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Abstract: In this paper, we discuss different approaches to optimal sensor placement and propose
that an optimal sensor location can be selected using unsupervised learning methods such as self-
organising maps, neural gas or the K-means algorithm. We show how each of the algorithms can be
used for this purpose and that additional constraints such as distance from shore, which is presumed
to be related to deployment and maintenance costs, can be considered. The study uses wind data
over the Mediterranean Sea and uses the reconstruction error to evaluate sensor location selection.
The reconstruction error shows that results deteriorate when additional constraints are added to the
equation. However, it is also shown that a small fraction of the data is sufficient to reconstruct wind
data over a larger geographic area with an error comparable to that of a meteorological model. The
results are confirmed by several experiments and are consistent with the results of previous studies.

Keywords: optimal sensor placement; feature selection; unsupervised learning; clustering; self-
organizing maps; neural gas; k-means

1. Introduction

When faced with the problem of selecting a site for sensor placement, one usually
asks how this can be done in an “optimal” way. Phrasing the question this way, one might
tacitly assume that it is an optimisation problem. This assumption could direct our search
for a solution to the definition of a criterion that defines “optimal” and enables a search for
an optimal solution. In most cases, the optimisation criterion is related to the budget in one
way or another. For example, one might try to optimise sensor cost by finding the smallest
number of sensors with the greatest coverage. Or one could optimise the total cost of a
measuring endeavour by including deployment and maintenance costs. Alternatively, the
problem can be formulated as an optimization problem with constraints, where a budget
or a certain number of sensors is an additional constraint. In such scenarios, the constraint
might be some other scarce resource (e.g., energy) rather than budget, but coverage or
even accuracy of measurements is the primary concern. Much previous work falls into this
category, and one could say that this describes a traditional approach in which optimal
sensor placement is treated as an optimisation problem [1–3]. However, we will not only
treat the optimal sensor location problem as an optimisation problem, but also discuss an
alternative in which we treat the optimal sensor location problem as a feature selection
problem. Next, we will propose that classical clustering approaches can be used for sensor
location selection.

The optimal sensor placement problem could also be approached differently, asking
whether there are certain locations that are better suited for data collection. This problem
could be called a selection problem rather than an optimisation problem. In this case, the
question is whether a particular site (out of a set of available sites) is more suitable than
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another. An attentive reader will already notice a similarity between this problem and a
feature selection problem. We should also note that the selection problem uses a criterion
by which the selection is made. Recently, the quality of reconstruction also emerged as a
new criterion for feature selection [4–6]. Regardless of whether we observe this problem
in terms of sensor (site) selection or optimal sensor placement, we can find a number of
proposed solution [7–13]. This is even more true when we consider the different feature
selection algorithms available (e.g., [14–17]).

The main motivation for this paper comes from our recent work [18,19]. There we have
already shown that it is possible to intelligently select locations for sensor placement—and
we have shown that it is possible to use a clustering algorithm to achieve this. As mentioned
earlier, various criteria can be used to select features. Similarly, feature selection algorithms
can be supervised or unsupervised. In a supervised settings, if the true value is available,
the most natural approach would be to maximise feature relevance with respect to a true
value that can be measured, for example, by the reconstruction error. On the other hand, if
the true value is not available and an unsupervised setting is used, the natural criterion
for feature selection would be to minimise feature redundancy and maximise feature
relevance [20]. If the true value is not available, feature relevance can be measured as
coherence between similar features. To minimise feature redundancy, one can also try to
reduce the number of similar features. Note that the unsupervised clustering approach
does exactly this, as it partitions the datasets into sets such that the distance between sets is
maximised and the distance within the set is minimised. Therefore, in this paper, we will
compare three different clustering algorithms to show that it is possible to achieve feature
selection using different algorithms. We will also evaluate which algorithm provides the
best sensor locations in terms of reconstruction error. In addition, we will explore the
possibility of selecting the optimal sensor location by introducing other criteria, such as
distance to shore, which is likely related to deployment and maintenance costs. Of course,
other variants are also possible.

The clustering methods described in the following sections are (a) Self-organising
maps (SOM), also known as Kohonen maps or Kohonen neural network [21,22], (b) Neural
gas [23], in particular the implementation known as Growing neural gas (GNG) [24] and
(c) K-means clustering [20,25]. It is not uncommon to find applications of these algorithms
in geosciences. For example, neural gas has been used in marine microbial diversity
detection [26] and self-organising maps have been used to detect biogeochemical property
dynamics [27], spatiotemporal reproducibility of microbial food web structure [28], find
teleconnection patterns between precipitation [29] and toxic phytoplankton species [30], or
classify wind patterns [31–35]. Several papers (e.g., [27,28]) have used K-means in addition
to SOM.

2. Data

The section describes both the source of the data and the data wrangling necessary
for further experiments. By the end of the section we also describe how we divided the
data set into a training set and a test set and how the dependent and independent variables
were defined.

The data used in this study are from Copernicus Climate Change Service information
and include ERA5 wind vector data. ERA5 is the new reanalysis produced by the European
Centre for Medium-range Weather Forecasts (ECMWF) as part of the Copernicus Climate
Change Service [36]. ERA5 is the fifth generation of reanalysis produced by using 4D-Var
data assimilation in combination with atmospheric forecasts. The reanalysis combines
atmospheric models with all available observations to produce the best numerical estimate
of past climate. The state-of-the-art ERA5 reanalysis provides atmospheric, land surface,
and ocean wave variables with a horizontal resolution of 31 km and hourly output. To
obtain the wind data for the Mediterranean Sea, the area from 30◦N to 48◦N latitude
and from −6◦E to 42◦E longitude was extracted. From this area, data were sampled at
a resolution of 0.5◦ and land-sea masking was applied to the total number of sampled
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points to obtain only the wet points. The points outside the Mediterranean Sea were
manually removed so that the final result covers the Mediterranean Sea area with a total of
1244 points. This area is shown in Figure 1.

Figure 1. Mediterranean Sea. The figure shows the average wind over the Mediterranean Sea, with
the vector indicating the direction and the color indicating the intensity.

A total of 1244 points were collected in the area shown in Figure 1 and wind data
were obtained from these sites and used in our study. The data were collected for the
period 1979–2019 at a time interval of 6 h. The data are then organised as a 1244-by-179700
matrix. Each row represents a spatial data vector that contains all spatial information
collected at a given time. The data vector contains the concatenated u and v information
of the wind vector components. Here, u and v are measured at 10 m above sea level
and expressed in metres per second. They denote the west-east and south-north wind
components, respectively. After data wrangling the data matrix used for further processing
has the form shown in Figure 2.

observations

lo
ca
ti
o
n
s

u v
Figure 2. Matrix of input data. The dashed lines indicate the rows of the matrix containing the data
collected at the optimal sensor location.

In the following section, we will describe three methods for selecting the rows marked
with dashed lines in Figure 2. Note that the selected rows uniquely define the locations for
sensor placement and that this location selection is based on observations of both channel
u and v.

To evaluate the clustering methods used to determine the optimal locations for sensor
placement, we measure the reconstruction error for each subset of the sensor locations
determined in each experiment. The reconstruction problem is a supervised learning
problem. Therefore, we need to divide the data into a training set and a test set and define
the dependent and independent variables. The training and test sets are split 80:20 by
randomly selecting the available data at different time points. The independent variables
(input variables to the model) would be the observations at selected locations and the
observations from all other locations would be the dependent variables. Note that the
dependent and independent variables would vary across experiments. To measure the
error, the evaluation is performed on the test set using the true values of the dependent
variables as the gold standard.
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3. Methods

In this section, we first describe three learning methods that are typically used for
clustering. Later in the paper, these methods are used to identify optimal locations for
sensor placement. Following the description of the methods, we briefly describe two
data reconstruction models required for evaluating sensor location selection based on
reconstruction error. At the very end of the section, we will also describe the error measure
used to quantify the reconstruction error. The remainder of the section is therefore divided
into six parts, each describing a topic: (a) K-means clustering, (b) Growing neural gas
(GNG), (c) Self-organising maps (SOM), (d) K-nearest neighbours, (e) linear regression, and
(f) reconstruction error.

The idea of using clustering methods to determine the optimal location for sensor
placement is based on the premise that data would naturally agglomerate in space, since
proximity coincides with correlation in virtually all natural processes. Clustering methods
are suitable for the optimal sensor placement problem because they not only partition the
data set into clusters, but also provide cluster centres, also referred to as “winning neurons”
or “best-matching units” (BMUs) in GNG and SOM, and represented by their weights or
codebook vectors. Note that for each cluster, the cluster centre can be considered as the
most representative data point and the sensor that generates the most representative data
is the optimal sensor. All three methods have a drawback: they update the cluster centre
by averaging the values of the surrounding data. This approach may seem obvious and
straightforward, but such a solution is often not an instance from a sample set. However,
we would prefer to identify an instance that belongs to a set of available locations for sensor
placement. This problem is not uncommon and some algorithms address it by using the
median instead of the mean. To address this issue and ensure that the optimal sensor
location is selected from the set of predefined locations, we implemented a modification to
the existing algorithm that updates the cluster centre to the closest available location for
sensor placement.

3.1. K-Means

We begin by describing how the K-means algorithm updates cluster centres. In this
and subsequent sections, we will use the notation BMU to denote the cluster centre or
neuron/BMU weights. While we are aware that it is not common practise to use the notation
BMU when describing the K-means algorithm, we make an exception here to highlight the
similarities between the algorithms described here so that important differences between
the algorithms are more apparent.

The K-means algorithm requires only one parameter (K), which specifies the number
of clusters, and uses an iterative process to update the BMUs such that the variation within
a cluster is minimised for each cluster. Using the notation W() for within-a-cluster variation,
and BMUk for the BMU of the kth cluster, we can say that the optimisation problem the
algorithm is trying to solve is:

arg min
BMUk

K

∑
k=1

W(BMUk). (1)

To solve the problem, one needs to define W(), and since W() denotes the distance
of elements within a cluster, the easiest way would be to calculate the Euclidean distance
between all elements of a cluster. To ensure that larger clusters do not overweight the
smaller ones, one could also normalise the result to the number of elements in the cluster.
The complexity of the problem (there are Kn ways to partition a set of n elements into K
subsets) motivates us to use the learning algorithm to solve the problem. The adaptation
step can be described by a Hebb’s learning procedure that minimises the Euclidean distance
||si − BMUk||2 via a stochastic gradient descent algorithm:

∆BMUk = ε · δk · (si − BMUk), (2)
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where ε is the step size and δk is the Kronecker delta, where k denotes the cluster to which
BMUk and si belong. The si denotes the ith instance of the sensor s, and whether it belongs
to the cluster k is defined by the Voronoi polygon, and the Kronecker delta determines how
it affects the result.

This online learning approach can be further modified by organising the data into
batches where each cluster is a separate batch. Such an algorithm computes the centres of
each cluster (let us denote them by ck) and updates the BMU towards that centre, which
can be faster:

∆BMUk = ε · δk · (ck − BMUk), (3)

This simple clustering algorithm is known to converge to a local optimum. Neverthe-
less, it is often used because it generally gives good results. To solve this problem, one can
use a soft-max adaptation rule that adjusts not only one BMU, but also other BMUs based
on their proximity.

3.2. Growing Neural Gas

Neural gas (NG) can be considered a modification of online K-means clustering
because its adaptation step uses a slightly different postsynaptic excitation function:

∆BMUk = ε · hk(r) · (si − BMUk), (4)

where ε denotes adaptation step and r = rank(si, BMUk) is the ranking of vectors si in the
neighborhood of BMUk. The function hk() is typically chosen as follows:

hk(r) = e−r/λ, (5)

where λ denotes the so-called “neighbourhood area” that determines the number of neigh-
bouring neurons that adapt together with the BMU. The use of hk() instead of δk results
in the algorithm updating not only one BMU but also its neighbours at each update. This
can be interpreted to mean that there is a “loose” connection between the BMU and the
neighbouring BMUs that has gas-like dynamics, or as Maritnetz et al. put it in [23]: the
dynamics of the BMUs can be described as particle motion in a potential field, where the
potential is given as a negative data point density. We refer to the connection between
BMUs as a “loose” connection, since the neighbourhood is defined based on the distance be-
tween the units (i.e., the rank) and therefore can be changed as the algorithm learns (as the
BMUs move in space). Note that this is in contrast to the “strict” definition of neighbours,
where the predefined neighbours of each BMU do not change with the iterations of the
algorithm—as we will see in a moment, this is the case with the SOM algorithm. Because
of these properties, the algorithm has earned the name neural gas. The algorithm has one
advantage over the K-means algorithm, namely its ability to capture the manifold structure
of the underlying data. This property is shared by NG with the SOM algorithm and will be
described in more detail later along with the SOM algorithm. On the other hand, the NG
algorithm is similar to the K-means algorithm in that it has fixed k centres that it optimises,
and—similar to K-means—the initial selection for k may be suboptimal. This is avoided
by a modification of the NG algorithm proposed by Fritzke [24]. The algorithm is called
Growing Neural Gas (GNG) because the number of BMUs grows from the initial number
of clusters (kmin) to the maximum number of clusters (kmax).

As an overall evaluation of the algorithm, it can be said (see [23]) that neural gas
(including GNG) exhibits faster convergence with smaller distortion errors, but consumes
more computational power, especially for ranking (sorting).

3.3. Self-Organising Map

Historically, self-organising maps (SOM) precede both GNG and NG algorithms [21,22].
However, we believe it is appropriate to introduce them in this order when we introduce
the notion of lattice. In SOM, the lattice describes the predefined topological structure
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between BMUs. This structure is usually (but not necessarily) 2D and of rectangular shape,
and all BMUs have up to four neighbours (due to the rectangular lattice structure, only
BMUs at the lattice edge have less than four neighbours). Compared to (G) NG or K-means,
the lattice structure of SOM is regular and strict, while GNG and K-means have irregular
lattice structure or no lattice structure at all—as visualised in Figure 3. In Figure 3, SOM has
a rectangular lattice structure and the solid line defines that the neighbourhood definition is
strict, while the dotted line in the case of (G) NG indicates that the neighbourhood neurons
are not strictly defined (and may change in the algorithm). K-means has no notion of
neighbourhood and no lattice structure—as visualised in Figure 3.

(a) (b) (c)

Figure 3. An example of lattice structure of SOM (a), (G)NG (b) and K-means (c).

The lattice structure of the SOM, also known as the elastic net, adapts to the input
data while trying to maintain its predefined topology. Thus, the “elastic net” has limited
flexibility. However, given a sufficient number of BMUs or if the underlying manifold is 2D,
the SOM can learn the topology of the manifold quite well. Whether the SOM represents the
underlying manifold well can be measured by the so-called tophological error. This should
not be confused with other measures of fitting quality; however, since it is by definition
based on an unsupervised metric.

To put it formally: If M (M ⊂ Rn) denotes the manifold, the vectors of the manifold
(v ∈ M) can be described by a subset that we denote as BMUi (BMUi ∈ Rn). The description
of the data manifold via BMUs is considered optimal if the distortion (computed as e.g.,
d(v, BMUi) = ||v− BMUi||2) is minimal. When Euclidean distance is used as a measure
of distortion, the best matching units (BMUs) partition the manifold M into subregions
corresponding to Voronoi polygons. Since each polygon is now described by a BMU,
all vectors v within that polygon are represented by the vector BMUi. If the probability
distribution of the data on the manifold M is described by the probability distribution P(v),
the average distortion (manifold reconstruction error) is determined by

L =
∫

P(v)d(v, BMUi)dv, (6)

and can be minimised by careful selection of BMUi.
When N is the number of data points on the manifold and d(v, BMUi) = ||v− BMUi||2,

the distortion around BMUk becomes:

Lk =
N

∑
i
||vi − BMUk||2, (7)

where BMUk is chosen w.r.t. vi. The optimal choice of BMUk for a given vi would be the
BMUk representing the Voronoi polygon to which vi belongs. If we denote this Voronoi
polygon by Ck (as a class or “cluster”), we can rewrite the distortion (or loss) as follows:

L =
N

∑
i

K

∑
k

∑
vi∈Ck

||vi − BMUk||2 =
N

∑
i

K

∑
k

δk||vi − BMUk||2 (8)
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It should now be apparent from this that both the Equations (2) and (4) can be used to
minimise the distortion. However, other not-so-crisp update functions or other definitions
of the neighbourhood can be used. For example, for a postsynaptic excitation we can
choose a radial-basis function—typically a Gaussian—and define it for two neighbouring
BMUs (namely i and k):

hik = e−||BMUi−BMUk ||2/(2σ2), (9)

Here σ is just a parameter defining proximity. Now we can obtain the self-organising
map (SOM) as defined by Kohonen, i.e.,:

∆BMUk = ε · hik · (si − BMUk), (10)

This ends the explanation of the clustering methods used for the optimal selection of
sensor locations. In the following subsections, the methods used for reconstruction and
evaluation are explained.

3.4. K-Nearest Neighbours

The first method we will use to measure reconstruction error and evaluate the sensor
location selection is based on proximity. We assume that the measurement at a particular
location is best reconstructed based on the values near it, and that the contribution of each
value to a final estimate is inversely proportional to distance. This can be simulated by
using K-nearest neighbours (KNN) in a regression setting. In a regression setting, KNN
can be observed as a variable bandwidth kernel-based estimator. If we use the Gaussian
kernel and Euclidean distance, the estimated value vj is calculated as follows:

vj =
1
N
·

k

∑
i=1

e−d(i,j)/σ · BMUi, (11)

where d(i, j) is the distance between vi and BMUi in geographic space, k is the number of
neighbours, N is the normalisation factor, and σ is given by:

σ =
1
K

K

∑
k

d(i, k). (12)

Thus, σ is the average of the distances between the jth point and its k nearest neigh-
bours. Since each value is reconstructed from k nearest neighbours, we have chosen k = 4.

3.5. Linear Regression

The second method we will use to measure reconstruction error and evaluate sensor
location selection is based on linear regression. Linear regression assumes a relationship
between the observed variable (v) and a set of n independent variables (BMUi):

v̂i = β0 + β1BMU1 + . . . + βnBMUn, (13)

where β are the coefficients of the model we are trying to estimate to predict the value of the
observed variable (v) given the independent variables (BMUi). Note that the complexity of
the linear regression model increases as the number of available sensors increases. Since
this is not the case for the KNN model, we might say that the comparison between them is
somewhat unfair. However, we consider the diversity of the models as an advantage.

3.6. Reconstruction Error

To measure the reconstruction error of a vector field, we compared the estimated
values (û, v̂) with the true values (u, v) at each location and time, and independently



Remote Sens. 2022, 14, 2989 8 of 16

measured the amplitude error and the angular error. The amplitude error was calculated
as the amplitude error averaged over the spatial and temporal dimensions:

errAmpl =
1

#S · #T ∑
∀s∈S

∑
∀t∈T

√
(ust − ûst)2 + (vst − v̂st)2, (14)

where S and T denote the spatial and temporal axis, respectively, and #S and #T denote
their cardinality (total number of elements).

Similarly, the angular error is the average angular error for each two vectors in time
and space:

errAngle =
1

#S · #T ∑
∀s∈S

∑
∀t∈T

arccos
ust · ûst + vst · v̂st√

u2
st + v2

st ·
√

û2
st + v̂2

st

. (15)

4. Results
4.1. Experimental Setup

The goal of the following experiments is to asses the quality of the reconstruction
when different locations are used for data acquisition (sensor placement). Therefore, we
investigate 3 different algorithms for location selection: K-means, GNG and SOM. The
algorithms were used to sample data points in five cohorts, each with a different number of
data points, namely: 10, 20, 50, 100, and 200, allowing us to conduct a total of 15 experiments
for evaluation with linear regression and KNN.

The results are evaluated by calculating the reconstruction error as the error between
the true and reconstructed values. The error is calculated as the mean and standard
deviation for the angle and amplitude. Since we use learning models for reconstruction, it
was necessary to split the data set into a training data set and a test data set. The dataset
used was the data matrix containing u and v wind components of the data from the entire
Mediterranean region. The data are organised as described in the previous section. The
split was done in a ratio of 80:20, using the random 80% of realisations to train the models
and leaving the rest for validation. After the learning process, the data of selected locations
from the test set were used to reconstruct all other data from the test set.

While this approach will provide us the best sensor locations in terms of reconstruction
error, in this work we did not aim to tackle solely this problem. In addition to providing
a method for optimal sensor location selection in terms of reconstruction error, we are
also investigating the possibility of selecting the optimal sensor location by introducing
other criteria such as distance to shore, which are assumed to be related to deployment
and maintenance costs. If this approach proves viable, it would suggest a more general
framework since other variations are also possible. Therefore, we investigate the alternative
in which the optimal sensor location is selected considering not only the distance to the
cluster centre, but also the distance to the coast. In these experiments, each “optimal” point
was updated towards the coast by using an additional term for the optimization criterion.
The additional term can be considered as a regularisation term, which is a function of the
distance to the shore. In our experiment, we weighted both terms equally.

Finally, to compare the results, random sensor locations were selected and reconstruc-
tion was performed based on the information provided by these locations.

To get a better idea of how each algorithm (K-means, GNG, or SOM) selects the optimal
sensor location for the standard and alternative approaches (where we also weighted the
distance from shore), we visualised the results of these algorithms along with the results of
the dummy algorithm that randomly selects sensor locations. This is shown in Figure 4 for
a cohort of 20 sensor locations.
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(a)

(b)

(c)

(d)

Figure 4. From (a–d): Optimal sensor locations for 20 sensors determined by different algorithms.
(a) K-means algorithm: blue—default, red—alternative implementation. (b) GNG algorithm: blue—
default, red—alternative implementation. (c) SOM algorithm: blue—default, red—alternative imple-
mentation. (d) Dummy algorithm—random selection.

4.2. Experimenal Results

By default, regardless of which of the algorithms we use (K-means, GNG, or SOM),
the optimal sensor location is selected as the data point closest to a cluster centre. These
points were used to reconstruct sensor values for a much larger geographic area using
linear regression and KNN. To assess the quality of the sensor location selection, we
evaluate the quality of the reconstruction by measuring the difference between the true
and reconstructed values. Since the measurements are 2D vectors, the error is described
in terms of the mean amplitude and mean angle, and the standard deviation is given as a
measure of the dispersion of the results. The results are presented in Table 1. The results can
be compared with the data presented in Figure 1 which show the distribution of average
wind data. The overall average wind amplitude is 5.55 m/s and the standard deviation is
3.05 m/s.
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Table 1. Table showing the reconstruction error measured as the average angular and amplitude error
(α and A) and its standard deviation (σα and σA) for linear regression and KNN for sensor location
selection using the k-menas, GNG, and SOM algorithms with default algorithm settings. Amplitude
is given in m/s, angle in degrees.

Experiment Linear Regression KNN

α σα A σA α σα A σA

KMEANS10 31.42 37.58 2.72 1.94 25.88 33.40 2.28 1.68
KMEANS20 24.45 32.04 2.16 1.58 22.32 29.84 1.97 1.42
KMEANS50 17.17 25.78 1.51 1.20 20.97 28.48 1.84 1.31

KMEANS100 12.80 21.13 1.13 0.96 20.49 27.97 1.81 1.28
KMEANS200 8.84 16.12 0.79 0.71 20.12 27.54 1.79 1.27

GNG10 32.34 38.07 2.82 1.96 26.63 34.16 2.34 1.72
GNG20 24.57 32.51 2.16 1.61 22.33 29.90 1.98 1.43
GNG50 17.22 25.88 1.51 1.20 20.95 28.46 1.84 1.30

GNG100 12.64 20.98 1.12 0.94 20.59 28.04 1.81 1.28
GNG200 8.92 16.44 0.79 0.72 20.30 27.72 1.80 1.28
SOM10 33.70 38.52 2.95 1.99 28.05 35.15 2.47 1.78
SOM20 25.95 33.57 2.29 1.68 22.79 30.55 2.03 1.49
SOM50 18.34 27.33 1.62 1.33 20.93 28.55 1.86 1.34

SOM100 13.48 22.12 1.20 1.04 20.50 28.03 1.83 1.30
SOM200 9.91 18.41 0.86 0.82 20.44 27.98 1.81 1.29

From Table 1, we can see the reconstruction error when the optimal sensor location is
selected as the data point closest to a cluster centre provided by one of the algorithms (K-
means, GNG, or SOM). While the cluster centre is a sound option to obtain the representative
data point in the following experiment, we also wanted to investigate how the reconstruction
error behaves when other criteria contribute to the selection of the optimal sensor location.
Therefore, in the following experiment, we simulated an alternative in which not only the
distance to the cluster centre but also the distance to the shore is considered in the selection of
the optimal sensor location. The results of this experiment are shown in Table 2.

Table 2. Table showing the reconstruction error measured as the average angular and amplitude error
(α and A) and its standard deviation (σα and A) for linear regression and KNN for sensor location
selection using the k-menas, GNG, and SOM algorithms with the additional criteria (alternative
algorithm setting). The amplitude is given in m/s, the angle in degrees.

Experiment Linear Regression KNN

α σα A σA α σα A σA

KMEANS10 34.52 39.31 2.98 2.03 29.03 36.18 2.53 1.84
KMEANS20 26.65 33.30 2.37 1.67 22.90 30.28 2.05 1.48
KMEANS50 19.74 27.61 1.78 1.33 20.97 28.37 1.88 1.34

KMEANS100 15.89 23.71 1.45 1.13 20.56 27.96 1.85 1.32
KMEANS200 13.18 20.50 1.24 1.01 20.14 27.45 1.83 1.31

GNG10 34.65 39.31 3.02 2.05 28.68 35.76 2.52 1.83
GNG20 27.24 33.96 2.41 1.70 23.34 30.73 2.09 1.50
GNG50 19.83 27.60 1.79 1.33 21.01 28.44 1.88 1.34

GNG100 15.96 23.61 1.47 1.14 20.51 27.89 1.84 1.32
GNG200 13.49 20.80 1.26 1.02 20.22 27.53 1.84 1.32
SOM10 34.97 39.25 3.06 2.04 29.48 36.30 2.59 1.86
SOM20 27.56 34.28 2.45 1.72 23.86 31.47 2.13 1.55
SOM50 21.85 29.80 1.95 1.45 21.63 29.20 1.94 1.40

SOM100 16.25 24.06 1.49 1.16 20.65 28.09 1.87 1.33
SOM200 14.45 22.19 1.33 1.07 20.36 27.78 1.84 1.33
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Finally, a random sample of the data is used to benchmark the results. This sample
contained the same number of points as defined for each cohort, and reconstruction was
performed using these points. The results are presented in Table 3.

Table 3. Table showing reconstruction error measured as average angular and amplitude error (α
and A) and its standard deviation (σα and A) for linear regression and KNN with random selection
of sensor locations (dummy algorithm). Amplitude is given in m/s, angle in degrees.

Experiment Linear Regression KNN

α σα A σA α σα A σA

RANDOM10 39.80 42.97 3.33 2.33 32.31 38.73 2.78 2.08
RANDOM20 28.84 35.92 2.53 1.87 23.83 31.39 2.12 1.56
RANDOM50 19.99 28.39 1.81 1.42 21.28 28.70 1.90 1.36
RANDOM100 15.29 24.18 1.37 1.17 20.85 28.30 1.86 1.33
RANDOM200 10.74 19.26 0.95 0.89 20.51 27.99 1.82 1.29

Figure 5 shows the spatial distribution of the error for the selection of 20 sensor locations
using the K-means algorithm and distance to shore as an additional criterion. Thus, the sensor
locations in this experiment correspond to the red squares in Figure 4a. The average amplitude
and angular errors as well as the standard deviation can be found in Table 2.

From Figure 5 it can be seen that the amplitude error increases rapidly as one moves
away from sensor positions that are close to the coast. A similar effect is observed when
the default algorithm is used, i.e., when distance to cost is not considered. Figure 6 shows
the spatial distribution of the error for the optimal selection for a case with 20 sensors. It
can be seen that the error increases as one moves away from the sensor location, even if the
sensor is in the open sea—but perhaps less rapidly.

(a)

(b)

(c)

(d)

Figure 5. From (a–d): spatial distribution of the error for the selection of 20 sensor location using the
K-means algorithm and distance to shore as an additional criterion. (a) α, (b) σα, (c) A, (d) σA; (a,b) are
in degrees, (c,d) are in m/s. The red dots denote the optimal sensor location selected by this algorithm.
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Figure 6. Spatial distribution of amplitude error (A) for the selection of 20 sensor location. The red
dots denote the optimal sensor location selected by the algorithm that does not take into account the
distance to shore.

5. Discussion

In our first experiment, the results of which are shown in Table 1, we have shown that a
small number of points is sufficient to reconstruct measurements from a larger geographical
area quite accurately. This corroborates the results presented in [18,19]. While previous
works have discussed the reconstruction error over the Adriatic, we show here that similar
conclusions hold when wind data are used over the Mediterranean. The larger overall
error could be due not only to the larger geographical area observed in the study, but
also to the larger amplitude variance of the wind, which can reach 50 m/s in the case of
the Mediterranean Sea. When we compare the results from Tables 1 and 3, we conclude
that an optimal sensor location can be intelligently selected and that—compared to other
proposed algorithms—the K-means algorithm gives the best results. Furthermore, if we
want to choose between KNN and linear regression as a method for reconstructing wind
data over the Mediterranean Sea, the Tables 1–3 suggest that KNN is more suitable than
linear regression for this purpose if we are to reconstruct data from a small number of
sensors. On the other hand, if a larger number of sensors (>20) is used, linear regression
is superior to KNN in terms of reconstruction error. This can be attributed to the fact that
the complexity of a linear regression model increases with the number of available sensors,
while the KNN model stays with a fixed set of parameters.

However, this work had a more ambitious goal than this. We aimed to show that a
more general framework for optimal sensor site selection is possible using this approach. To
show that other criteria can be used in selecting the optimal sensor location, we introduced
distance to shore, which is presumed to be related to deployment and maintenance costs.
This change shows that other variations are possible and that an optimal sensor location can
be selected using a different criterion for the optimum if a tradeoff between, e.g., accuracy
and cost is an option. When the criterion is weighted with respect to distance from the
coast, so that the representative data points are selected not as the data points closest to
the cluster centre but as the representative data points near the coast, we obtain the results
shown in Table 2.

Comparing the results from Tables 1–3, we see that the best results (in terms of
reconstruction error) for the standard experimental setup are obtained when the optimal
sensor position does not consider the distance to the shore. However, when the distance
to the shore is taken into account, the results deteriorate, and this deterioration can reach
10% for a smaller number of sensor locations (10, 20 or 50), which are probably of our
main interest. It is also worth noting that the optimal sensor location selection algorithm
plays a less significant role when the distance to shore is included in the search for the
optimal sensor location. This should correspond to the common sense, since this additional
criterion is common to all algorithms and thus practically cancels the differences.

When we compare the results of the first two experiments (Tables 1 and 2) with
the random selection of sensor locations (results from Table 3), we find that the random
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selection additionally degrades the performance of the reconstruction algorithms. As
expected, this degradation is smaller when a larger number of sensor locations are selected.
It is worth noting that compared to Table 2, random site selection (Table 3) gives better
results for the experiment with a larger number of sensor sites (e.g., 200). This is easily
explained by the fact that the results in Table 2 were obtained with the additional constraint
that the sites were selected near the shore, which was not the case with random selection.
To illustrate the importance of this constraint, note that when we select sensor sites that
are less than 1 px (which is about 31 km) from the shore, we select 200 sensor sites out of
372 available sites.

Other specifics that are not obvious from the tables, but still worth mentioning, can be
seen in Figures 4 and 5. From Figure 5 we can see how the error (and variability) increases
as we move further away from the sensor. However, from the figure, we can also see how
the sensors on the North African coast are used to capture variability in the Aegean Sea,
and how the Crimean Peninsula is important to capture variability in the Black Sea. From
an oceanographic perspective, this is partly due to the strong and dominant winds in these
areas. In addition, not one, but two sensor sites were selected for the Gulf of Lion which
can be attributed to the strong mistral winds and their variability.

It is also clear from Figure 5 that some parts of the Mediterranean Sea are selected by
all three algorithms for optimal sensor placement. These locations include the Black Sea
(especially the western part), the Ligurian Sea, and the Aegean Sea. We hypothesise that
this is due to the large amount of energy that accumulates in these regions, or the large
wind variability in certain spatial and temporal regions. For example, the wind over the
Black Sea is independent of the wind in the other areas examined in this study. Similarly,
the sensors south of Crete record quasi-permanent W/NW winds over most of the eastern
Mediterranean, so they are only weakly correlated with other areas in the Mediterranean.
On the other hand, sensors in the Ligurian Sea are associated with an extremely strong
wind pattern generated by a mesoscale cyclone.

Perhaps it is also worth noting that when a smaller number of sensors are selected,
some effects are neglected by certain algorithms. This is especially true for the Adriatic Sea,
for which SOM and GNG do not select a sensor location when only 20 sensors are selected,
as shown in Figure 4. With a smaller number of sensors, this difference between the sensors
selected by K-means and SOM is also observed in the Black Sea. From a geophysical point
of view, it is interesting to note that the K-means algorithm gives the best result and that
this is due to the fundamental differences between the algorithms. For certain geophysical
problems, topology preservation seems to be more of a nuisance than an advantage. As
mentioned earlier, the topology preservation property may have as a side effect that some
of the data variability is not accounted for.

6. Conclusions

In this work, we have shown that optimal sensor locations can be intelligently selected
using data-oriented unsupervised learning methods such as K-means, NG, and SOM. The
case study conducted with wind data from the Mediterranean region showed that the
K-means algorithm gave the best results compared to the other proposed algorithms (cf.
Tables 1–3). Moreover, the tables suggest that KNN is more suitable than linear regression
for this purpose when the data are reconstructed from a small number of sensors. On the
other hand, when a larger number of sensors (>20) are used, linear regression is superior to
KNN in terms of reconstruction error.

Next, we showed that this approach can be used as a general framework for optimal
sensor placement and that other criteria can be incorporated into the selection of the optimal
sensor location. To do this, we extended our case study to include distance to shore, which
is believed to be related to deployment and maintenance costs. This demonstration not only
showed that the inclusion of additional criteria significantly affects the results in terms of
sensor location (Figure 4) and reconstruction accuracy (Table 2), but also provided a more
general framework in which other variations are possible, such that the optimal sensor
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location can be selected using a different criterion for the optimum if a tradeoff between,
for example, e.g., accuracy and cost is an option.

Finally, we conclude that the work corroborates previous results showing that a small
number of points is sufficient to reconstruct measurements from a larger geographic area
such as the Mediterranean. Only a small fraction of the data (10 points) is sufficient to
achieve an error of less than 3 m/s, which is comparable to the error of meteorological
models for the same geographical area. Furthermore, we have proposed a broader frame-
work in which clustering algorithms are used for optimal sensor placement and that, if
desired, a tradeoff between e.g., accuracy and measurement cost can be implemented in
addition to these algorithms. While this tradeoff degrades reconstruction accuracy, it also
provides the opportunity to use a more complex model to achieve better reconstruction.
In addition to using more advanced machine learning models, one research direction that
could further reduce the number of sensors or increase accuracy is assimilation of sensor
data coupled with fine physical models. Fine physical models have this potential but tend
to be more time-consuming.
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