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Abstract: To semantically understand remote sensing images, it is not only necessary to detect
the objects in them but also to recognize the semantic relationships between the instances. Scene
graph generation aims to represent the image as a semantic structural graph, where objects and
relationships between them are described as nodes and edges, respectively. Some existing methods
rely only on visual features to sequentially predict the relationships between objects, ignoring
contextual information and making it difficult to generate high-quality scene graphs, especially
for remote sensing images. Therefore, we propose a novel model for remote sensing image scene
graph generation by fusing contextual information and statistical knowledge, namely RSSGG_CS.
To integrate contextual information and calculate attention among all objects, the RSSGG_CS model
adopts a filter module (FiM) that is based on adjusted transformer architecture. Moreover, to
reduce the blindness of the model when searching semantic space, statistical knowledge of relational
predicates between objects from the training dataset and the cleaned Wikipedia text is used as
supervision when training the model. Experiments show that fusing contextual information and
statistical knowledge allows the model to generate more complete scene graphs of remote sensing
images and facilitates the semantic understanding of remote sensing images.

Keywords: scene graph generation; remote sensing image; contextual information; statistical knowl-
edge; transformer; semantic representation

1. Introduction
1.1. Background of Scene Graph Generation

Deep learning methods based on data-driven methods have significantly promoted
the development of computer vision. Existing methods already have superior performance
for some tasks performed on individual instances, such as object detection [1,2] and in-
stance segmentation [3,4]. These methods distinguish independent objects from the image
background but do not explore the semantic relationships between objects [5]. Objects in
an image constitute the overall content, but the semantic relationships between instances
determine how the image gist is interpreted [6]. Hence, more and more research has fo-
cused on extracting the semantic relationships between instances. Scene graph generation
localizes not only objects but also recognizes their relationships, which is a visual task
with higher semantic abstraction. As a structural representation of images, the objects and
their semantic relationships are represented as nodes and edges in the scene graph [5,7–9].
There are a series of triples, <subject-predicate-object>, in the scene graph, “predicate”
represents a specific semantic relationship, and “subject” and “object” are the two instances
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involved, as shown in Figure 1c. As a bridge between low-level recognition and high-level
understanding of images, the scene graph supports many downstream vision tasks [8–12],
such as image captioning [13,14] and visual question answering [15,16].

Figure 1. The illustration of a scene graph for a remote sensing image. (a) The visible light remote
sensing image and the corresponding segmentation result are used as the input of the RSSGG_CS
model. (b,c) are the scene graph of the image in (a). The words on the edges indicate the semantic
relationships between objects, and the nodes of the scene graph are represented by the pixel-level
segmentation and the category nouns of the instances, respectively.

1.1.1. Classical Methods for Scene Graph Generation

Scene graph generation is one of the computer vision tasks used to understand images
abstractly, which localizes the objects and recognizes their relationships [7]. Ref. [17] constructed
the large-scale Visual Genome dataset, which significantly promoted the research on scene
graph generation. However, there are some tricky problems in the dataset, such as the long tail
problem [10,18,19] and inconsistent labeling of similar semantic relationships [20,21]. Ref. [6]
leveraged language priors into the visual relationship detection and tried to improve the model
performance with non-visual content. In some methods, object detection and relationship
predicate prediction are often divided into two processes [5,8]. The model structure of these
methods is separated into two parts. Ref. [22] simultaneously detected object pairs and predicted
the potential relationships on the image feature maps to generate the scene graph in a unified
network. Fusing contextual features is necessary for generating high-quality scene graphs.
Ref. [23] showed that global hints have strong influences in predicting relations and proposed
the HCNet to integrate different levels of information. IMP improved the model’s performance
for scene graph generation by passing contextual information [24].

Gradually, some researchers have found that it is impossible to fully understand the
meaning of the image only by relying on the image content itself, and it is crucial to intro-
duce external knowledge to understand the image semantically [19,25]. VCTree explored
the structural information of instances in images to enhance the semantic understanding
of image contents [26]. MOTIFS pointed out that the semantic labels of objects alone can
predict many relationships for object pairs [27]. The introduction of external knowledge
in existing scene graph generation methods can be divided into two categories: (1) using
external knowledge to enhance the features of objects; (2) optimizing the model as supervi-
sion. Ref. [10] retrieved the facts from ConceptNet and then mixed them with the objects
detected from images to enhance the visual representation of images. Refs. [19,28] used
internal and external knowledge distillation to regularize the model learning. Knowledge
graphs were bridged to generate scene graphs in [25], and the scene graph generation was
regarded as the bridge between the scene and commonsense graphs. The image captions
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were treated as the image gist knowledge to generate topic scene graphs [29]. Introducing
richer knowledge will make the generated scene graphs more flexible and diverse.

1.1.2. High-Level Understanding of Remote Sensing Image

There have been many studies on scene graph generation for natural scene images,
but few studies focus on understanding remote sensing images semantically, and even
fewer focus on remote sensing image scene graph generation. In some sub-fields of com-
puter vision, the characteristics of remote sensing images make some methods with good
performance in natural scenes perform poorly on remote sensing images and often require
targeted improvements. For example, in the research of image dehazing, both [30,31] have
designed proprietary models for the characteristics of remote sensing images to make the
processed images have better visual effects. In the research of scene graph generation
for remote sensing images, it is essential to design datasets and models for their charac-
teristics to understand them semantically. MSRIN [32] was proposed as a parallel deep
neural network to recognize the objects and their spatial relationships in remote sensing
images. However, MSRIN does not present these spatial relationships semantically and
intuitively. Ref. [33] carried out research on remote sensing image scene graph generation
and proposed a related dataset RSSGD. Although this research has inspired the semantic
understanding of remote sensing images, it lacked consideration of the characteristics of
remote sensing images. The SRSG model pointed out that the relationships between objects
in remote sensing images are more dependent on their morphological features and took
the segmentation results as input directly. The study of semantically understanding remote
sensing images is greatly promoted by these studies. However, the further development of
remote sensing image scene graph generation is limited by the abstraction ability of object
features and the lack of commonsense knowledge.

1.2. Challenges of Scene Graph Generation

Abstracting the semantic relationship in remote sensing images is also essential to un-
derstanding their meanings. However, some common problems of scene graph generation
and the lack of related research have plagued the semantic understanding of remote sensing
images. There are two typical problems in scene graph generation: (1) it is challenging to
integrate the entire image content when detecting semantic relationships; (2) the image con-
tent alone is not enough for a deep understanding of the image [19]. Some early methods
detect visual relationships between objects one by one without considering the connections
of these relationships from the perspective of the whole image [6], which cannot describe
the structure of the entire scene [5]. The surrounding objects are beneficial for detecting
the visual relationship of the current object pair. Therefore, fusing contextual features to
specific object pairs is the key to integrating the complete scene information. Fusing local
and global features is incredibly beneficial to fully understand image information, as is the
case in many computer vision research, such as image dehazing [34], object detection [35],
and so on. Common sense knowledge facilitates visual comprehension when humans
observe an image. That is to say, the abstract semantic reasoning process is difficult to
present by itself in the image pixel set [25]. It is not easy to measure how much our own
prior knowledge and the inherent content of the image play a role in understanding the
image, respectively. However, one thing is sure: the image can be interpreted from a higher
semantic level by importing external knowledge. In addition to the problems mentioned
above, the characteristics of remote sensing images themselves also make it more challeng-
ing to generate scene graphs. Since remote sensing images are obtained from an overhead
view, the objects are distributed in the whole scene, and most things are highly chaotic,
such as Figure 1a, unlike natural images where objects are mainly distributed at the scene’s
bottom. At present, few studies and datasets focus on exploring the semantic relationship
of objects in remote sensing images. These difficulties make it more challenging to extract
the semantic relationships between objects in remote sensing images.
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1.3. Contributions of the Paper

In this paper, we propose a novel remote sensing image scene graph generation
model, RSSGG_CS, by fusing contextual information and statistical knowledge, as shown
in Figure 2. When predicting the semantic relationships between object pairs, only using
local features of the subject and object will make the relationship search space too large;
the model needs to explore all candidates for suitable relationship predicates. However,
the entire image content provides contextual information and a powerful constraint for
predicting the relationship of specific instance pairs [22]. Therefore, to incorporate the
contextual information for all instances in the current image, a filter module (FiM) based on
an adjusted transformer [36] architecture is adopted in RSSGG_CS. In this way, the features
of each object are enhanced, and the weight among instances can be calculated; thereby,
the object pairs without semantic relationships are suppressed, and the search space of
relationship predicates is greatly reduced.

Figure 2. The framework of the RSSGG_CS model. From top to bottom, on the left side of the
model are the object category semantic embeddings branch, the visual feature extraction branch,
and the segmentation results morphological feature encoding branch. Then, the features of different
dimensions are fed into the FiM model to calculate attention and fused to predict the relationship
predicates. Attention is used to compute Loss1 with binary labels and guide objects for combining
and sorting. The Loss2 will be calculated using predicted output and statistical knowledge as well as
labels. When testing, the predicate predicted by the model represents the semantic relationship for
the current object pair, so a series of triples, <subject-predicate-object>, are generated to make up the
scene graphs of the input images.

The semantic relationships between entities in the real world conform to a specific
distribution; for example, in most cases, the relationship between river and vegetation is
<river-through-vegetation>. The distribution of relationships among some specific instances
is inherently independent of the dataset. Moreover, as the sub-space of the real world, the
distribution of relationships between objects in datasets should be consistent with the real
world. Statistical knowledge about object relationships extracted from the dataset and the
people’s daily actual data is a critical supplement for predicting relationship predicates [37].
Therefore, the distribution of relationships among instances can be introduced into the
model as statistical knowledge. In the RSSGG_CS model, we introduce this statistical
knowledge from two sources: (1) the training dataset and (2) the cleaned Wikipedia text.
In this way, as the training progresses, the distribution of the model output gradually
approaches the distribution of statistical knowledge, and the blindness of the prediction is
reduced dramatically. Thus the model will also be able to predict relationships between
instances more accurately.



Remote Sens. 2022, 14, 3118 5 of 16

Furthermore, the objects in remote sensing images are highly mixed, and their relation-
ships are more dependent on their morphological features. The segmentation results of each
object encode its morphological features; the visual features and category semantic embed-
dings directly contain high-level semantic information. Therefore, in the RSSGG_CS model,
we combine all objects’ visual features with their category of semantic embeddings together
to supplement the remote sensing image segmentation results. The process of visual feature
extraction is simplified by importing such high-level semantic information [38].

In this paper, we propose a model, RSSGG_CS, for remote sensing image scene graph
generation and enhance the performance of the model by fusing statistical knowledge and
contextual information. Our contributions are as follows:

1. We propose a novel model, RSSGG_CS, for remote sensing image scene graph generation;
2. We fuse contextual information for each object by the FiM to enhance the feature ex-

traction ability of the model and suppress object pairs without semantic relationships
when generating remote sensing image scene graphs;

3. We import statistical knowledge for the RSSGG_CS model to reduce the blindness of
predicting the relationships between objects in remote sensing images;

4. We combine the visual features and category semantic embeddings of objects to
enhance the semantic expressiveness of the RSSGG_CS model.

2. Materials and Methods

In this section, the structure and implementation of the RSSGG_CS model are pre-
sented in detail.

2.1. The Structure of RSSGG_CS

The RSSGG_CS model is combined with three parallel feature extraction branches and
the FiM module, as shown in Figure 2. The three parallel feature extraction branches are
the object category semantic embedding branch, the visual feature extraction branch, and
the segmentation result morphological feature encoding branch. Various features of remote
sensing images are separated from different dimensions by the three branches and then
connected and input into the FiM module. The FiM model is a transformer-based attention
computation unit. Features of the pairwise instances are fused in the FiM module, and
the attention between instances is also calculated in it. The degree of correlation between
instances is reflected by the attention, which indicates whether there is an actual semantic
relationship between the two objects. To make the model converge quickly, the output of the
FiM final layer will be added to the loss function to suppress the excessive attention between
unrelated instances. Then the object features will be sorted and combined according to
their correlation and input fully connected layer to predict relationship predicates.

To integrate statistical knowledge into the RSSGG_CS model, we incorporate statistical
knowledge into the loss function to complement the supervision. Therefore, the annotation
information, the statistical knowledge of the dataset, and commonsense knowledge should
be considered in the supervision when calculating the loss of the model. In this way, the
total loss of RSSGG_CS will include the attention loss of the FiM output and the final
prediction loss. Next, we will describe each component of the RSSGG_CS model in detail.

2.2. The Three Parallel Feature Extraction Branches

In the feature extraction process of the RSSGG_CS model, features of remote sensing
images are extracted from different dimensions by different branches. The model will
extract three types of features for each object in remote sensing images: (1) the object
category features, (2) the visual features, and (3) the segmentation results’ morphological
features. To represent the features of different modes as unified feature vectors, the above
three features are processed by three feature extraction branches.

The first is the object category semantic embedding branch, corresponding to the
first branch in Figure 2, which maps the category label of each instance in the image to
their semantic vector, that is: wi = E(li), li ∈ L, where L is the set of words for all object
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category labels. We use the Skip–Gram model [39] as the wording embedding function E,
and wi ∈ R80 is the word vector corresponding to li.

The second is the visual feature extraction branch corresponding to the second branch
in Figure 2, which extracts visual features of each object by convolution on remote sensing
images. In the RSSGG_CS model, the object proposals are generated according to the
segmentation maps of the remote sensing images. Then the proposals will be input into the
network to form vectors with uniform dimensions, as follows:

vi = L(Conv(ri)), (1)

where ri ∈ R3 and vi ∈ R300 are the proposal and the encoded visual feature of the object i
in a remote sensing image, and Conv and L represent convolutional layers [40,41] and fully
connected layers, respectively. The kernel size in the convolutional layers is 3 × 3, and the
activation function is ReLU. There are three convolutional layers in each Conv function.

The third is the segmentation results morphological feature encoding branch, corre-
sponding to the third branch in Figure 2, which encodes the morphology of each instance
as a vector. In this paper, we directly perform convolution operations on the segmentation
results of each instance in remote sensing images to extract their morphological features,
as follows:

mi = L(Conv(S(Ii))), (2)

where Ii is the remote sensing image i, and S represents the segmentation algorithm. Conv
and L represent convolutional layers and fully connected layers. mi ∈ R300 is the encoded
vector for each object segmentation result. In this way, the morphological features of each
instance can be extracted based on the input of segmentation results of remote sensing
images by the RSSGG_CS model.

After completing the extraction and normalized representation of the three above-
mentioned pattern features, it is necessary to combine them reasonably. To enhance
the visual features of objects, the semantic embedding of object category label wi and
visual feature vi are first connected. Then, the morphological features of object mi will be
integrated together as the input of FiM module. The feature fusion process is as follows:

fi = L(Concat(Conv(mi), L(Concat(wi, vi)))), (3)

where fi ∈ R680 is the comprehensive feature that will be input into the FiM module. Concat
means concatenating two vectors together. Thus far, we have completed the extraction
process of features of different dimensions, and then the attention will be calculated by
the FiM.

2.3. The FiM Module

To integrate contextual information for each instance, the attention between objects
needs to be calculated by the FiM module. After the FiM module, objects will be combined
and sorted according to the attention between them. The complexity of subsequent predic-
tions could be significantly reduced by filtering out combinations with smaller attention.
The FiM module is designed based on an adjusted transformer architecture as shown in
Figure 3. The attention between objects calculated in the FiM model will be used as part
of the loss function, which is an essential reference for judging whether there is an actual
semantic relationship between two objects. The attention of other instances relative to
instance i will be represented as follows:

atti = so f tmaxm
j=0(

fiWQ × ( f jWK)
T

√
dk

), (4)

where attij represents the effect of instance j on instance i. WQ and WK are projection
matrices that project the visual features into the semantic space; dk is a scaling factor.
m represents that there are m instances in the current image. The semantic correlation
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can be calculated by the function. A larger attij indicates a more significant association
between subjecti and objectj, with an increased likelihood that there is an actual semantic
relationship between them. A matrix consisting of all att will be used to calculate the loss
together with the binary labels y; as shown in Figure 3a, the loss function is:

Loss1 = − 1
(m + 1)2

m

∑
i=0

m

∑
j=0

[yij log(attij) + (1− yij) log(1− attij)], (5)

Figure 3. (a) The structure of the FiM module. The attention computed at each layer is extracted
and used to screen the combinations of instances for which semantic relations actually exist. (b) The
process of computing attention and fusing features for n + 1 instances in an image.

Then, each comprehensive vector fi will fuse all other object features according to
atti∗, as follows:

f a
i =

m

∑
j=0

so f tmax(
fiWQ × ( f jWK)

T
√

dk
) · f jWV + fi, (6)

where f a
i is the vector of object i after fusing contextual information. WQ, WK, WV , and dk

are the same as in function (4). In this way, the contextual information is incorporated into
fi, and the process is clearly shown in Figure 3b. After weighted summation of all instance
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features, the features of fi will be fused again to avoid excessive weakening of the current
object features.

2.4. Importing Statistical Knowledge as Supervision

Commonsense knowledge is an important support for human cognition and reasoning.
In the task of scene graph generation, reasonably importing statistical knowledge can
significantly alleviate the blindness of model predictions. Generally, there are two ways
to introduce external knowledge into the model: enhancing the feature representation of
objects or optimizing the model as supervision. In the RSSGG_CS model, we have used the
latter. The statistical knowledge we used comes from the dataset used to train the model
and the textual data from Wikipedia.

To get the distribution of relationships in the training set, we count the frequency of
predicates describing the semantic relationships of each type of object combination in it.
The relationship distribution can be represented as R = {r0, ..., rn×(n−1)}, ri = {r1

i , ..., rq
i },

r∗i = so f tmax(p∗i /T), where p∗i is the number of the *th predicate that describes the
relationship for object pair <subject, object>i. T is the hyperparameter used to smooth the
distribution. Since the relationships of some object pairs are inherent, and their distributions
are independent of the dataset, the predicate distribution of the test set and training set
should be consistent. Using the KL divergence of the predicate distribution between the
training set and the predicted outputs as the loss function allows the model to quickly
output correct predictions.

To enrich the statistical knowledge, we integrate the external commonsense knowledge
into the distribution of the training set. The commonsense knowledge is derived from
the Wikipedia textual data, which contains a large number of sentences. Since the textual
data contains more instance names and predicates describing relationships, we are only
interested in a small part of them. We need to clean them using the category labels and
predicates in the training set as reference. The similarity between words can be measured
by the semantic distance between them. Therefore, in this paper, Gensim [42] is used to
calculate the semantic distance between the baseline words and those in the textual data,
which obtains a unified semantic representation of words by their statistical properties.
Firstly, the semantic distance between those object category labels in the training set and
the object names in the textual data is calculated. The sentence is filtered out if the semantic
distance of all nouns in a sentence is greater than the threshold. Then, all words with
semantic distance less than the threshold are replaced with their corresponding category
label nouns, as follows:

t∗ =

{
li, dis(li, t∗) < th,
filter out, dis(li, t∗) ≥ th,

(7)

where li ∈ L is one of the category labels, and t∗ ∈ T are the words in textual data. dis(li, t∗)
represents the minimum semantic distance between li and t∗, and th is the threshold. The
same operation is performed for the words in the textual data using the predicates in the
training set as reference. In this way, the remaining sentences in the textual data have high
semantic similarity with the triples <subject-predicate-object> in our training data set. The
statistical knowledge used for training has been dramatically expanded. After that, using
these sentences, we count the frequency of different predicates in each type of object pair
<subject, object>, similar to R. To fuse the statistical knowledge of the training set and
textual data for the same object pairs, we directly add up the number of different predicates
obtained from the two data sources. The merged statistical knowledge is expressed as R̂.

This statistical knowledge will be used with the distribution of the model output to
calculate the KL-divergence Dkl(R̂|P), which enables constraints on the model. The loss
between the labels of object pairs relationships and the model predicted output is calculated
using cross entropy H(Y, P). Thus, the loss function of RSSGG_CS is:

Loss2 = (1− β− α)H(Y, P) + βDkl(R̂|P) + αLoss1, (8)
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where β and α will change with epoch, which changes the weight of each part as the training
progresses. The Y and P are the predicate label and the predicted output by the model
for the relationship of an object pair, respectively. In this way, the statistical knowledge is
incorporated into the RSSGG_CS model in the form of supervision.

3. Experimental Results and Discussion

The experimental approaches and the dataset for training the RSSGG_CS model are
described carefully in this section. Each part of the RSSGG_CS model was experimentally
validated in detail and compared with other methods, and the experimental results were
analyzed deeply.

3.1. Implementation Details

We conducted our experiments on the dataset S2SG, which is the first dataset of remote
sensing image scene graph generation based on segmentation results. The remote sensing
images in the S2SG were taken from the WHDLD dataset [43], a widely used dataset for
remote sensing image segmentation. In the S2SG dataset, the instances in remote sensing
images are distinguished manually, and the relationships between them are labeled in
detail. The resolution of images is 256× 256, and there are 128 images and 100 images
in the training set and test set, respectively. Because there are rich semantic relationships
between instances in remote sensing images, there are 1200 predicates in the training
set. It is worth noting that the number of each predicate is consistent in training set to
allow the model to more fully learn the features of different semantic relationships. Such
an annotation method reduces the impact of data bias on the model. Furthermore, the
relationships between objects in the test set are fully annotated to more fully validate the
performance of the model. In the dataset, there are 6 categories: ‘bare soil’, ‘building’,
‘pavement’, ‘road’, ‘vegetation’ and ‘water’. There are also 12 relationship types: ‘through’,
‘stretch’, ‘surround’, ‘across’, ‘top’, ‘blend’, ‘parallel’, ‘inlaid’, ‘right’, ‘left’, ‘below’ and
‘semi-surround’. This paper uses the segmentation results to locate the objects in remote
sensing images and represent their morphological features. Therefore, each object was
labeled by the segmentation result in the dataset, as shown in Figure 1b, not the bounding
boxes as other datasets used in scene graph generation.

When training the model, given an image, the categories of all the labeled instances in
the image, the image sub-regions corresponding to the instances, and their corresponding
segmentation results were input into the corresponding branches to extract features of
different patterns. After fusing the features of each instance by the FiM model, the features
of the instances were combined in pairs and input to the fully connected layer to predict
the relationship predicate between the current two instances. The prediction results of
the current object pair, their predicate label, and the statistical frequency of each predicate
of the current instance pair were jointly input into the loss function to calculate the loss.
During testing, the instances segmented from the remote sensing images were fed into
the model in the form of three branches of the model. Eventually, the model predicted
the relational predicates corresponding to each object pair. For the object pairs without
semantic relationships, the prediction result was none. In our experiments, the batch size
was 1, and the epoch was set to 800. The learning rate was set to 10−5.

To evaluate the performance of our method, the recall@K (R@K) [6] and mean recall@K
(mR@K) [44] were used as the evaluation metrics. The proportion of the correct relationships
among the top K confident predictions was computed to get the R@K. The average of each
type of predicate R@K on the entire dataset was calculated to get the mR@K, which has
the ability to more comprehensively measure whether the model can detect every kind
of relationship. The computer configuration used for all experiments was: Pytorch1.10,
Python3.6, an RTX 2080Ti GPU and a 2.3GHz CPU on Ubuntu16.04.
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3.2. Ablation Studies

To verify the effect of each component on the model performance, we tested different
combinations of submodules, as shown in Table 1. VF represents the visual features of
objects in remote sensing images, which corresponds to the second branch of Figure 2
and is the baseline of our experiments. WE are the word embeddings of object categories
corresponding to the first branch of Figure 2. The morphological features of each object are
represented by the MF, such as the third branch of Figure 2. FiM is the filter module to filter
the object pairs without semantic relationships. SK_D, SK_E, and SK_DE represent the
statistical knowledge imported into the model from the training dataset, external text, and
both, respectively. The SEG represents the segmentation results used in the third branch,
which are generated by the segmentation algorithm LANet [45].

Table 1. Comparison among different combinations of submodules in RSSGG_CS.

Sub_Module R@50 mR@50 R@20 mR@20

VF 0.2499 0.2355 0.1837 0.1332
+ WE 0.2642 0.2450 0.1900 0.1396
+ WE + MF 0.3131 0.2682 0.2257 0.1838

+ WE + MF + FiM 0.3074 0.2745 0.2281 0.1469

+ WE + MF + FiM + SK_D 0.3044 0.2795 0.2256 0.1639
+ WE + MF + FiM + SK_E 0.3248 0.2666 0.2412 0.1579
+ WE + MF + FiM + SK_DE 0.2915 0.2820 0.2204 0.1894

+ WE + MF + FiM + SK_DE_SEG 0.3040 0.2386 0.2260 0.1707

Comparing the first three rows in Table 1, the metrics obviously increase with more
modal features of object pairs fed into the model, especially the inputting of MF. This
indicates that the morphological characteristics of instances in remote sensing images
play a decisive role in the semantic relationships between them. Different modal features
provide rich clues for the model to predict the semantic relationship between objects.
The introduction of FiM fuses global features of the whole image for each object while
suppressing pairs of instances with no semantic relationships. It causes an increase in
mR@50 and R@20 but a decrease in mR@20 and R@50. These changes may be because
FiM allows the model to predict more semantic relationships of object pairs correctly
but suppresses the prediction scores of relational predicates, reducing the number of
correctly predicted semantic relations in the top 20. It also shows that fusing contextual
information makes the object contain the surrounding instance features and reduces the
characteristics of the object itself. The SK_D lightly increases the mR@50 and mR@20,
indicating that the model predicts the predicates of object pairs with higher prediction
scores. SK_E is the statistical knowledge of the external text, which obviously increases the
R@50 and R@20, indicating that a richer common knowledge allows the model to make
more comprehensive predictions. SK_DE integrates the statistical knowledge of the dataset
and external text into the model, achieving the best performance. Statistical knowledge as
prior information greatly reduces the blindness of the model when searching the semantic
space while making it easier for the model to generate high-frequency predicates. The
last row shows the model performance after replacing the artificial segmentation labels
of the remote sensing images in the third branch of the model with the results generated
by the segmentation algorithm, which leads to a decrease in mR@K and an increase in
R@K. The decrease in mR@K is because some small instances in the semantic labels of
remote sensing images generated by the segmentation algorithm are challenging to be
presented entirely. Their morphological characteristics have significantly changed, resulting
in a significant decrease in the prediction scores of some predicates, such as ‘across’. In
summary, reasonably introducing statistical knowledge to the model and fusing contextual
information can significantly improve its performance in generating scene graphs of remote
sensing images.
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The trends of mR@50 with a different configuration of RSSGG_CS in the first 20 epochs
is shown in Figure 4. The blue line indicates that the model only introduces the transformer
structure for fusing contextual information but does not output the calculated attention
as supervision for filtering instance pairs without semantic relations; that is, the α in
Equation (8) is 0. The red line indicates that the α is set at 0.01. The green line represents the
complete RSSGG_CS structure; that is, the contextual information and statistical knowledge
are fused into the model. It can be seen that the introduction of the supervision of the
attention can make the model more stable and obtain better performance faster. This shows
that using attention as supervision can filter out many object pairs without actual semantic
relationships, reducing the number of object pairs for which the model needs to predict
semantic relationships. The addition of statistical knowledge makes the model performance
more excellent, and its upward trend is more prominent. This trend shows that statistical
knowledge indicates the direction of convergence for the model and contains a wealth of
commonsense knowledge. During training, when the epoch is less than 10, α and β in
function (8) are set to 0.01; after that, both are set to 0. In this way, the output of the model
can be quickly restricted to the expected semantic space, which significantly reduces the
blindness of its search. After the model’s predictive ability is enhanced, setting α and β to
0 can avoid the side effects of macro statistical knowledge on individual case prediction.
The prediction of each type of relational predicate is shown in Figure 5. Even though
the number of each relational predicate is consistent in the training set, their mR@50 still
differed significantly. This indicates that each relational predicate is different in terms of
learning difficulty and the richness of the semantic information it contains.

Figure 4. The trends of mR@50 with different structures of RSSGG_CS in the first 20 epochs.

Scene graph generation of the natural scenes can be generally divided into three sub-
tasks: (1) predicate classification (PreCl): predicting the predicate between two instances,
given the ground truth locations and categories of the objects; (2) phase classification
(PhaCl): predicting the classes and the predicates of object pairs, given the ground truth
locations of objects; (3) scene graph generation (SGG): detecting the objects and relation-
ships between them simultaneously [6,33,44]. As with the scene graph generation task for
natural scenes, we also tested RSSGG_CS on the three subtasks of scene graph generation,
as shown in Table 2. In the first subtask, PreCl, the original image, the embedding of
the instance category, and the instances’ location were fed into the model. In the scene
graph generation of natural scenes, the bounding boxes were used to locate the objects.
However, the morphological features of instances in remote sensing images were decisive
for the semantic relationship between them, so the segmentation results of the objects were
used to do their localization in this work. In the second subtask, PhaCl, the embeddings
of instance categories were removed in the model’s input. The images were firstly fed
into the segmentation algorithm in the third subtask SGG. Then, the segmentation results
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generated by the segmentation algorithm and the original images were simultaneously
input into the model to generate the scene graphs. It can be seen that the category semantic
embedding of the instance and the performance of the segmentation algorithm have a
significant impact on the generated scene graph.

Figure 5. Prediction results for each type of relational predicate.

Table 2. The performance of RSSGG_CS on the three subtasks of scene graph generation.

PreCl PhaCl SGG

mR@50 mR@20 mR@50 mR@20 mR@50 mR@20

0.2820 0.1894 0.2769 0.1566 0.2419 0.1489

3.3. Comparison Experiments

Furthermore, we compared our RSSGG_CS model and other scene graph generation
algorithms. The performance of RSSGG_CS and previous models for remote sensing image
scene graph generation is shown in Tabel 3. The first three are VCTree [26], MOTIFS [27],
and IMP [24], which are classical algorithms for scene graph generation in natural scenes.
The fourth is the model specifically designed for remote sensing image scene graph gen-
eration, which only uses the encoded morphology features to generate the scene graphs
of remote sensing images. As with SRSG, we make appropriate adjustments to the inputs
of the first three models to enable them to use the segmentation results of remote sensing
images as inputs. The comparison shows that our model far outperforms the first three
algorithms on two metrics. The first three models take only the original images and the
bounding boxes of objects as input. The latter two methods also take the segmentation
result as a supplement to the input and achieve superior performance. Such comparison
results also show that the refined annotation of complex scenes is a prerequisite for fully
understanding its content. For scene graph generation, the panorama annotation is crucial,
but there is no such designed dataset at present. This will be one of the focuses of our
further research. The RSSGG_CS model also has significant advantages over the SRSG
model. Such results indicate that fusing contextual information allows instances to interact
with surrounding objects better, and the introduction of statistical knowledge makes the
model more targeted in predicting relational predicates.
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Table 3. Comparison between previous models and RSSGG_CS for remote sensing image scene
graph generation.

Model mR@50 mR@20

VCTree 0.1261 0.0915
MOTIFS 0.0707 0.0447

IMP 0.0628 0.0480
SRSG 0.2561 0.1602

RSSGG_CS 0.2820 0.1894

To clearly present the scene graph of remote sensing images generated by our RSSGG_CS
model, the visualization results are given in Figure 6. Compared with natural scenes, the
semantic relationships among instances in remote sensing images are more complex because
the instances have more complex morphology features. Some predicates such as ‘inlaid’ and
‘through’ are more easily to predict, but some are hard, such as ‘stretch’, for which they are
difficult to define clearly. It is not easy to strictly distinguish different individuals between
instances of the same category, making scene graph generation of remote sensing images more
challenging. Therefore, generating the scene graphs of remote sensing images based on the
segmentation results is more reasonable. Fusing the contextual information enhances the feature
representation of objects, and the attention calculated by the FiM makes the model focus on
the current instance. The prior information embedded in the statistical knowledge enables the
model to have the expected optimization direction when faced with different instance pairs.
These methods significantly reduce the difficulty for the RSSGG_CS model to mine the semantic
information between objects in remote sensing images. It is worth noting that the graph structure
with “nodes” and “edges” unifies the representation of different modal information. This allows
us to integrate more complex external information into the generated scene graph to perform
higher-level tasks like decision making.

Figure 6. The illustration for scene graphs of remote sensing images is generated based on segmen-
tation results. Each sub-image is followed by the visible light image of the remote sensing image,
the corresponding segmentation result, and the generated scene graph. The nodes of the scene
graph are represented by the segmentation results of the corresponding instances, and the semantic
relationships between instances are represented by the predicates on the edges. The dashed lines
indicate that the model failed to predict the relational predicate correctly.
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4. Conclusions

In this paper, we propose the RSSGG_CS model for the scene graph generation task of
remote sensing images. The contextual information and statistical knowledge are fused
into the model to accurately predict the semantic relationships between objects in remote
sensing images. Multiple modal information is fed into the RSSGG_CS model to make
it easier to distinguish the characteristics of different instances. The transformer-based
FiM model integrates contextual information for each object. The attention calculated by it
represents the degree of association between instances, which is an essential reference for
judging whether there is a semantic relationship between objects. FiM greatly enhances the
feature extraction capability of the model and enhances its accuracy in predicting relational
predicates between instances. The introduction of statistical knowledge from the training
dataset and commonsense constrains the search space of the model and improves the quality
of its generated scene graphs while accelerating the convergence of the model. Rational
incorporation of statistical knowledge and fusion of global information are important
means to generate remote sensing image scene graphs. In the subsequent study, we will
investigate how to incorporate pre-trained visual knowledge for the model to understand
remote sensing scenes better.
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