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Abstract: The large intra-class difference and inter-class similarity of scene images bring great
challenges to the research of remote-sensing scene image classification. In recent years, many remote-
sensing scene classification methods based on convolutional neural networks have been proposed.
In order to improve the classification performance, many studies increase the width and depth
of convolutional neural network to extract richer features, which increases the complexity of the
model and reduces the running speed of the model. In order to solve this problem, a lightweight
convolutional neural network based on hierarchical-wise convolution fusion (LCNN-HWCF) is
proposed for remote-sensing scene image classification. Firstly, in the shallow layer of the neural
network (groups 1–3), the proposed lightweight dimension-wise convolution (DWC) is utilized
to extract the shallow features of remote-sensing images. Dimension-wise convolution is carried
out in the three dimensions of width, depth and channel, and then, the convoluted features of the
three dimensions are fused. Compared with traditional convolution, dimension-wise convolution
has a lower number of parameters and computations. In the deep layer of the neural network
(groups 4–7), the running speed of the network usually decreases due to the increase in the number
of filters. Therefore, the hierarchical-wise convolution fusion module is designed to extract the deep
features of remote-sensing images. Finally, the global average pooling layer, the fully connected
layer and the Softmax function are used for classification. Using global average pooling before the
fully connected layer can better preserve the spatial information of features. The proposed method
achieves good classification results on UCM, RSSCN7, AID and NWPU datasets. The classification
accuracy of the proposed LCNN-HWCF on the AID dataset (training:test = 2:8) and the NWPU dataset
(training:test = 1:9), with great classification difficulty, reaches 95.76% and 94.53%, respectively. A
series of experimental results show that compared with some state-of-the-art classification methods,
the proposed method not only greatly reduces the number of network parameters but also ensures
the classification accuracy and achieves a good trade-off between the model classification accuracy
and running speed.

Keywords: convolutional neural networks (CNNs); dimension-wise convolution; hierarchical-wise
convolution fusion; lightweight; remote-sensing scene image

1. Introduction

Remote sensing is a technique that uses electromagnetic radiation sensors on objects,
perceiving some features of objects and analyzing them. In recent years, with the continu-
ous development of remote-sensing technology, the resolution of remote-sensing images
obtained from remote-sensing satellites has been continuously improving. Fine-scale
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information can be obtained from high-resolution remote-sensing images, which makes
remote-sensing images widely used in many fields [1–6].

As shown in Figure 1, compared with general images, remote-sensing scene images
contain richer, more detailed and more complex ground objects. A remote-sensing image
with a specific scene label usually contains multiple object scene labels. In Figure 1a, the
scene label is ‘River’, and the object labels are ‘Forest’, ‘Residential’, etc. In Figure 1b, the
scene label is ‘Overpass’, and the object labels are ‘Parking’, ‘Rivers’, ‘Buildings’, etc. Object
labels can cause some confusion in the classification of scene labels, resulting in errors in
the classification. In addition, as shown in Figure 2, the intra-class difference and inter-class
similarity of remote-sensing images also bring great challenges to the correct classification
of remote-sensing scene images. In Figure 2a, in the same ’airplane’ scene, the size, shape
and background pattern of the airplane are different. In Figure 2b, the different scenes
of ‘highway’, ‘railway’, ‘runway’ have similar texture features. These characteristics of
remote-sensing scene images bring difficulties to the classification.
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As a powerful image analysis tool, convolutional neural network has achieved great
success in the field of image classification. For example, MobileNet [7], VGGNet [8],
ResNet [9] and DenseNet [10] models have achieved impressive results in different vi-
sual tasks, such as image classification and target detection. Then, a series of remote-
sensing scene classification methods based on convolutional neural network were proposed.
Zeng et al. [11] proposed a new end-to-end convolutional neural network. It integrates
global context features and local object features, which makes the proposed method more
discriminative in scene classification. Wang et al. [12] proposed a multi-level feature fusion
structure for remote-sensing scene classification based on global context information. In
order to reduce the complexity of traditional convolutional neural networks, Shi et al. [13]
proposed a lightweight convolutional neural network based on attention multi-branch
feature fusion, which improves the classification performance of the network through the
combination of attention mechanism and hybrid convolution. Liu et al. [14] proposed a
two-stage deep feature fusion convolutional neural network, which can adaptively inte-
grate the feature information of the middle layer and the fully connected layer in order to
make full use of the abundant information in the shallow layer, which effectively improves
the classification performance of the network.

In this paper, a lightweight convolutional neural network based on hierarchical-wise
convolution fusion (LCNN-HWCF) is proposed. Firstly, a lightweight dimension-wise
convolution is designed. Dimension-wise convolution is carried out in the three dimensions
of width, length and channel, respectively, and then, the convoluted features of the three
dimensions are fused. In the shallow layer of the network (groups 1–3), the combination
of continuous dimension-wise convolution and max pooling is utilized to extract remote-
sensing image features. With the deepening of the network, the size of the feature map
decreases, and the number of filters increases. The increase in the number of filters brings
a large number of parameters and calculations, resulting in the decrease in the running
speed of the whole network. In order to further reduce the complexity of the network and
improve the running speed of the network, we propose a hierarchical-wise convolution
fusion module for the deep layer of the network (groups 4–7). In the classifier (groups 8),
the features of the convolution output of the last layer are successively passed through
the global average pooling layer, the fully connected layer and the Softmax classifier to
generate the probability of each scene category. Using global averaging pooling before the
fully connected layer can preserve the spatial information of the feature effectively.

The main contributions of this paper are as follows:

(1) A new lightweight dimension-wise convolution is proposed. Dimension-wise convo-
lution is carried out along the three dimensions of width, length and channel, respec-
tively, and then, the convoluted features of the three dimensions are fused. Compared
with traditional convolution, dimension-wise convolution significantly reduces the
number of parameters and computations, and has stronger feature extraction ability.

(2) A hierarchical-wise convolution fusion module is designed. The hierarchical-wise
convolution fusion module first groups the input along the channel dimension and
selects the first group of features to map to the next layer directly. The second group
of features first uses the dimension-wise convolution for feature extraction and then
divides the output features into two parts; one is mapped to the next layer, and the
other is concatenated with the next group of features. The concatenated features are
operated by dimension-wise convolution. Repeat the above operation several times
until all groups are processed.

(3) In the classification phase, a combination of global average pooling, fully connected
layer and Softmax is adopted to convert the input features into the probability of each
category. Global average pooling is used before the fully connected layer can preserve
the spatial information of features as much as possible.

(4) A lightweight convolutional neural network is constructed by using dimension-
wise convolution, hierarchical-wise convolution fusion module and classifier. The
superiority of the proposed method is proven by a series of experiments.
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The rest of this paper is as follows. In Section 2, the related work of this paper is
introduced. In Section 3, the dimension-wise convolution, hierarchical-wise convolution
fusion module, classification module and LCNN-HWCF method are introduced in detail.
In Section 4, the proposed LCNN-HWCF method is compared with some state-of-the-
art methods. In Section 5, the proposed dimension-wise convolution and the traditional
convolution are discussed using some ablation experiments. Section 6 gives the conclusions.

2. Related Work

Recently, for lightweight convolutional neural networks, the traditional convolution
has been replaced by various variants of convolution and achieved great success. In
this paper, the traditional three-dimensional convolution is split, and a dimension-wise
convolution is proposed. The number of parameters and computations of this convolution
are much lower than those of traditional convolution. In addition, in order to design a
lightweight network, a hierarchical-wise convolution fusion module is proposed to extract
the deep and complex features of the scene image. Hierarchical-wise convolution fusion
module is an improved form of group convolution. Before that, we first review the related
work, including the convolution variant structure and group convolution.

2.1. Convolution Variant Structure

Singh et al. [15] designed a heterogeneous convolution from the perspective of opti-
mizing the convolution structure. In a heterogeneous convolution, some channels of input
features used k × k convolution kernel; the remaining channels used 1 × 1 convolution
kernel. In addition, the super parameter p was designed to control the proportion of
k × k convolution kernel. Chen et al. [16] proposed dynamic convolution without increas-
ing the depth and width of the network. Dynamic convolution dynamically aggregated
multiple parallel small-size convolution kernels according to attention. These parallel
small-size convolution kernels aggregate in a nonlinear way through attention, which has
stronger feature representation ability and higher computational efficiency. Different from
the traditional convolution, using small convolution kernel to fuse spatial and channel
information, Liu et al. [17] proposed self-calibrated revolution, which can adaptively estab-
lish long-distance spatial and channel dependencies around each spatial location through
self-calibrated operation, so as to generate more discriminative features and extract richer
context information. Chen et al. [18] proposed octave convolution from the perspective
of frequency. Octave convolution divided the input features into high-frequency features
and low-frequency features along the channel dimension, and the ratio of high frequency
and low frequency was controlled by the super parameter α. In octave convolution, the
spatial resolution of low-frequency features is reduced by half, which effectively reduces
the number of parameters and calculations. Octave convolution effectively improves the
representation ability of features and promotes the fusion of information through the
interaction between high-frequency and low-frequency information. In the deep layer
of the network, with the increase in the number of filters, it will not only bring a huge
number of parameters and calculations but also produce a lot of redundant information.
Han et al. [19] improved the redundant information generated by traditional convolution
and proposed ghost convolution. Ghost convolution extracts rich feature information
through traditional convolution operation and uses linear transformation to generate re-
dundant information, which effectively reduces the computational complexity of the model.
The convolution parameters of traditional convolution are shared by all samples. Once
the convolution parameters are determined, no matter what samples are input for testing,
the features are extracted using fixed convolution parameters. Yang et al. [20] proposed
conditionally parameterized convolutions. Conditionally parameterized convolutions can
obtain a customized convolution kernel for each input sample in each batch, which can
improve the model capacity while maintaining efficient running speed. Cao et al. [21]
combined depth-wise convolution with traditional convolution and proposed depth-wise
over parameterized convolution. Depth-wise over parameterized convolution first uses
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depth-wise convolution for input features and finally uses traditional convolution for
output intermediate results.

2.2. Group Convolution

AlexNet, proposed in 2012, adopts group convolution for the first time. Due to the
limitation of hardware conditions at that time, Krizhevsky et al. [22] used multiple GPUs
for training; each GPU completed part of the convolution and finally fused the convolution
results of multiple GPUs. Xie et al. [23] improved ResNet by using the idea of group
convolution and proposed ResNext. ShuffleNet, proposed by Zhang et al. [24], is another
generalization of group convolution. ShuffleNet proposed the channel shuffling operation
based on group convolution, which solves the problem of lack of information interaction
between different groups caused by group convolution. Wu et al. [25] grouped the input
along the channel dimension and then recalibrated each group of features using channel
attention. The combination of channel attention and group convolution effectively improves
the feature representation ability of the network. Liu [26] et al. proposed a lightweight
hybrid group convolutional neural network. The hybrid group convolutional neural
network adopted traditional convolution and dilated convolution in different groups. The
information exchange of convolution-fused features was carried out through the channel
shuffling operation to improve the performance of the network. Shen et al. [27] adopted
group attention fusion strategy to improve network classification performance.

3. Methods
3.1. The Overall Structure of the Proposed LCNN-HWCF Method

The overall structure of the proposed LCNN-HWCF method is shown in Figure 3,
which is composed of 8 parts (groups 1–8). Groups 1 to 3 are used to extract shallow
features of remote-sensing images. These three groups are all composed of two continuous
dimension-wise convolutions and max pooling. Dimension-wise convolution is designed to
extract features from three dimensions: length, width and channel. Max pooling is utilized
to downsample the convoluted features, reducing the number of parameters and compu-
tations, while preserving the main features and avoiding fitting. Groups 4 and 7 adopt
four hierarchical-wise convolution fusion modules to extract the deep features of scene
images, respectively. Groups 4 to 7 correspond to the hierarchical-wise convolution fusion
module A to hierarchical-wise convolution fusion module D in Section 3.3, respectively.
The structure of group 8 is shown in Figure 4.
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Group 8 is composed of the global average pooling layer (GAP), the fully connected
layer (FC) and the Softmax classifier, which is used to convert the feature information
extracted by convolution into the probability of each scene. Because the features extracted
by convolution contain spatial information, if these features are directly mapped into
feature vectors through the fully connected layer, the spatial information of the features will
be destroyed. Global average pooling will not destroy the spatial information of features.
Therefore, global average pooling should be carried out first and then the fully connected
layer. Suppose that the output of the last convolution layer is E = [e1, e2, · · ·, en] ∈ RH×W×n,
R represents the real number set, and H, W and n represent the length, width and number
of channels of the input data, respectively. If the output result of global average pooling
is o = (o1, o2, · · ·, on) ∈ R1×1×n, the output oi of global average pooling to ∀ei can be
represented as

oi =

H
∑

h=1

W
∑

w=1
ei

H ×W
(1)

As can be seen from Formula (1), global average pooling can map the features of the
last layer convolution output to each category more intuitively. Then, the weight matrix
wT

i multiplies the global average pooling output vector o = (o1, o2, · · ·, on) to obtain the
vector V = (υ1, υ2, · · ·, υK), which is called the fractional vector, where K is the number of
categories. Finally, the non-normalized K-dimensional fractional vector V = (υ1, υ2, · · ·, υK)
is mapped to the normalized K-dimensional probability vector P = (ρ1, ρ2, · · ·, ρK) using
the Softmax function. The specific process is as follows:

ρi = So f tMax(υi) =
exp(wT

i · oi)

∑K
k=1 exp(wT

k · ok)
(2)

In this paper, the cross-entropy loss is adopted as the loss function l, which can be
represented as

l = −
K

∑
i=1

yi log ρi (3)
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In Formula (3), ρi represents the output result of the Softmax function, K is the number
of categories, and Y = [y1, y2, · · ·, yK] represents the coding result of the input sample label.
yi is one hot vector. If the predicted category is the same as the category marked by the
sample, it is 1; otherwise, it is 0. Therefore, the loss function can be further written as

l = − log ρi = − log
exp(wT

i · oi)

∑K
k=1 exp(wT

k · ok)
(4)

3.2. Dimension-Wise Convolution

For convolutional neural networks, convolution is used to extract the features of the
input image and generate some feature maps. With the deepening of the network, the size
of the feature map gradually decreases, and the more representative features are extracted.
It is necessary to increase the number of convolution kernels to extract more sufficient
features from the previous layer. However, as the number of convolution kernels increases,
the number of parameters and the amount of computation also gradually increase. In order
to solve this problem, a dimension-wise convolution is proposed. The structure of the
traditional convolution and the dimension-wise convolution is shown in Figure 5.
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tional convolution. (b) Dimension-wise convolution.

As shown in Figure 5b, the dimension-wise convolution adopts three different scale
convolutions with dimension WX ∈ RX×1×1, dimension WY ∈ R1×Y×1 and dimension
WC ∈ R1×1×Cout to convolute along the length, width and channel direction, respectively,
and then integrates these features of three-dimensional convolution. Compared with
traditional convolution, the proposed dimension-wise convolution has obvious advantages
in the number of parameters and the amount of computation. The comparison of the
number of parameters and computation amount between the traditional convolution and
the proposed dimension-wise convolution is analyzed as follows.
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First, the number of parameters is analyzed. Suppose F ∈ RX1×Y1×Cin , X1, Y1 and
Cin represent the length, width and number of channels of the input features, respec-
tively. As shown in Figure 5a, the convolution kernels of traditional convolution are
W ∈ RCin×X×Y×Cout . Here, X and Y represent the length and width of the convolution
kernel, respectively, Cin represents the number of input channels of the convolution kernel,
and Cout represents the number of convolution kernels or the number of output channels.
The output feature is S ∈ RX1×Y1×Cout →W ∗ F after convolution through the convolution
kernel with step size 1. Then, the number of parameters of traditional convolution is
X ·Y · Cin · Cout.

The dimension-wise convolution convolutes along the length, width and channel
direction, respectively, and then fuses the features along the three-dimensional convolution.
The convolution kernel along the channel direction is WC ∈ R1×1×Cout , along the width
direction is WY ∈ R1×Y×1 and along the length direction is WX ∈ RX×1×1. The number of
parameters of the dimension-wise convolution can be calculated as follows.

The feature after channel-wise convolution is SC ∈ RX1×Y1×Cout →WC ∗ F , and the
number of parameters is Cin · Cout; the feature after width-wise convolution is
SY ∈ RX1×Y1×1 →WY ∗ F , and the parameter quantity is Cin · Y; the feature after length-
wise convolution is SX ∈ RX1×Y1×1 →WX ∗ F , and the number of parameters is Cin · X.
The total number of parameters in the three dimensions is (X + Y + Cout) · Cin. Because
the number of channels of the convolution kernel is much larger than the width and height
of the convolution kernel, i.e., Cout �W and Cout � H, the total number of parameters of
the dimension-wise convolution is about equal to Cin · Cout, which is about 1/(XY) times
that of the ordinary convolution.

Following that, the computational complexity is analyzed. The computational com-
plexity of traditional convolution is X1 × Y1 × X × Y × Cin × Cout. The computational
complexity of dimension-wise convolution is as follows.

The feature after channel-wise convolution is SC ∈ RX1×Y1×Cout →WC ∗ F , and the
computational complexity is X1×Y1×Cin×Cout. The feature after width-wise convolution
is SY ∈ RX1×Y1×1 →WY ∗ F , and the computational complexity is 1×Y× X1 ×Y1 × Cin.
The feature after length-wise convolution is SX ∈ RX1×Y1×1 →WX ∗ F , and the compu-
tational complexity is X × 1 × X1 × Y1 × Cin. The total number of parameters of the
three dimensions is X1 ×Y1 × Cin × Cout + 1×Y× X1 ×Y1 × Cin + X× 1× X1 ×Y1 × Cin.
Dimension-wise convolution changes the computational complexity from X1 ×Y1 × Cin ×
(X×Y× Cout) to X1 ×Y1 × Cin × (X + Y + Cout), which effectively reduces the computa-
tional complexity of convolution.

3.3. Hierarchical-Wise Convolution Fusion Module

With the deepening of the convolutional neural network, the number of filters in-
creases gradually. Although the increase in filters helps extract more significant fea-
tures, it also brings a lot of parameters and computation, resulting in the reduction in
the running speed of the network. In order to solve this problem, a hierarchical-wise
convolution fusion module is proposed to extract deeper features. Hierarchical-wise con-
volutions divide the input feature X ∈ RH×W×C → [X1, X2, X3 · ··, XC] along the channel
dimension into 4 groups: x1 ∈ RH×W× C

4 → [X1, · · ·, X C
4
] , x2 ∈ RH×W× C

4 → [X C
4

, · · ·, X C
2
] ,

x3 ∈ RH×W× C
4 → [X C

2
, · · ·, X 3C

4
] , x4 ∈ RH×W× C

4 → [X 3C
4

, · · ·, XC] . The number of chan-
nels in each group is C/4. Each time one of the groups is directly mapped to the next layer,
the remaining group extracts features by dimension-wise convolution. The output features
are divided into two branches; one is mapped to the next layer, and the other is connected
with the input features of the next group. Channel concatenation is utilized to fuse different
features and enhance information interaction among different groups. After concatenation,
the features are extracted by dimension-wise convolution. This process is repeated several
times until the remaining input features are processed. The four hierarchical-wise fusion
modules are shown in Figures 6–9, respectively. The specific process is as follows.
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In the hierarchical-wise convolution fusion module A, which is shown in Figure 6,
only the first set of input features x1 can be directly mapped to the next layer. The second
group of input features x2 first extracts the features by dimension-wise convolution (DWC)
to obtain x2 ∗ f and then divides the output features x2 ∗ f into two routes; one is mapped
to the next layer, the other and the third group of features x3 to channel concatenation
to obtain x3 ⊕ (x2 ∗ f ). After concatenation, the features [x3 ⊕ (x2 ∗ f )] ∗ f are extracted
by dimension-wise convolution. Then, the features [x3 ⊕ (x2 ∗ f )] ∗ f are divided into
two routes; one is mapped to the next layer, the other and the fourth group of features
x4 to channel concatenation to obtain {x4 ⊕ [x3 ⊕ (x2 ∗ f )] ∗ f }. After concatenation, the
features {x4 ⊕ [x3 ⊕ (x2 ∗ f )] ∗ f } ∗ f are extracted by dimension-wise convolution. Finally,
the features {x4 ⊕ [x3 ⊕ (x2 ∗ f )] ∗ f } ∗ f are mapped to the next layer. The whole process
can be represented as

y = x1 + x2 ∗ f + [x3 ⊕ (x2 ∗ f )] ∗ f + {x4 ⊕ [x3 ⊕ (x2 ∗ f )] ∗ f } ∗ f (5)

In Formula (5), ∗ represents convolution operation, f represents dimension-wise
convolution, and ⊕ represents channel concatenation operation. {[(·)]} means (·), [(·)]
and {[(·)]} operations are performed successively.

In the hierarchical-wise convolution fusion module B, which is shown in Figure 7,
only the second set of input features x2 can be mapped directly to the next layer. The first
group of input features x1 first extracts features by dimension-wise convolution (DWC)
to obtain x1 ∗ f and then divides the output features into two routes; one is mapped to
the next layer, the other and the third group of input features x3 to channel concatenation
to obtain x3 ⊕ (x1 ∗ f ). After concatenation, the features [x3 ⊕ (x1 ∗ f )] ∗ f are extracted
by dimension-wise convolution. Then, the features [x3 ⊕ (x1 ∗ f )] ∗ f are divided into
two routes; one is mapped to the next layer, the other and the fourth group of features
x4 to channel concatenation to obtain {x4 ⊕ [x3 ⊕ (x1 ∗ f )] ∗ f }. After concatenation, the
features {x4 ⊕ [x3 ⊕ (x1 ∗ f )] ∗ f } ∗ f are extracted by dimension-wise convolution. Finally,
the features {x4 ⊕ [x3 ⊕ (x1 ∗ f )] ∗ f } ∗ f are mapped to the next layer. The whole process
can be represented as

y = x2 + x1 ∗ f + [x3 ⊕ (x1 ∗ f )] ∗ f + {x4 ⊕ [x3 ⊕ (x1 ∗ f )] ∗ f } ∗ f (6)

In Formula (6), ∗ represents convolution operation, f represents dimension-wise
convolution, and ⊕ represents channel concatenation operation. {[(·)]} means (·), [(·)]
and {[(·)]} operations are performed successively.
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In the hierarchical-wise convolution fusion module C, which is shown in Figure 8,
only the third set of input features x3 can be mapped directly to the next layer. The first
group of input features x1 first extracts features by dimension-wise convolution (DWC) to
obtain x1 ∗ f and then divides the output features into two routes; one is mapped to the
next layer, the other and the second group of input features x2 to channel concatenation
to obtain x2 ⊕ (x1 ∗ f ). After concatenation, the features [x2 ⊕ (x1 ∗ f )] ∗ f are extracted
by dimension-wise convolution. Then, the features [x2 ⊕ (x1 ∗ f )] ∗ f are divided into
two routes; one is mapped to the next layer, the other and the fourth group of features
x4 to channel concatenation to obtain {x4 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f }. After concatenation, the
features {x4 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f are extracted by dimension-wise convolution. Finally,
the features {x4 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f are mapped to the next layer. The whole process
can be represented as

y = x3 + x1 ∗ f + [x2 ⊕ (x1 ∗ f )] ∗ f + {x4 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f (7)

In Formula (7), ∗ represents convolution operation, f represents dimension-wise
convolution, and ⊕ represents channel concatenation operation. {[(·)]} means (·), [(·)]
and {[(·)]} operations are performed successively.

In the hierarchical-wise convolution fusion module D, which is shown in Figure 9,
only the fourth set of input features x4 can be mapped directly to the next layer. The first
group of input features x1 first extracts features by dimension-wise convolution (DWC) to
obtain x1 ∗ f and then divides the output features into two routes; one is mapped to the
next layer, the other and the second group of input features x2 to channel concatenation
to obtain x2 ⊕ (x1 ∗ f ). After concatenation, the features [x2 ⊕ (x1 ∗ f )] ∗ f are extracted
by dimension-wise convolution. Then, the features [x2 ⊕ (x1 ∗ f )] ∗ f are divided into two
routes; one is mapped to the next layer, the other and the fourth group of features x3 to
channel concatenation to obtain {x3 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f }. After concatenation, the features
{x3 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f are extracted by dimension-wise convolution. Finally, the
features {x3 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f are mapped to the next layer. The whole process is

y = x4 + x1 ∗ f + [x2 ⊕ (x1 ∗ f )] ∗ f + {x3 ⊕ [x2 ⊕ (x1 ∗ f )] ∗ f } ∗ f (8)

In Formula (8), ∗ represents convolution operation, f represents dimension-wise
convolution, and ⊕ represents channel concatenation operation. {[(·)]} means (·), [(·)]
and {[(·)]} operations are performed successively.

4. Experiment
4.1. Dataset Settings

The remote-sensing image dataset AID was published by Xia et al. [28] of Wuhan Uni-
versity and Huazhong University of Science and Technology in 2017. The AID dataset has
10,000 images and 30 different scene categories, including ‘airport’, ‘bridge’ and ‘bareLand’,
etc. There are 220 to 420 remote-sensing images in each scene category, and the size of
each remote-sensing image is approximately 600 × 600. The spatial resolution of the AID
dataset is 0.5 m to 8 m. The RSSCN7 dataset was published in 2015 by Zou et al. [29] of
Wuhan University. Scene images from different seasons and weather pose a major chal-
lenge to their classification. The RSSCN7 dataset has 2800 images and seven different scene
categories, including ‘grass’, ‘forest’, ‘field’, ‘parking’, ‘resident’, ‘industry’ and ‘riverlake’.
Each scene category contains 400 scene images, with 400 × 400 pixels per scene image. The
UCM dataset was published by Yang et al. [30] in 2010. The dataset has 2100 images and
21 different scene categories, including ‘agricultural’, ‘airplane’ and ‘forest’, etc. Each scene
category contains 100 scene images, each with 256 × 256 pixels. The spatial resolution
of the UCM dataset is 0.3 m. The NWPU45 dataset was published by Cheng et al. [31]
of Northwest University of Technology in 2017. The NWPU45 dataset has 31,500 images
and 45 different scene categories, including ‘airplane’, ‘airport’, ‘baseball’, etc. Each scene
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category contains 700 scene images, with 256 × 256 pixels per scene image. The spatial
resolution of NWPU45 dataset is 0.2 m to 30 m.

4.2. Setting of the Experiments

Our experiments are based on the Keras framework and implemented on the NVIDIA
GeForce RTX2060 GPU computer. To prevent memory overflow during training, the input
image is clipped to 256 × 256 pixels during training. In the experiments, in order to make
the network model converge more stably, the momentum optimizer is utilized for network
training. The momentum factor is set to 0.9.

In the experiments, the size of the convolution kernel along the length (X) direction is
3× 1× 1, and the size of the convolution kernel along the width (Y) direction is 1× 3× 1.
With the deepening of the network, the size of the convolution kernel along the channel (C)
direction also gradually increases. From group 1 to group 7, the size is 1× 1× 32, 1× 1× 64,
1× 1× 128, 1× 1× 128, 1× 1× 256, 1× 1× 256 and 1× 1× 512, respectively.

According to the division proportion commonly used in previous studies, the datasets
of this experiment are divided as follows: RSSCN7 (50%) dataset, training:test = 5:5, that is,
50% of the RSSCN7 dataset is divided as training dataset, the remaining 50% as test dataset.
UCM21 (80%) dataset, training:test = 8:2, that is, 80% of the UCM21 datasets are divided
for training datasets, and the remaining 20% are used as test datasets. AID (50%) and AID
(20%) dataset, training:test = 5:5 and training:test = 2:8, that is, the AID dataset is divided
into 50% (20%) as training dataset and the remaining 50% (80%) as testing dataset. NWPU
(20%) and NWPU (10%) dataset, training:test = 2:8 and training:test = 1:9, that is, 20% (10%)
of the NWPU dataset is divided as the training dataset and the remaining 80% (90%) as the
test dataset. The results of each experiment are the average of 10 experiments.

4.3. Experimental Results
4.3.1. Performance of the Proposed LCNN-HWCF Method

The OA, AA, F1 and kappa coefficients of the proposed LCNN-HWCF method on
four datasets under different training ratios are listed in Table 1. The overall accuracy (OA)
is the ratio between the correct prediction and the overall quantity of all test sets, and the
average accuracy (AA) is the ratio between the correct prediction of each type and the
overall quantity of each type. F1 is the weighted average of accuracy and recall, which
is used to measure the overall performance of the proposed method. Kappa coefficient
is adopted to measure whether the predicted results are consistent with the real results.
It can be seen from Table 1 that the proposed LCNN-HWCF method can achieve good
performance on the four datasets with different training ratios.

Table 1. The OA, AA, F1 and Kappa results of the proposed LCNN-HWCF model on four datasets.

Datasets OA (%) AA (%) F1 (%) Kappa (%)

UCM (80%) 99.53 99.55 99.53 99.50
RSSCN7 (50%) 97.65 97.76 97.65 97.56

AID (50%) 97.43 97.35 97.16 97.05
AID (20%) 95.76 95.52 95.24 95.45

NWPU (10%) 93.10 93.12 92.98 93.02
NWPU (20%) 94.53 94.63 94.45 94.49

4.3.2. Experimental Results on UCM Dataset

The comparison of experimental results between the proposed method and some state-
of-the-art methods on the UCM dataset with a training ratio of 80% is shown in Table 2.
When the training proportion is 80%, the overall accuracy of the lightweight method
LCNN-BFF [32] is 99.29%, which is 0.24% higher than that of the Scale-Free CNN [33],
Inceptionv3+CapsNet [34] and DDRL-AM [35] method but still 0.24% lower than that of
our method, and the parameters of the proposed method are only 9.6% of the parameters



Remote Sens. 2022, 14, 3184 13 of 26

of LCNN-BFF. This proves that the proposed method achieves a good trade-off between
the accuracy of classification and the number of parameters.

Table 2. Comparison of OA and parameters between the proposed method and some advanced
methods on the UCM dataset with 80% training ratio.

Network Model OA (%) Number of Parameters

Variable-Weighted Multi-Fusion [36] 97.79 32 M
ResNet+WSPM-CRC [37] 97.95 23 M

ADFF [38] 98.81 ± 0.51 23 M
LCNN-BFF [32] 99.29 ± 0.24 6.2 M

VGG16 with MSCP [39] 98.36 ± 0.58 15 M
Gated Bidirectiona+global feature [40] 98.57 ± 0.48 138 M

Feature Aggregation CNN [41] 98.81 ± 0.24 130 M
Skip-Connected CNN [42] 98.04 ± 0.23 6 M
Discriminative CNN [43] 98.93 ± 0.10 130 M

VGG16-DF [44] 98.97 130 M
Scale-Free CNN [33] 99.05 ± 0.27 130 M

Inceptionv3+CapsNet [34] 99.05 ± 0.24 22 M
DDRL-AM [35] 99.05 ± 0.08 30 M

Semi-Supervised Representation Learning [45] 94.05 ± 0.96 210 M
Multiple Resolution BlockFeature [46] 94.19 36 M

Siamese CNN [47] 94.29 62 M
Siamese ResNet50 with R.D [48] 94.76 20 M

Bidirectional Adaptive Feature Fusion [49] 95.48 130 M
Multiscale CNN [50] 96.66 ± 0.90 60 M

VGG_VD16 with SAFF [51] 97.02 ± 0.78 15 M
Proposed 99.53 ± 0.25 0.6 M

The confusion matrix of the proposed method on the UCM dataset is shown in
Figure 10. As we can see from Figure 10, the proposed method can correctly classify most
scene images of the UCM dataset. Although there is confusion between the two scenarios
of ’mediumresidential’ and ‘mobilehomepark’, the classification accuracy still reaches 95%,
which fully verifies the validity of the proposed method.
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4.3.3. Experimental Results on RSSCN7 Dataset

The comparison of experimental results between the proposed method and some
advanced methods on the RSSCN dataset with a training ratio of 50% is listed in Table 3.
Because the scene images in the RSSCN dataset come from different seasons and weather,
the classification of this dataset is challenging. As shown in Table 3, when the training
proportion is 50%, the classification accuracy of the proposed method is 97.65%, 2.44%
higher than that of ADFF [38], 2.11% higher than that of Coutourlet CNN [52] and 2.94%
higher than that of SE-MDPMNet [53]. Compared with some lightweight methods, i.e.,
LCNN-BFF Method [32] and SE-MDPMNet [53], the parameters of the proposed method
are only 9.6% and 11.6% of them.

Table 3. Comparison of OA and parameters between the proposed method and some advanced
methods on the RSSCN dataset with 50% training ratio.

Network Model OA (%) Number of Parameters

VGG16+SVM Method [28] 87.18 130 M
Variable-Weighted Multi-Fusion Method [36] 89.1 32 M

TSDFF Method [14] 92.37 ± 0.72 50 M
ResNet+SPM-CRC Method [37] 93.86 23 M

ResNet+WSPM-CRC Method [37] 93.9 23 M
LCNN-BFF Method [32] 94.64 ± 0.21 6.2 M

ADFF [38] 95.21 ± 0.50 23 M
Coutourlet CNN [52] 95.54 ± 0.17 12.6 M

SE-MDPMNet [53] 94.71 ± 0.15 5.17 M
Proposed 97.65 ± 0.12 0.6 M

The confusion matrix of the proposed method on the RSSCN dataset is shown in
Figure 11. From Figure 11, it can be seen that although the proposed method does not fully
recognize any scene image in this dataset, the accuracy of all scene images is over 97%, and
the proposed method still achieves good results.
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4.3.4. Experimental Results on AID Dataset

The comparison of experimental results between the proposed method and some
advanced methods on the AID datasets with the training ratio of 20% and 50% is shown
in Table 4. When the training proportion is 20%, the overall classification accuracy of
the proposed method is 95.76%, which is 4.1% and 4.66% higher than that of lightweight
network LCNN-BFF [32] and Skip-Connected CNN [42], respectively, and 3.37% and 2.49%
higher than that of ResNet50 [54] and Inception V3 [54], respectively. When the training
proportion is 50%, the overall accuracy is further improved to 97.43%, which is higher
than that of all the comparison methods. Compared with LCNN-BFF [32], VGG16 with
MSCP [39], ResNet50 [54], Inception V3 [54], the increase is 2.79%, 3.01%, 2.74% and 2.36%,
respectively. As far as the number of parameters is concerned, the parameters of the
proposed method are 0.6 M, which is 9.6% and 10% of that of the lightweight methods
LCNN-BFF [32] and Skip-Connected CNN [42]. Compared with LCNN-GWHA [55],
although the number of parameters is slightly increased, the classification accuracy of the
proposed method has obvious advantages under both training ratios.

Table 4. Comparison of OA and parameters between the proposed method and some advanced
methods on the AID dataset with 20% and 50% training ratio.

Network Model OA (20/80%) OA (50/50) Number of
Parameters

VGG16+CapsNet [34] 91.63 ± 0.19 94.74 ± 0.17 130 M
VGG_VD16 with SAFF [51] 90.25 ± 0.29 93.83 ± 0.28 15 M

Discriminative CNN [43] 90.82 ± 0.16 96.89 ± 0.10 130 M
Fine-tuning [28] 86.59 ± 0.29 89.64 ± 0.36 130 M

Skip-Connected CNN [42] 91.10 ± 0.15 93.30 ± 0.13 6 M
LCNN-BFF [32] 91.66 ± 0.48 94.64 ± 0.16 6.2 M

Gated Bidirectiona [40] 90.16 ± 0.24 93.72 ± 0.34 18 M
Gated Bidirectiona+global

feature [40] 92.20 ± 0.23 95.48 ± 0.12 138 M

TSDFF [14] 93.06 ± 0.20 91.8 50 M
AlexNet with MSCP [39] 88.99 ± 0.38 92.36 ± 0.21 46.2 M
VGG16 with MSCP [39] 91.52 ± 0.21 94.42 ± 0.17 15 M

ResNet50 [54] 92.39 ± 0.15 94.69 ± 0.19 25.61 M
LCNN-GWHA [55] 92.12 ± 0.35 95.63 ± 0.54 0.3 M

InceptionV3 [54] 93.27 ± 0.17 95.07 ± 0.22 45.37 M
Proposed 95.76 ± 0.16 97.43 ± 0.28 0.6 M

The confusion matrix of the proposed method on the AID dataset with a training ratio
of 50% is shown in Figure 12. From Figure 12, it can be seen that the method achieves the
classification accuracy of more than 90% for all scenes in the AID dataset and 100% for
‘viaduct’ scenes. For the confusion matrix, the classification accuracy of ‘school’ scene is the
lowest; the reason is that the proposed method confuses the ‘school’ and ‘industrial’ scenes,
resulting in the classification accuracy of school scene of only 93%.
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4.3.5. Experimental Results on NWPU Dataset

Compared with the UCM dataset, RSSCN dataset and AID dataset, the NWPU dataset
has more remote-sensing scene images, which brings great challenges to classification in this
dataset. The comparison of experimental results between the proposed method and some
advanced methods on NWPU datasets with 10% and 20% training ratio is shown in Table 5.
When the training proportion is 10%, the classification accuracy of the proposed method
is 93.10%, which is 6.57%, 8.77%, 6.87% and 2.87% higher than that of LCNN-BFF [32],
Skip-Connected CNN [42], ResNet50 [54] and LiG with RBF kernel [56], respectively.
When the training proportion is 20%, the classification accuracy of the proposed method
is 94.53%, which is 2.8%, 7.23% and 1.28% higher than that of the lightweight methods
LCNN-BFF [32], Skip-Connected CNN [42], LiG with RBF kernel [56], respectively, and the
number of parameters of the proposed method is only 9.6%, 10% and 28.9% of them. These
further verify the validity of the proposed method.

Table 5. Comparison of OA and parameters between the proposed method and some advanced
methods on the AID dataset with 10% and 20% training ratio.

Network Model OA (10/90) (%) OA (20/80) (%) Number of
Parameters

Siamese ResNet50 with R.D [48] 85.27 ± 0.31 91.03 20 M
AlexNet with MSCP [39] 81.70 ± 0.23 85.58 ± 0.16 35 M
VGG16 with MSCP [39] 85.33 ± 0.17 88.93 ± 0.14 60 M

VGG_VD16 with SAFF [51] 84.38 ± 0.19 87.86 ± 0.14 15 M
Fine-tuning [28] 87.15 ± 0.45 90.36 ± 0.18 130 M

Skip-Connected CNN [42] 84.33 ± 0.19 87.30 ± 0.23 6 M
LCNN-BFF [32] 86.53 ± 0.15 91.73 ± 0.17 6.2 M

VGG16+CapsNet [34] 85.05 ± 0.13 89.18 ± 0.14 130 M
Discriminative with AlexNet [43] 85.56 ± 0.20 87.24 ± 0.12 130 M

ResNet50 [54] 86.23 ± 0.41 88.93 ± 0.12 25.61 M
InceptionV3 [54] 85.46 ± 0.33 87.75 ± 0.43 45.37 M

Contourlet CNN [52] 85.93 ± 0.51 89.57 ± 0.45 12.6 M
LiG with RBF kernel [56] 90.23 ± 0.13 93.25 ± 0.12 2.07 M

Proposed 93.10 ± 0.12 94.53 ± 0.25 0.6 M
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The confusion matrix of the proposed method on the NWPU dataset with 20% training
ratio is shown in Figure 13. As can be seen from Figure 13, the proposed method achieves
a classification accuracy of more than 90% for all scenes in the NWPU dataset. For the
most confusing scenarios, namely ‘palace’ and ‘church’ with similar building shapes, the
classification accuracy of the proposed method is still 93% and 92%, respectively, which
proves the robustness of the proposed method.
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4.4. Model Complexity Analysis

To further verify the advantages of the proposed method, CaffeNet [51], VGG-VD-
16 [51], GoogLeNet [51], MobileNetV2 [53], SE-MDPMNet [53], LCNN-BFF [32] and the
proposed method are compared on the AID dataset with training:test = 5:5. FLOPs, OA
and the number of parameters are adopted as the evaluation index, and the floating points
of operations (FLOPs) are utilized to measure the complexity of the proposed method.
The size of the FLOPs value is inversely proportional to the complexity of the model.
The experimental results are shown in Table 6. It can be seen from Table 6 that on the
AID dataset with training:test = 5:5, with the proposed dimension-wise convolution and
hierarchical-wise convolution fusion module, the parameters and FLOPs values of the pro-
posed method are only 0.6 M and 1.7 M, respectively, and the classification accuracy reaches
97.43%. Compared with the lightweight network MobileNetV2 [53] and SE-MDPMNet [53],
the proposed method optimizes the complexity of the model while guaranteeing high
classification accuracy, further proving the effectiveness of the method.
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Table 6. Comparison of OA, parameters and FLOPs between the proposed method and some
advanced methods on the AID dataset with 50% training ratio.

Network Model OA (%) Number of
Parameters FLOPS

CaffeNet [51] 89.53 60.97 M 715 M
VGG-VD-16 [51] 89.64 138.36 M 15.5 G
GoogLeNet [51] 86.39 7 M 1.5 G

MobileNetV2 [53] 95.96 3.5 M 334 M
SE-MDPMNet [53] 97.14 5.17 M 3.27 G

LCNN-BFF [32] 94.64 6.2 M 2.4 G
Proposed 97.43 0.6 M 1.7 M

4.5. Model Running Speed Comparison

In order to verify the advantages of the proposed lightweight dimension-wise con-
volution in terms of running speed, some experiments on running time are conducted
on the UCM dataset. In this experiment, the average training time (ATT) is used as the
evaluation index, and ATT represents the average time required for the model to pro-
cess an image. Gated Bidirectiona+global feature [40], Gated Bidirectiona [40], Siamese
ResNet50 [48], Siamese AlexNet [48], Siamese VGG-16 [48], LCNN-BFF [32] are selected
for experimental comparison. In the experiment, all the experimental settings are the same.
The experimental results are shown in Table 7. It can be seen from Table 7 that the ATT of
the proposed method is the smallest, only 0.015 s, which is 0.014 s smaller than that of the
LCNN-BFF [32] method and 0.013 s smaller than that of the Siamese AlexNet [48] method.
The experimental results show that the proposed method has faster running speed.

Table 7. Model running speed comparison on UCM dataset.

Network Model ATT (s)

Gated Bidirectiona+global feature [40] 0.052
Gated Bidirectiona [40] 0.048
Siamese ResNet50 [48] 0.053
Siamese AlexNet [48] 0.028
Siamese VGG-16 [48] 0.039

LCNN-BFF [32] 0.029
Proposed Method 0.015

4.6. Visual Analysis

In order to more intuitively show the advantages of the proposed method, a variety
of visualization methods are adopted to visually analyze the proposed method. Firstly, a
gradient-weighted class activation map (Grad CAM) is utilized to visualize the proposed
method. In order to prove that the proposed method can extract the significant features of
remote-sensing images effectively, two methods, LCNN-BFF [32] and LCNN-GWHA [55],
which have good classification performance, are chosen in the experiment for visual analysis
on the UCM datasets. The visualization results are shown in Figure 14. The highlighted
areas in the gradient-weighted class activation graph indicate how much attention is paid
to the scene by the proposed method, while red highlighted areas indicate a higher degree
of attention to the scene. From Figure 14, it can be seen that compared with LCNN-BFF [32]
and LCNN-GWHA [55], the proposed method can extract scene features more effectively
and have a better semantic coverage for the scene area.
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Then, the T-distributed random neighborhood embedding (T-SNE) visualization
method is adopted to visually analyze the proposed method on the RSSCN dataset and
UC dataset, respectively. The visualization results are shown in Figure 15. In the T-SNE
visualization, data points of different colors represent different scene categories, and data
points of the same color will gather together to form different semantic clusters. As can
be seen from Figure 15, the proposed method increases the distance between different
semantic clusters, effectively reduces the semantic confusion between similar scenes and
improves the classification performance.
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Finally, some random image prediction experiments of the proposed method are
carried out on the UC dataset. The experimental results are shown in Figure 16. As can
be seen from Figure 16, the confidence of the proposed method for the predicted values
and real label values of different scenes is more than 99%, which proves that the proposed
method can effectively extract the features of remote-sensing scene images.
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5. Discussion

In this section, the advantages of dimension-wise convolution are discussed through
four ablation experiments. In ablation experiment 1, the dimension-wise convolution in
the shallow layer of the network (Group 1–3) was replaced with the traditional convo-
lution, and the other groups (Group 4–8) remained unchanged. In ablation experiment
2, the dimension-wise convolution in the hierarchical-wise convolution fusion module
(Group 4–8) was replaced with the traditional convolution, and the other groups (Group
1–3) remained unchanged. In ablation experiment 3, the dimension-wise convolution
in the whole network (Group 1–8) was replaced by traditional convolution. In ablation
experiment 4, the entire network was maintained. In the four ablation experiments, each
ablation experiment used the same experimental equipment and super parameter set-
tings. The experimental results on the UC dataset with training:test = 8:2 are shown in
Figures 17 and 18. The experimental results on the RSSCN dataset with training:test = 5:5
are shown in Figures 19 and 20.
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Figure 17. Comparison of OA and kappa values between dimension-wise convolution and traditional
convolution on UC dataset with training ratio of 80%.
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As can be seen from Figures 17–20, on the two datasets, after using the traditional
convolution to replace the dimension-wise convolution, the classification performance of
the network can be reduced. In particular, after replacing the dimension-wise convolution
in the whole network with traditional convolution, the classification performance decreases
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most dramatically. As shown in Figure 17, compared with experiment 4, in experiment 3,
the classification accuracy decreased by 1.28%, and the kappa value decreased by 1.40%
on the UC dataset with a training ratio of 80%. As shown in Figure 19, compared with
experiment 4, in experiment 3, the classification accuracy decreased by 1.18%, and the
kappa value decreased by 1.24% on the RSSCN dataset with a training ratio of 50%. In
addition, after using the traditional convolution, the number of parameters and FLOPs of
the network increased to a certain extent. In particular, after replacing the dimension-wise
convolution in the proposed network with traditional convolution, the parameter quantity
and FLOPs value increased a lot. As shown in Figures 18 and 20, on the two datasets,
compared with experiment 4, the parameter amount in experiment 3 increased by about
0.86 M, and the FLOPs value increased by about 3.67 M. A series of experiments proved
the superiority of the proposed dimension-wise convolution.

6. Conclusions

In this paper, a lightweight convolutional neural network based on hierarchical-
wise convolution fusion (LCNN-HWCF) is proposed for remote-sensing scene image
classification. In the shallow layer of the proposed network, the features are extracted in the
length, width and channel directions, respectively, by using dimension-wise convolution. In
the deep layer of the network, the hierarchical-wise convolution fusion module is designed
to solve the problem of the network parameters becoming larger due to the deepening of
the network. Finally, under the conditions of multiple training ratios of UCM21, RSSCN7,
AID and NWPU, the proposed method and some advanced methods are compared by a
variety of experiments, and the experimental results prove the superiority of LCNN-HWCF.
Among them, the classification accuracy of the proposed LCNN-HWCF method on the
UCM dataset (training:test = 8:2) reaches 99.53%, almost completely realizing the correct
recognition of all scene images.
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