next, we evaluated the
selection of the oblique orientations (α, β) to the quality-efficiency metric FQE. As shown in
Figure 14 (Right), compared to the conventional viewpoints (α = 0 || β = 0), using oblique
viewpoints significantly improves FQE for all test cases (for both ρ = 0 or ρ = 1). The result
indicates that the oblique orientations indeed increase the reconstruction quality. Among
the different combinations of α and β, we found the combination of α = 90◦ and β = 30◦

shows the best result. Thus, we select it as the default in the experiments.
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Figure 13. The full-bridge view (first column) with the number of points (M: Million) and the detailed
views (second, third columns) of the final reconstruction of the real-world truss bridge. First row:
TLS; second row: Zheng et al. [23] (Routes 1 and 3 only); third row: Zheng et al. [23]; and fourth
row: Ours.

Table 6. Quantitative comparison of the real-world truss reconstruction.

Method
F-Score (P ,R)

χ=0.05 χ=0.1 χ=0.2

Zheng et al. [23]
(Routes 1 and 3) 45.21 (35.66, 61.75) 55.89 (41.44, 85.81) 64.87 (48.90, 96.31)

Zheng et al. [23] 56.07 (43.41, 79.14) 63.89 (49.12, 91.37) 71.23 (56.12, 97.47)
Ours (ρ=0) 56.31 (41.33, 80.41) 64.55 (49.83, 91.61) 71.79 (56.75, 97.70)

Figure 14. Left: The values of FQ and |V∗| when different σ are selected; Right: The values of FQE

under different combinations of (α, β). The legend denotes [α, ρ].
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8. Conclusions

This paper presents a new flight planning method for autonomous, efficient, and
high-quality 3D reconstructions of truss bridges. The synthetic experiment showed that
the proposed method outperforms the state-of-the-art NBV method with increased recon-
struction accuracy and completeness. Enabling the fly-through-truss option significantly
improves the coverage and model quality at the truss interiors, such as the top chord
and other web members. The real-world experiment demonstrated that the presented
method computed the image capture views can achieve a higher reconstruction quality
with less than half of the images being used when compared to the existing sweep-based
method. The planned trajectories ensure the safety of the flights while considering the UAV
constraints, enabling the automated and efficient bridge inspection practice.

In this study, the authors extracted the input model from Google Maps to guide
the viewpoints and trajectories planning. This strategy enables the flight plans to be
designed offsite, reducing the survey time when compared to the existing literature. The
presented method also accepts other types of 3D models, such as aerial photogrammetry,
with minimal adjustment. This flexibility potentially enables the method to be performed
as an incremental procedure by sending the outputted reconstruction as the input model
for flight planning in the next iteration until the users satisfy the results.

Future works include evaluating the proposed method with the fly-through-truss option
enabled in real-world experiments, which requires implementing the proposed method
on a UAV with advanced flight control and navigation system. In addition, currently,
we offload the flight planning and assume the positioning at every viewpoint is accurate.
However, it would be more beneficial to be able to adjust the flight plans in real-time to
counter the effects of the external factors (e.g., GPS error, wind, magnetic interference,
dynamic obstacles, etc.) and produce higher fidelity models.
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