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Abstract: Over a billion people live in slums, with poor sanitation, education, property rights and
working conditions having a direct impact on current residents and future generations. Slum mapping
is one of the key problems concerning slums. Policymakers need to delineate slum settlements to
make informed decisions about infrastructure development and allocation of aid. A wide variety
of machine learning and deep learning methods have been applied to multispectral satellite images
to map slums with outstanding performance. Since the physical and visual manifestation of slums
significantly varies with geographical region and comprehensive slum maps are rare, it is important to
quantify the uncertainty of predictions for reliable and confident application of models to downstream
tasks. In this study, we train a U-Net model with Monte Carlo Dropout (MCD) on 13-band Sentinel-2
images, allowing us to calculate pixelwise uncertainty in the predictions. The obtained outcomes
show that the proposed model outperforms the previous state-of-the-art model, having both higher
AUPRC and lower uncertainty when tested on unseen geographical regions of Mumbai using the
regional testing framework introduced in this study. We also use SHapley Additive exPlanations
(SHAP) values to investigate how the different features contribute to our model’s predictions which
indicate a certain shortwave infrared image band is a powerful feature for determining the locations
of slums within images. With our results, we demonstrate the usefulness of including an uncertainty
quantification approach in detecting slum area changes over time.

Keywords: slum; mapping; multispectral; satellite imagery; deep learning; uncertainty quantification

1. Introduction

Urbanisation refers to a socio-economic process that involves the transformation of the
built environment into urban settlements and the relocation of rural inhabitants to urban
areas [1]. Along with demographic changes, this can both aid and obstruct sustainable
development, often at the same time and in the same place. When planned and managed
properly, urbanisation has the potential to bring prosperity and assist inhabitants in over-
coming poverty by improving productivity, employment opportunities, and overall quality
of life; when poorly planned, it can exacerbate problems regarding access to social and
environmental resources, leading to a cascade of consequences that fuel environmental
degradation, deprivation, and social exclusion [2–6]. The substantial proliferation and
expansion of urban informal settlements are typical products of mismanaged urbanisa-
tion [7–9]. Informal settlements are the most visible symptoms of the incapability of urban
management to scale up housing supply in response to rising demand, resulting in the
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formation of disorganised clusters with varying levels of essential provisions, infrastructure,
and amenities [10–14]. Such settlements are closely related to slums, whose dwellers are de-
prived in multiple ways, suffering from lack of access to water or sanitation, overcrowding,
non-durable housing, or illegal tenure [9].

Along with the acceleration of urbanisation, the worldwide slum population has
continued to grow over the years, surpassing 1 billion in 2018, accounting for 23.5% of
the global population [15]. Particularly in low- and middle-income countries (LMICs),
which will contribute hugely to future global urbanisation, the proportion of slum dwellers
is substantially higher. For instance, about 41.3% of Greater Mumbai’s population lives
in slums [16] and over 62% of the urban population in Sub-Saharan Africa resides in
slums [17]. Additionally, income losses resulting from the COVID-19 pandemic have forced
an increasing number of people to live in slums, causing greater crowding and deteriorating
slum residents’ quality of life and further increasing their vulnerability [18].

To achieve the Sustainable Development Goals (SDGs), in particular SDG 11 of sus-
tainable, safe, resilient, and inclusive cities and communities, it is important to accurately
and routinely monitor and map the dynamic development of these urban settlements at
high spatial and temporal resolutions [19–21]. However, reliable, up-to-date, and publicly
accessible spatial information for these areas is often unavailable owing to technological
restrictions and a scarcity of resources [14,22–24]. This phenomenon is magnified in LMICs,
where internal and circular population migration is more intensive, causing data on slums
to quickly become obsolete [8]. As such, the continuous expansion of slum areas remains
under-reported in censuses or surveys, impeding the targeted provision of infrastructure
and assistance to the most impoverished areas, consequently hindering their improvement.

To address these issues, remote sensing imagery sourced from aerial and spaceborne
platforms provides a sustainable source of spatial-contextual information on slums, facilitat-
ing detection and tracking of their development, comparing the inter-and intra-slum hetero-
geneity, analysing morphological characteristics, and informing policymaking [7,20,25–28].
Using remote sensing imagery has several advantages over conventional survey-based
methods like taking a census, including but not limited to cost-efficiency, global coverage,
and higher resolution in both space and time [20,27,29]. Furthermore, these advantages
are augmented by the advancement in computer vision, including machine learning [30]
and deep learning [14,28,31,32]. There are different levels of accessibility of satellite im-
ages, with some images being free to use and publicly accessible, and these are the most
desirable to use in the often less well-funded settings that unfortunately are more common
within LMICs. The lack of any pixel-level deep convolutional slum mapping models for
multispectral satellite data is the first of four main gaps that we identify in the literature.

Whilst there are various machine learning models that have been applied to the slum
mapping problem, so far model interpretability has not been investigated. Knowing how
models make decisions can be just as important as a model having high performance as
this gives users increased confidence in using the model [33]. This is particularly important
in applications like slum mapping where there is still no substantial uptake in model use
in real applications outside of academia [27]. Identifying the most powerful multispectral
image bands that the investigated models use to distinguish slum dwellings is the second
of the four main research gaps that are investigated in this paper.

One consistent problem with these machine learning slum mapping models is that
outputs are not accompanied by uncertainty measures [34] that inform users about the
level of confidence the model has in its predictions, despite this being called for in the
literature [32,35]. Building a model with uncertainty quantification works towards tackling
problems of reduced model deployment and trust [36–40]. Generally, uncertainty quantifi-
cation is shown to be important and successful in scenarios where output data is used to
make significant decisions [37], with examples in medical applications [41], self-driving
cars [42] and natural language processing [43]. If, for example, a local government was
going to spend large amounts of money on infrastructure development to improve the
lives of slum-dwellers, they might like to use a mapping model to estimate the number of
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people living in slums within a geographical region. Even a small amount of uncertainty
could add up to become a significant error when calculations are done over the scale of
entire cities like Mumbai and Karachi where millions of slum dwellers reside. Knowing
about model uncertainty would be very useful and allow the local government to make
more confident decisions. This represents the third of the four main research gaps.

When training and testing their models in the same cities, existing studies have
consistently used random data splits (whether at the pixel or image level) to separate
data into training and test sets. This results in scenarios where the model is being trained
in close geographic proximity to where it is being tested, different to how it would be
deployed in a real-world application. Due to the great heterogeneity of slums with both
their physical and visual manifestation varying significantly even within geographical
localities [27,44], splitting the data randomly in the way used in previous studies where
test data is geographically so mixed in with training data results in unrepresentative and
favourable testing conditions. This is because the model has seen neighbouring (and more
likely similar) pixels or images to what it is predicting on and so can perform better. We
recognise this less realistic testing procedure as a fourth main research gap that inspires
our regional testing approach.

In summary, the main contributions of this study, in the order which they appear in
the rest of the paper, are as follows:

1. We present our U-Net model which is the first deployment of a convolutional deep
learning model to identify slum buildings in individual pixels in free and publicly
available multispectral satellite images.

2. We introduce our regional testing approach which we use to test our model against
the Random Forest model that represents the current state-of-the-art for pixel-level
classification. This testing method allows for more representative performance scores
to be obtained, measuring more realistically how well models generalise to unseen
whole geographical regions giving users greater confidence in applying the model.

3. We demonstrate that confidence measurements can be obtained per pixel within an
input image by using Monte Carlo Dropout (MCD) in our U-Net model, demonstrating
for the first time uncertainty quantification built into a deep learning slum mapping
model. This produces uncertainty values that we measure alongside AUPRC (Area
Under the Precision-Recall Curve) within our regional testing framework, showing
that our U-Net model with MCD achieves a 9% improved regional test AUPRC and
orders of magnitude decreased regional test uncertainty compared to the Random
Forest model.

4. We investigate the interpretability of the models and show that certain multispectral
bands, particularly a shortwave infrared band, are the most powerful features for
both the U-Net and Random Forest models. We demonstrate the strength of our
U-Net model with a slum area monitoring example, showing that knowledge of the
uncertainty provides us with much greater confidence in the application of the model.

The outline for this paper is as follows. The existing literature related to the slum
mapping problem is reviewed in Section 2 focusing on papers working at high spatial
resolutions of 10-m or better and the current literature gaps. Then, in Section 3 the proposed
methodology is explained. Next, we outline our results in Section 4 where we compare our
model to the current state-of-the-art technique. In Section 5 our results are discussed before
concluding with the limitations of our approach and the findings of the paper in Section 6.

2. Literature Review
2.1. Slum Mapping without Uncertainty Quantification

The review paper [27] highlights important research progress in the numerous studies
in the area of slum mapping from remotely sensed satellite imagery and shows that machine
learning-based methods have displayed great promise for mapping slums. Currently, when
using publicly available multispectral satellite images for 10-m or better spatial resolution
slum mapping, the [32] model which uses decision trees represents the state-of-the-art.
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However, as recommended by [27], purely single pixel-based approaches like [32] should
be avoided as they ignore the surrounding pixel context.

Whilst previously convolutional neural network (CNN) models (which incorporate
surrounding pixel information when making predictions) have been used for slum map-
ping, to date, these models have been applied to expensive and not publicly available
visual Red, Green, Blue (RGB) Very High Resolution (VHR) imagery [14,28,32,45] or have
been used on publicly available images in ways that limit the strength of the models, for
example classifying large boxes of pixels in a single classification [14] significantly sacri-
fice mapping resolution. Other multispectral models have been produced using free and
publicly available satellite imagery but used single pixel-based approaches in the form of
tree-based approaches [21,32]. To the best of our knowledge, there is no approach so far
using surrounding pixel context information via convolutional network methods for free
and publicly available multispectral image datasets.

It has generally been found that models trained in one slum display poor generalisation
performance when evaluated on a different unseen slum. This is likely due to the variation
in slum appearances caused by differing building materials or space constraints causing
good model parameters to vary between geographical areas [26]. The rarity of quality
training data and the interpretability and generalisability of models represent pressing
problems that require further work in this area [27]. We think testing procedures used
in the literature inflate test scores and so we use test datasets completely geographically
separate from training datasets rather than including pixels or images from all over the
geographical region of interest in both the test and training datasets.

Multiple studies have used traditional machine learning approaches and have obtained
high test accuracy scores of around 90% on test datasets [21,46]. However, due to the
imbalanced nature of the datasets involved with this problem (most pixels in the images
representing non-slum land), these accuracy scores are not necessarily representative of
strong generalisation ability.

2.2. Slum Mapping with Uncertainty Quantification

We emphasise that only frequentist (i.e., non-Bayesian) approaches have been taken [27,32]
by authors implementing machine learning models. The frequentist approach means that
one particular set of model weights is assumed to be optimal rather than taking a Bayesian
approach where a posterior distribution of possible model predictions is considered. Previ-
ously machine learning model uncertainty has never been considered in works on the slum
mapping problem, despite being called for by [27,32]. There are two studies which consider
uncertainty in a basic way, however, neither obtain per-pixel uncertainty measurements for
the obtained predictions.

In [7], the spatial (extensional) uncertainties in slum boundaries delineated by urban
scientists on VHR maps were considered. Substantial variations in the predictions made
were found among these human experts particularly at the boundaries of settlements,
highlighting the importance of objectively quantifying the uncertainty of models for this
task. With a traditional non-machine learning Object-Based Image Analysis (OBIA) ap-
proach and a focus on Jakarta, Indonesia, ref. [35] interviewed local experts to produce lists
of common characteristics of slums in the area. These were converted into rule sets for
different OBIA models. The level of agreement between the models was calculated as an
integer confidence score out of five and used as a proxy for certainty, rather than a precise
uncertainty value like can be obtained by modern computer vision models [36].

It has been repeatedly emphasised that understanding the levels of uncertainty is
an important area of study and represents an important work to be done to improve
machine learning slum mapping model interpretability and deployability [26,27,32,35]. We
emphasise that, as far as we know, there are no existing machine learning models for slum
mapping which have uncertainty quantification in the literature and so this motivates this
aspect of our work.
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3. Materials and Methods
3.1. Dataset

In this paper, we focus on the city of Mumbai, India, where in 2011 P.K. Das &
Associates produced an award-winning map of the city’s slums which can be viewed in
Figure 1. Red areas denote slums, black lines denote roads and the yellow line indicates the
boundary of the Greater Mumbai area. Light blue lines denote the boundaries between the
regions that we use in our regional testing approach. This map is one of few high quality
and comprehensive publicly available slum maps of large cities. Mumbai has been the
focus of several slum mapping studies and for good reason. Mumbai is one of the most
populated cities in the world with 20 million inhabitants. The city spans a vast geographical
area of 4355 km2 and is home to one of the largest slum-dwelling populations anywhere
in the world at around 6.5 million people [47]. Over 80% of these slum dwellers live on
lands unsuitable for development like marshland, hills or along railways. Our dataset is
comprehensive for the Greater Mumbai Region, providing much a stronger dataset than
that used by [32], who report that their Mumbai map is less than 75% complete. We used
10-meter resolution 13-band multispectral imagery from January 2015 to December 2020
from the Sentinel-2 satellite and processed by Descartes Labs.

Figure 1. The 2011 P.K. Das & Associates Slum Map of Mumbai.
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We chose this data because the image data is freely available through the European
Space Agency (https://sentinel.esa.int/web/sentinel/sentinel-data-access (accessed on
16 June 2022)) it contains multispectral bands to allow us to provide models with data
from outside the visible spectrum and is of a high resolution allowing for mapping to a
fine level of granularity. We tiled the Mumbai region, using square tiles with a width of
64 pixels with 2 pixels of padding. Details of the dataset creation process can be found in the
Supplementary Materials and the code is available on GitHub (https://github.com/harry-
gibson/dl_image_segmentation (accessed on 16 June 2022)).

3.2. Problem Statement

This study uses a dataset of N = 1335 image-target pairs D = {(xi, yi) : i = 1, ..., N}
from Mumbai where the target yi is a binary array corresponding to and of the same
dimensions as xi, with 0 values representing non-slum and 1 values for slum. The targets
are obtained as ground truth data from the P.K. Das map made in collaboration with local
authorities [48]. Figure 2 shows an example image x on the left and the corresponding
target y on the right. A good model will output high probabilities for pixels that are slum
(shown in yellow in the ground-truth image on the right in Figure 2) and low probabilities
for pixels that are not slum (shown in dark purple).

Figure 2. An example image-target pair from the dataset.

3.3. Regional Testing

We measure the performance of the models using our regional testing approach
which we explain here. We split the dataset of images into four geographical regions as
shown in Figure 1 with the regions chosen so that each contains roughly the same number
of slum pixels. To perform regional testing we use a leave one out approach, with the
specific region which has not been included in the training and validation set being used
as unseen test data. For example the AUPRC scores reported for Region 1 correspond to
the performance from a model trained and validated on data from Regions 2, 3, and 4 that
was tested on Region 1. Using random data splits can result in the model being trained
in close geographic proximity to where it is being tested, which is not representative of
how models generalise. Pixel-level splitting into train and test sets would result in an even
more significant mixing of the two sets at a more local level. Regional testing provides a
more rigorous and representative form of model testing, indicating better how well models
perform in unseen geographical regions.

3.4. Metrics

As the dataset is highly imbalanced with many more not-slum pixels than slum pixels,
accuracy alone is not a good measure of the performance of a model—only about 10%
of the pixels in the dataset are slum. To address this issue, we use the Area Under the
Precision-Recall Curve (AUPRC) and the uncertainty explained in Section as metrics to
distinguish between models. We use the AUPRC as it is typically more informative than
the Area Under the Receiver Operator Characteristic (AUROC) for imbalanced datasets
and does not give a false sense of high performance on imbalanced classification tasks [49].

https://sentinel.esa.int/web/sentinel/sentinel-data-access
https://github.com/harry-gibson/dl_image_segmentation
https://github.com/harry-gibson/dl_image_segmentation
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3.5. Proposed Uncertainty-Aware U-Net

Our model is based on the U-Net architecture that was initially proposed by [50] and
has seen successful application in various image segmentation tasks. This model uses a
convolutional encoder-decoder architecture as shown in Figure 3 and therefore importantly
uses information from surrounding pixel context as called for in the literature [27]. A
normaliser trained on the training data is used to help the gradient descent process converge
more quickly during training. The Adam optimiser [51] with an initial learning rate
0.001 with 100 epochs of training and a batch size of 128 was used. We used F = 32 in
Figure 3 to set the number of filters for our U-Net model. We used the standard binary
cross-entropy loss LBCE as the loss. For target and predicted segmentations y and ŷ of
tiles with dimensions H ×W and pixel values yh,w, ŷh,w, the binary cross-entropy loss is is
given by

LBCE(y, ŷ) = − 1
H ·W

H,W

∑
h=1,w=1

[yh,w log(ŷh,w) + (1− yh,w) log((1− ŷh,w))] (1)

Figure 3. Our proposed U-Net architecture with Monte Carlo Dropout for uncertainty-aware
slum mapping.

We use Monte Carlo Dropout (MCD) [37,52,53] between every layer of the architecture
which intuitively randomly turns off a proportion of weights in the model. Each of these
different randomly dropped-out models make a slightly different prediction, which simu-
lates the process of sampling from the distribution of the weights. Dropout also prevents
overfitting during training [54].

In the following, we briefly explain MCD. For a training set D = {(xi, yi)}N
i=1 with

inputs xi and target segmentations yi, and a neural network with parameters θ, we can
think of the neural network as a conditional distribution p(y|x, θ). Given a test image x∗,
the posterior predictive distribution is

p(y∗|x∗,D) =
∫

p(y∗|x∗, θ)p(θ|D)dθ, (2)

where p(θ|D) is a posterior distribution over θ given the training data.
The posterior predictive distribution is intractable to find analytically. We can approxi-

mate it by using MCD as introduced in [52]. For T models with dropout activated at test
time to give different model parameters θt and writing p̂t := p(y∗|x∗, θt) we approximate

p(y∗|x∗,D) ≈
1
T

T

∑
t=1

p̂t (3)

Using dropout in this way is preferable as it reduces computation whilst preventing
overfitting during training [54]. MCD is explained further in [52,54,55]. We use 500 different
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dropout models times to sample a wide range of models from the distribution. The dropout
rate for all the models was 0.25.

3.6. Baseline Model: Random Forest

Random Forest models [56] have seen successful widespread application to problems
in remote sensing [57]. Tree-based models have been used for slum mapping from satellite
images in several studies [21,32,46] including the current state-of-the-art slum mapping
model for free and publicly available multispectral satellite imagery [32] which provides a
state-of-the-art benchmark for comparison of our proposed model.

We used a 500 tree Random Forest model, with each tree having a maximum depth of
20 and a minimum leaf node size of 10 as the baseline model. Both of these hyperparameters
effectively control the maximum depth and doing this improves generalisation by giving
lower out-of-sample variance, reducing the likelihood of overfitting [58] and also ensuring
that our probability estimates are more consistent and out-of-sample variance is lower [59].
As stated in [60], a 500-tree Random Forest provides equivalent performance to using a
15-tree Canonical Correlation Forest. Therefore the Canonical Correlation Forest model
with 10 trees used by [32] to obtain the previous state-of-the-art in slum mapping from free
and publicly available multispectral satellite imagery will have performance equivalent
to or inferior to the Random Forest model we implement in this paper. This is because
increasing the number of sub-models within the ensemble improves performance and
reduces prediction variance [61].

3.7. Calculation of Uncertainty

In this study, we used moment-based predictive uncertainty as in [62], simplifying their
calculations to our case where the model output probabilities are one-dimensional scalars
rather than multi-dimensional probability vectors. This involves calculating the variance of
an output given the predictive distribution of the output, which we approximate empirically.
In our binary classification case where the dropout model with index t assigns probability
p̂t to the positive class as its final output for a particular pixel in a particular input image,
we approximate the true underlying variational variance uncertainty distribution by:

Uncertainty = ¯̂p(1− ¯̂p) (4)

where ¯̂p := 1
T ∑T

t=1 p̂t for that pixel.
Gal in [55] showed that this plugged-in estimator converges in probability to the true

variational variance when the number of models T becomes large. This calculation allows
us to quantify the uncertainty as called for by [26].

For the Random Forest model, the p̂t values are obtained as the individual probability
assignments (calculated using the proportion of training classes within the tree node the
test case resides in) to the positive slum class from each of the constituent decision trees
within the forest. The Brier score [63] of the Random Forest probability predictions was
not reduced by using isotonic or sigmoid calibration and hence calibration was not used.
For our MCD-based U-Net model, the p̂t values are obtained as the individual probability
assignments to the positive slum class from each of the different dropout models.

3.8. Comparison Strategy

The approaches to slum mapping are different between the Random Forest and U-Net
models. The Random Forest model takes as input the data from a specific pixel and uses
this to classify it into slum and not-slum. This makes it a pixel based-approach. U-Net,
however, segments a whole satellite image into a binary mask of slum and not-slum which
is a whole-image segmentation approach. By considering the image as a bag of pixels we
make these two approaches comparable by only looking at the pixel level to see the AUPRC
score uncertainties for each model.
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3.9. Example U-Net Model Predictions

Figure 4 shows some predictions made by the proposed model on three different
tiles when a (non-optimised) classification threshold of 0.5 is used. Each row shows
the tile, the ground truth label without masking (yellow denotes slum and dark purple
denotes not slum), the Bayesian U-Net prediction along with the aleatoric and epistemic
uncertainties. When added together, these two uncertainties form the overall uncertainty
that we investigate in this paper. Note that we have shown very high 1-m resolution RGB
images in the first column whilst 10-meter resolution multispectral images were actually
used by the model. Figure 4c shows an example of ground truth mislabelling as a strip
has been labelled as not-slum whilst appearing to be slum. Whilst mislabelling like this
in the dataset does occur, the vast majority of the pixels appeared on visual inspection to
be labelled correctly, providing the model with enough accurate training data. When the
image is all slum or all not-slum like in the case of Figure 4c, it can be observed that the
model predicts with very low uncertainty values almost at zero for every pixel in the image.

(a)

(b)

(c)

Figure 4. True labels, predicted labels and uncertainty for three different tiles (a–c) when using our
proposed U-Net model with Monte Carlo Dropout.

4. Results

We compare our uncertainty-based U-Net model described in Section 3.5 to the base-
line Random Forest model described in Section 3.6. We use the Regional Testing approach
as outlined in Section 3.3.

4.1. Regional Test AUPRC

The results for the models when measuring regional test AUPRC is presented in Table 1.
The average across all regions is also shown. We see that the U-Net model consistently
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outperforms the Random Forest model in each region, resulting in a 9% improvement in
the average regional test AUPRC score. Figure 5 shows the training history plots of the
different metrics on the training and validation data for our U-Net model with MCD. Note
that due to training the model using dropout, the validation metric values are often slightly
higher than the corresponding training metric value at the same epoch. This is because
at validation time dropout is not used during this validation process, resulting in a more
robust model.

Table 1. Regional test AUPRC scores for Random Forest and U-Net models.

Region Random Forest U-Net

1 0.62 0.67

2 0.73 0.82

3 0.70 0.74

4 0.68 0.72

Average 0.68 0.74

Figure 5. Epoch-vs-Loss and Epoch-vs-AUPRC of the U-Net model when training on Regions 2, 3
and 4.

4.2. Regional Test Uncertainty

Table 2 shows the results for the models when measuring regional test uncertainty.
The average across all regions is also shown. Information about the calculation of uncer-
tainty can be found in Section 3.7. We see that the U-Net model consistently significantly
outperforms the Random Forest model in each region, with many orders of magnitude of
improvement in average regional test uncertainty.

Table 2. Regional test uncertainty values.

Region Random Forest U-Net

1 2.0 × 10−3 12.9 × 10−9

2 1.8 × 10−3 11.1 × 10−9

3 1.5 × 10−3 7.2 × 10−9

4 1.9 × 10−3 7.5 × 10−9

Average 1.8 × 10−3 9.7 × 10−9
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4.3. Model Interpretability

Usually, one of the main disadvantages of using different deep learning architectures
like U-Net is the lack of model interpretability available. We overcome this by calculating
the SHapley Additive exPlanations (SHAP) values [33] of our model on test set pixels
(pixels from Region 1 when trained on Regions 2, 3 and 4) to interpret our U-Net model
and gain insight into how our model associates different input feature values with outputs.
By using SHAP values we can obtain information about both feature importance and the
influence of feature values on predictions. The multispectral data in Sentinel-2 satellite
images contain bands of shortwave infrared (swir) and red-edge (the region in the spectrum
between red and near infrared light), and these regions are each split into multiple smaller
bands which are measured by the imaging equipment on the satellite, denoted by a number
(e.g., swir2). Figure 6 shows a summary plot for the SHAP values. Each dot represents a
test set pixel and features are ranked vertically in descending order of feature importance.
The horizontal position of the dots represents the feature impact on the prediction using the
SHAP value. The colour of the dot represents whether the feature value is high or low for
that pixel. We can read off the five most important features from Figure 6 as swir2, swir1,
red, red-edge and red-edge-2. We can see that there is a trend shown in Figure 6 that higher
values of swir2 intensity generally have positive SHAP values indicating an association
between the model being more likely to predict high outputs indicating slum and high
values in the swir2 band. This is because the model outputs a sigmoid value in [0, 1] where
values closer to 0 indicate a higher probability of not-slum and values closer to 1 indicate a
higher probability of the slum class.

Figure 6. SHAP value summary plot for test set pixels from our U-Net model.

Higher values of swir1 intensity generally have negative SHAP values indicating an
association between the model being more likely to predict not-slum and high values in
the swir1 band. We can see that the other three of the five most important features (red,
red-edge and red-edge-2) have a similar impact on the model output to swir1: higher values
in these bands are associated with lower model output which represents the pixel being
more likely to be in the not-slum class. We also analysed the feature importance of the
bands in the Random Forest model by using the mean decrease in impurity after training
on Regions 2,3 and 4. The results of this are displayed in Figure 7 which shows that swir2,
red-edge-2 and swir1 are the most important features used by the Random Forest model.
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Figure 7. Feature importance for the Random Forest model.

4.4. Slum Area Monitoring

We use a real-world application to demonstrate the usefulness of slum mapping
models with uncertainty quantification. We use the models to track changes in the areas of
slums, a task that has significant applications to humanitarian aid [30]. We used satellite
images from different years and used our models to predict where the slums are situated
within the images. Similarly to [25], we investigate a particular area of interest, choosing
the Ambojwadi slum which shows noticeable growth between 2011 and 2020. Images
of the area of interest were obtained annually between January 2015 and December 2020.
We trained our models on images from the years 2015 to 2019 inclusive from outside the
area of interest and then used them to predict on images of the area of interest from 2015
and 2020. By then comparing the 2011 ground truth [48] to the model predictions for the
2015 and 2020 images, we can see how the models detect slum areas to have changed over
the decade.

The growth of Ambojwadi is shown in Figure 8 (with more buildings appearing as
shown in the circled regions) and the detected area change with time for our Random
Forest baseline model and our Monte Carlo Dropout U-Net model is shown in Figure 9.
Note that the y-axis starts at 180,000 m squared. The total uncertainty in model predictions
is represented by the black standard deviation error bars. The 2011 area has been calculated
from the ground truth labelling when the region was surveyed. The red dotted line shows
the 2011 slum area for reference. We can see in Figure 9 that both the U-Net and Random
Forest models show similar predictions for the growth of the Ambojwadi slum between
2011 to 2020. The error bars representing the predictive uncertainty (in the form of the
standard deviations of the predicted areas by the population of 500 sampled MCD models
and Random Forest of 500 trees, respectively) show that between 2011 and 2015 both
models detect a small amount of growth but not at a level where we can be confident—the
error bars for both models overlap with the red dotted line which shows the 2011 area.
Hence we cannot conclude with confidence that either model has detected genuine change
in the slum area between 2011 and 2015. But in 2020, Figure 9 shows that both of the models
show predicted areas noticeably higher than in 2011 but the Random Forest model still has
an error bar overlap with the 2011 area. However, the U-Net model shows no overlap in
the error bar for its 2020 prediction with the 2011 area, representing a confident detection
of the increase in the Ambojwadi slum area by 2020.
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(a) Ambojwadi in 2015 (b) Ambojwadi in 2020
Figure 8. The Ambojwadi slum in 2015 and 2020.

Figure 9. The Ambojwadi slum area in 2015 and 2020 as measured by the U-Net and Random
Forest models.

5. Discussion

Figure 9 emphasises the advantage of using our uncertainty quantified model, al-
lowing us to make confident conclusions about a definite increase in slum area in the
Ambojwadi region with our U-Net model showing no overlap of error bar from its 2020
prediction with the original 2011 area. This demonstrates the potential of our proposed
slum mapping model for decision-making in policy and infrastructure to support slum res-
idents. In addition, Table 1 demonstrates the significant improvement in test AUPRC when
using our U-Net model as opposed to tree-based methods. These types of deep models
generally outperform more traditional machine learning algorithms in vision problems [64]
and taking into account local pixel context in the form of convolutions benefits the model by
providing more information for the model to use when determining pixel output, agreeing
with [27]. We used AUPRC as it measures the overall performance of the models without
requiring a threshold to be chosen and is much less influenced by the imbalanced dataset
than other metrics like AUROC. We believe that it is important that AUPRC is used to
compare models in the future to allow for consistent benchmarking for this problem. Note
that the AUPRC scores obtained for Region 1 are the lowest for both models, so models
tested on this region after training on the other three struggle the most. This is indicative
that Region 1 is least similar to the other regions in terms of slum appearance and features.
Whilst this does show that our model, like all models, can struggle with generalisability,
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using our regional testing cross-validation approach at least gives us a more representative
idea of how well the models perform on geographical areas of unseen data.

Table 2 shows that the regional test set predictive uncertainty of the applied U-Net
model is orders of magnitude lower than the tree-based method. The U-Net model takes
into consideration surrounding pixel information, unlike the individual pixel-based ap-
proach used by the tree-based model. Note that Region 1 shows the highest uncertainty
scores for both models, emphasising that this region is least similar to the others, with
models trained on other regions being less certain about their predictions on this region.
It is reassuring that the model is not more confident in its predictions here than for other
regions where it is more accurate, unlike the findings of [35] where the agreement (a proxy
for model uncertainty) between their rule-based OBIA models was associated with lower
predictive performance. Note that in Figure 9 we can see proportionally higher uncertainty
in our models than in Table 1 as slum boundaries are the highest uncertainty pixels and
these make up a much larger proportion of the Ambojwadi region of interest compared to
the four large geographical regions that we used in our regional testing framework.

Figures 6 and 7 agree with [65] who found that information about the material com-
position of buildings can be determined with data resolved to the wavelength level with
reflectance in shortwave infrared regions being a powerful predictor for remote sensing
based land use classification. In our case, this can be interpreted as slums having a distinct
signature in the shortwave infrared image band that is different from the signature of
formal housing and this is learned by the model. These findings that shortwave infrared
bands are the most powerful features align with the use of these features in the Normalized
Difference Built-Up Index (NDBI) for distinguishing built-up areas [66]. The proposed
model may use these infrared part of the spectrum to also gain information about the
heat signature of slum dwellings which would typically be less well insulated than other
building types.

6. Conclusions

This paper presented four main contributions. We presented our U-Net model which,
to the best of our knowledge, represents the first deployment of a convolutional deep
learning model to identify slums at the individual pixel level in free and publicly available
multispectral satellite images. We tested our U-Net model against the previous state-of-the-
art pixel-level model using our newly introduced regional testing approach. This testing
method allowed for more representative performance scores to be obtained, measuring
how well models generalise to unseen whole geographical regions and giving users greater
confidence in applying the model. We incorporated uncertainty quantification at the
pixel level by using Monte Carlo Dropout (MCD) in our U-Net model, the first time
uncertainty quantification has been built into a machine-based slum mapping model. This
produced uncertainty values that we measured alongside AUPRC within our regional
testing framework, with the MCD U-Net achieving 9% improved regional test AUPRC
and orders of magnitude lower regional test uncertainty compared to the previous state-
of-the-art model. We, therefore, recommend the future deployment of our MCD U-Net
model for slum mapping tasks as it has shown to achieve state-of-the-art performance. We
demonstrated the strength of our U-Net model with a slum area monitoring example and
showed that knowledge of the uncertainty provides us with much greater confidence in
the model application. We investigated the feature importance and interpretability of our
model using SHAP values and found that a certain shortwave infrared band was the most
powerful feature for both the U-Net and Random Forest model, agreeing with previous
research on determining building class from satellite multispectral data.

One limitation that we had to work with in this paper was using a dataset which
was only for one city, Mumbai. As a future work direction, we plan to use a bigger
dataset including more cities around the world. We would also like to see different data
modalities such as street view imagery be incorporated into slum mapping models as data
becomes more widely collected and available in the modern world. Additionally, using
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telecommunications data to provide models with information about residents’ movement
patterns and population density could provide more powerful insights.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
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