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Abstract: Atmospheric correction of satellite optical imagery over inland waters is a key remaining
challenge in aquatic remote sensing. This is due to numerous confounding factors such as the
complexity of water optical properties, the surface glint, the heterogeneous nature of atmospheric
aerosols, and the proximity of bright land surfaces. This combination of factors makes it difficult to
retrieve accurate information about the system observed. Moreover, the impact of radiance coming
from adjacent land (adjacency effects) in complex geometries further adds to this challenge, especially
for small lakes. In this study, ten atmospheric correction algorithms were evaluated for high-resolution
multispectral imagery of Landsat-8 Operational Land Imager and Sentinel-2 MultiSpectral Instrument
using in situ optical measurements from ~300 lakes across Canada. The results of the validation show
that the performance of the algorithms varies by spectral band and evaluation metrics. The dark
spectrum fitting algorithm had the best performance in terms of similarity angle (spectral shape),
while the neural network-based models showed the lowest errors and bias per band. However,
none of the tested atmospheric correction algorithms meet a 30% retrieval accuracy target across
all the visible bands, likely due to uncorrected adjacency effects. To quantify this process, three-
dimensional radiative transfer simulations were performed and compared to satellite observations.
These simulations show that up to 60% of the top of atmosphere reflectance in the near-infrared bands
over the lake was from the adjacent lands covered with green vegetation. The significance of these
adjacency effects on atmospheric correction has been analyzed qualitatively, and potential efforts to
improve the atmospheric correction algorithms are discussed.

Keywords: atmospheric correction; Sentinel-2; Landsat-8; adjacency effect; 3D radiative transfer

1. Introduction

Lakes are important ecosystems providing various ecosystem services including the
provision of drinking water for humans and animals [1]. They play a crucial role in the
terrestrial hydrological cycle through complex processes at their interfaces with the at-
mosphere and oceans and are valuable natural resources [2]. However, stressors such as
eutrophication or climate change threaten their ecological functions [3,4]. The Global Cli-
mate Observing System (GCOS) of the World Meteorological Organization has recognized
“Lakes” as one of its Essential Climate Variables. In the past decades, several national
and international directives have addressed these problems and aimed to improve the
ecological state of inland waters by identifying stressors and by implementing sustain-
able management strategies supported by sporadic monitoring [5–8]. In 2016, to provide
Canada’s first national assessment of lake health, the Natural Sciences and Engineering
Research Council of Canada (NSERC) Canadian Lake Pulse Network was launched [9]
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(hereafter referred to as ‘LakePulse’). LakePulse uses traditional in situ approaches for
limnological monitoring as well as state-of-the-art methods, such as optical remote sensing.

Remote sensing has long been promised as a tool for large-scale monitoring of inland
water quality [10]. Dating back to the early 1970s, airborne and satellite sensors have been
used to examine a wide range of water quality constituents [2,11]. Due to the limitation of
spatial resolution, ocean color satellites sensors, e.g., Coastal Zone Color Scanner (CZCS),
Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Medium Resolution Imaging Spec-
trometer (MERIS), and Moderate Resolution Imaging Spectroradiometer (MODIS) were
rarely applied to inland waters with exception of large lakes such as the North American
Great Lakes [12,13]. As an alternative, satellites dedicated to terrestrial surveillance with a
relatively high spatial resolution, such as Landsat Multispectral Scanner (MSS), Thematic
Mapper ™, Enhanced Thematic Mapper (ETM), and Advanced Land Imager (ALI), were
used to quantify the water quality properties of lakes, including lake clarity, chlorophyll-a
concentration (Chla), suspended particulate matter (SPM), colored dissolved organic mat-
ter (CDOM), etc. [14–27]. However, accurate water quality parameter retrieval requires
a sensor with sufficient signal-to-noise ratio (SNR) over waters to measure and separate
the small water-leaving signal from other sources of radiance reaching the sensor, and the
low SNR of historical Landsat sensors led to poor quality imagery for use on lakes. This
situation changed with the launch of a new generation of satellites (Landsat-8, Sentinel-2)
offering unprecedented capabilities [28]. The existing sensors, Operational Land Imager
(OLI) and Multispectral Imager (MSI) have much better SNR and spatial resolution, 30 and
10 m, respectively, providing great potential applications in lakes including smaller lakes
with sizes in the hundreds of meters.

Atmospheric correction (AC) is a procedure to remove the signal at the sensor
(i.e., top of atmosphere, TOA), the radiance contributions from the atmosphere and the
water surface, in order to derive the radiance leaving the water body (the so-called water-
leaving radiance) [29], which is one of the key processing steps for allowing the remote sensing
of water color [30]. During atmospheric correction over water, remote sensing reflectance
(Rrs(λ), sr−1), is defined as the ratio of water-leaving radiance (Lw(λ), µW/[cm2 nm sr]) to
downwelling irradiance above the water surface (Ed(0+, λ), µW/[cm2 nm]) (see review
by Mobley [31]), is obtained from TOA measurements. AC in aquatic remote sensing
has been studied for several decades, and numerous algorithms have been proposed for
ocean color satellite imagery over coastal and inland waters. Recently, some of these al-
gorithms were tuned for the new generation of satellites dedicated to land monitoring
(Landsat-8 and Sentinel-2), while others have been specifically developed for these satel-
lites. Despite the paramount importance of accurate AC for robust retrievals of optical
water constituents [32], it remains one of the largest sources of error for inland and coastal
waters [33,34]. Understanding the performance limitations and key sources of errors in
these algorithms for regional and global waters is critical to the remote sensing community
and to managers who depend on the downstream data. In recent years, a few studies have
been conducted on a regional and global scale to do so. For example, Warren et al. [35]
and Pereira-Sandoval et al. [36] assessed most AC algorithms developed for MSI over
European coastal and inland waters. Basically, their results showed all ACs tests showed
large uncertainties, and their performance varied as a function of water types. In general,
C2RCC [37,38] and Polymer [39] provided the best statistics, but ACOLITE [40], iCOR [41]
and Sen2Cor [42] had better performance when applied to meso- and hyper-eutrophic wa-
ters, compared with oligotrophic waters. More recently, an international effort supported
by space agencies (NASA and ESA), i.e., the atmospheric correction inter-comparison
exercise for global coastal and inland waters (ACIX-Aqua) investigated the performance of
ACs [34]. This matchup exercise aimed at performing a comprehensive evaluation of water
reflectance products produced via eight AC processors using a large in situ optical dataset
(>2000 samples) collected under various atmospheric conditions and in different coastal
and inland environments across the globe. However, in situ data collected in small lakes,
including those from the Canadian dataset collected as part of LakePulse (110 samples),
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were excluded from the exercise due to large sources of errors in the retrieved Rrs(λ) likely
stemming from adjacency effects that led to unacceptable errors (>100%).

Generally, the reduction of image contrast when the atmospheric scattering increases,
the so-called adjacency effect (hereafter AE) [43,44], makes the darker target appear brighter,
and the brighter target becomes darker when a non-uniform surface is observed at TOA. In
other words, AE leads to additional sources of radiance at the TOA measurement over a
relatively darker target [45–47]. The AE is particularly strong over low reflectance targets
in regions where sharp contrasts of reflectance exist such as water-land transition [48,49].
This water-land transition could include water pixels up to 30 km from shore [50,51]. Since
the surface reflectance of waters and the surrounding lands and thus the contrast could
change seasonally, the extent of AE also features seasonal changes [52]. In addition to
the contrast between adjacent surfaces, the atmosphere scattering (Rayleigh and aerosol)
also determines AE [44,50,53–55]. Regarding the modeling of AE, 3D radiative transfer
MonteCarlo simulations were extensively performed to simulate AE in coastal regions
fully accounting for realistic atmospheric conditions, typical illumination, and observation
conditions, reflectance by a roughened water surface, and the coastal morphology [50,56].
For coastal waters in the 3D simulation, the boundary of land and water can be simplified
to be a line for easy simulation and analysis [50]. However, for lakes, the situation is more
complicated when the size and irregular shape that influence the contrast between the
target and the surrounding background must be taken into account. In this paper, we
further examine the AE for typical lakes using satellite observations and 3D radiative
transfer simulations.

To answer the questions of which AC algorithm is the best suited for Canadian lakes
and whether it satisfies the water quality monitoring requirements, this study performed a
similar exercise to ACIX-Aqua [34] but focused on ~300 small Canadian lakes. In addition,
although the problem of AE over inland waters has been identified in several papers
before [35,36,57,58], its impact on small lakes has never been quantified in the context of
atmospheric correction. The impacts of AE on the atmospheric correction over small lakes
and potential correction methods are also discussed in this paper.

2. Material and Methods
2.1. Study Area

Canada is a vast country (9,984,670 km2) that stretches from the Atlantic Ocean in
the East to the Pacific Ocean in the West and is bordered to the North by the Arctic Ocean.
It includes many geo-climatic regions and vastly different geomorphology. According
to the Ecological Land Classification (ELC) of Canada [59], the country is divided into
16 separate terrestrial ecozones (Figure 1). Boreal forests form a large part of temperate
latitude, with taiga and tundra to the North and a mixture of prairies and deciduous and
mixed forest in the South [60]. Arctic regions and the Rocky Mountains are often covered
by ice and snow. The apparent optical properties (AOPs): the downwelling irradiance
(Ed, µW/(cm2 nm)), upwelling radiance (Lu, µW/(cm2 nm sr)), the in-water vertical profile
of upwelling irradiance (Eu, µW/(cm2 nm)), etc., were measured in the summers of 2017,
2018, and 2019 in 333 lakes (Figure 1). Most lakes are located in forested zones, such that
the land surrounding the lakes have high Near-Infrared (NIR) band reflectance. Because
most Canadian lakes are clear (low turbidity) and small, the contrast between the lakes and
the backgrounds leads to strong AE in the satellite imagery.
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Figure 1. The ecozones of Canada and sampling stations (dots) with spectra that passed the quality
control procedure from the LakePulse fieldwork of 2017, 2018, and 2019. Red dots are lakes with a
matchup with either L8 or S2 satellite images.

2.2. In Situ Observation Data

The in situ data were collected as part of the LakePulse fieldwork campaign that
occurred in the summers (from June to September) of 2017, 2018, and 2019. To quantita-
tively reflect the potential impact of altering land use on lake ecosystems, a human impact
index was derived (see Huot et al. [9] for a description of the index). The value goes from
0 for no impact to 1 indicating lakes with a high likelihood of human impact. Most
of the in situ measurements (Figure 2) were conducted in small (area < 5 km2), shallow
(depth < 10 m), low human-impacted (HII < 0.1) lakes, and low altitude regions
(altitude < 500 m). The extremes for each category are 100 km2 for the largest area, 130 m
for the deepest, 0.9 for the highest human impact, and 1600 m for the lake at the highest
altitude. Note that although most lakes are shallow (depth < 10 m), the waters are most
likely to be optically deep due to high CDOM absorption. Average and ranges of variability
for LakePulse data for SPM, Chla and CDOM absorption at 440 nm are 12.7 ± 135.4 mg/L,
9.7 ± 27.4 µg/L, and 3.66 ± 3.9 m−1, respectively.

The radiometric data have been acquired with four different instruments: an in-
water light profiler Compact-Optical Profiling System [61] (C-OPS; Biospherical Instru-
ments Inc., San Diego, CA, USA), in-water TriOS-RAMSES hyperspectral radiometers
(https://www.trios.de/, accessed on 16 June 2020), above-water Analytical Spectral Devices
(ASD Inc., Boulder, CO, USA), and in-water Hyperspectral Ocean Color Radiometer (Hype-
rOCR, https://www.seabird.com/hyperspectral-radiometers, accessed on 16 June 2020;
SeaBird Scientific Inc., CO, USA). To reduce the influence of the bottom and shore, most
of the measurements were taken in the deepest part of the lakes. Finally, the protocols
recommended by the International Ocean-Colour Coordinating Group (IOCCG) for in situ
optical radiometry were followed [62].

https://www.trios.de/
https://www.seabird.com/hyperspectral-radiometers
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Figure 2. Distribution of the basic features (area, altitude, Human Impact Index and depth) of the
sampled lakes that have the optical measurements (blue) and matchups (orange).

After processing and quality control (QC), 293 out of 333 Rrs spectra were kept from
the fieldwork campaign for further analyses. The final Rrs dataset of 293 spectra contains
157 C-OPS, 62 ASD, 21 HOCR, and 53 TriOS-RAMSES measurements. The 293 Rrs spec-
tra are classified into 13 inland water types as defined by Spyrakos et al. [63] based on
the maximum correlation coefficient (r) of the standardized measured spectrum and the
candidate water types, which are derived from the original spectrum divided by the area
between each spectrum and a zero baseline, calculated in numerical integration. After
applying this classification scheme, 10 out of 13 of the inland water types were found
in the 293 spectra. For the spectra with a maximum r < 0.80, the water type was deter-
mined to be the ‘other’ type. Figure 3 shows the mean and standard deviation of the
original (3a,b) and standardized (3c,d) Rrs spectra in each water type. The water type
index and the number of spectra belonging to each water type connected with the symbol
‘-’ are shown as the label of the legend. As shown, most spectra fall into “type 6” and
“type 13”, which represent a potential significant presence of cyanobacteria and clear
blue water, respectively. In addition, most spectra show steep curves between 440–560,
suggesting that the waters are potentially rich in CDOM.

The detailed methods of in situ data processing and quality control are described in
Section 2.4. Note that TriOS-RAMSES, ASD, and HOCR record radiance using hyperspectral
sensors with a resolution of ~3 nm, while the C-OPS has 19 bands with a bandwidth of
10 nm. In the field campaign, four different C-OPS owned by Université de Québec à
Rimouski (UQAR), Laboratoire d’Océanographie de Villefranche (LOV), Laval university
(Takuvik), and Université de Sherbrooke (UdeS), having slightly different band settings
were used (see Supplementary Material). All C-OPS were calibrated by the manufacturer
prior to each field campaign. The Rrs spectra measured by C-OPS shown in Figure 3 were
linearly interpolated to 1 nm resolution, which were then converted to L8/OLI and S2/MSI
sensor equivalent spectral bands based on the relative spectral response functions.
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Figure 3. Rrs spectra used in this paper, collected in LakePulse fieldwork and their classifications.
(a,b) Mean and standard deviation of the Rrs spectra for each inland water type (c,d) Mean and
standard deviation of the standardized Rrs spectra for each inland water type. The labels of the legend
represent the water type index [63] and the number of spectra belonging to each type connected
by ‘-’.

2.3. Earth Observation Data

We obtained radiometrically calibrated data at the TOA from Landsat and Sentinel-2
satellite missions. The OLI sensor carried on Landsat-8 has eight multispectral channels
with a spatial resolution of 30 m, and the central wavelengths are 443 nm, 483 nm, 561 nm,
655 nm, 865 nm, 1609 nm, and 2201 nm. Compared to its predecessors it has narrower
bandwidth, much higher SNR (166–450), and 12-bits radiometric resolution. The Sentinel-2
satellites, S2A and S2B, are part of the Copernicus Programme (European Commission and
European Space Agency) and were launched in 2015 and 2017, respectively. They carry the
MSI sensor that has spatial resolutions of 10 m, 20 m, and 60 m in different bands, an SNR
range of 50 to 174, and a radiometric resolution of 12 bits.

L8/OLI and S2/MSI were designed for land studies, but their improved radiometric
resolution and SNR allow their use for water (e.g., Franz et al. [28,64]; Pahlevan et al. [65]).
The much finer spatial resolution compared to other ocean color missions such as MERIS,
and MODIS may be particularly useful for remotely monitoring lakes and reservoirs with a
small surface area. The Level-1 TOA reflectance products, which have been radiometrically
calibrated, corrected, and geo-referenced, were downloaded from Google Cloud Storage
(GCS) (gs://gcp-public-data-{mission}).

2.4. In Situ Data Processing and Quality Control (QC)
2.4.1. C-OPS

The C-OPS (see full description in Morrow et al. [61] and Hooker et al. [66]) is a free-falling
instrument that measures vertical profiles of downwelling irradiance (Ed, µW/(cm2 nm))
and upwelling radiance (Lu, µW/(cm2 nm sr)) in the water column in 19 wavebands at
15 Hz. The above-surface downward irradiance Ed(0+) was also measured simultaneously
with a radiometer attached on top of the boat making sure that no obstructions were in
the field-of-view. The in-water vertical profile of upwelling irradiance Eu(µW/(cm2 nm))
can also be measured by deploying an extra sensor on the profiling unit. In the LakePulse
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fieldwork campaign, four C-OPS instruments (labeled as A, B, C, and D) with different
waveband settings were used. The waveband settings of each instrument are provided in
the Supplementary Materials (S1). The wavebands range from UV to NIR with the shortest
and longest wavebands being 320 nm and 875 nm, respectively. The sensor for measuring
Eu was only available on C-OPS B and allowed an assessment of the Q-factor (sr), i.e., the
ratio of upwelling irradiance to radiance (Eu(0−)/Lu(0−) [67].

Three to five light profiles were performed with the C-OPS at each station (one station
per lake). The boats were either drifting during the measurements due to wind dragging or
maintained outside the light field using the boat engine, making sure the instrument was
kept outside any disturbance or boat shadow. To reduce the influence of the shadow from
the instrument itself, the operator dropped it perpendicular to the direction of the sunlight.

The data were processed in the R software with the Cops package developed by
B. Gentili at the Laboratoire d’Océanographie de Villefranche (LOV) and maintained by
S. Bélanger (the source code is available at https://github.com/belasi01/Cops, accessed on
20 November 2019). The data processing follows the NASA protocols [68]. Rrs was derived
from vertical profiles of Ed(z), Lu(z) and when available, upwelling irradiance Eu(z). Each
profile was carefully inspected and records showing instrument tilt greater than 10◦ were
discarded for both in-water and above surface sensors. For each profile, the near-surface
measurements were excluded because of the noise caused by the wave focusing effects
under a clear sky. A LOESS regression was used to smooth the profile measurement and
a linear regression on log-transformed data was used to extrapolate Lu(z) and Eu(z) to
the water-air interface below the water, Lu(0−) and Eu(0−), respectively. Although the
instrument was operated to reduce the influence of the shadow, some instrument self-
shading is inevitable. The self-shading correction method based on absorption coefficient
(Gordon and Ding, 1992; Zibordi and Ferrari, 1995) was used to correct Lu(0−) and Eu(0−).
The total absorption coefficient was estimated using the measured reflectance and dif-
fuse attenuation of downwelling irradiance following Morel and Maritorena [69] (their
Equation (8)). The Lu(0−) was further transformed to Lu(0+) using Equation (1), referred to
as water-leaving radiance Lw.

Lw(λ) = 0.54Lu
(
0−, λ

)
(1)

where, the factor 0.54 accounts for the partial reflection and transmission of the upwelled
radiance through the sea surface [68]. Thus, remote sensing reflectance Rrs for each profile
was then calculated using Equation (2):

Rrs(λ) = Lw(λ)/Ed
(
0+, λ

)
(2)

Once each profile for a given station was processed, all the C-OPS profiles for the
station were compared. Spectra that differed strongly (amplitude or shape) from the others
were discarded. The remaining spectra were averaged to obtain the final Rrs spectrum.
In addition, the Q-factor for each C-OPS channel was calculated for 71 stations in total
(Figure 4) and used in the processing of the in-water measurements obtained with the
HyperOCR irradiance sensor (Section 2.4.4). Larger variations in the spectral end members
(UV and NIR) indicate larger uncertainty in the Q-factor due to a lower absolute signal in
Lu and Eu and stronger vertical attenuation in these spectral ranges.

https://github.com/belasi01/Cops
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Figure 4. Statistics of the Q factor measured by C-OPS.

2.4.2. Analytical Spectral Device (ASD)

The above-water hyperspectral Rrs was determined using handheld portable spectro-
radiometers (ASD FieldSpec Pro) with a spectral range between 350 and 1050 nm and a
spectral resolution of 1 nm. The measurements were made between 90 and 135◦ azimuthal
angle relative to the position of the Sun and at a 30◦ to 40◦ nadir angle relative to the
vertical to minimize sun glint [70]. At each site, the upward radiance above the water
surface (Ltot(0+, λ)), which includes water-leaving radiance and the reflected sky radiance,
sky radiance (Lsky(0+, λ)), and the radiance of a standard grey or white panel (Lp) were
measured, and the measurements were repeated at least 10 times. Viewing geometry, wind
speed, wind direction, and weather conditions were also recorded for auxiliary analysis.

The data were processed in R with the open-source ASD package developed by Simon
Bélanger (https://github.com/belasi01/asd, accessed on 20 November 2020). Finally, Rrs
was calculated using Equation (1), water-leaving radiance Lw and downwelling irradiance
above water surface Ed were calculated using Equations (3) and (4), respectively.

Lw(λ) = Ltot(λ)− rLsky(λ) (3)

Ed
(
0+, λ

)
=
(
πLp(λ)

)
/ρp (4)

where, r refers to the reflectance of the skylight at the water-air interface, for a cloudy sky
(Lsky(0+, 750)/Ed(0+, 750) ≥ 0.05), r is given a constant value of 0.0256 [71], otherwise,
r is interpolated from Mobley’s LUT [70] for the actual sun-viewing geometry and the
wind speed, ρp refers to the reflectance of the white or gray board, obtained from the
calibration process. The values of r predicted from these models hold true in general but
are often suboptimal for individual measurements taken under continuously changing
conditions (wave and ship motion, illumination) [72]. Therefore, the preliminary calculated
Rrs needed to be further checked and corrected for the errors caused by non-perfect r and
residual sky glint or sun glint contaminations. In the ASD R package, a variety of methods
that are based on nil radiance assumption for specific bands, i.e., NIR and UV [73,74], the
similarity spectrum [71], and synchronic C-OPS measurement are available. The method
based on simultaneous C-OPS measurement forces the ASD-derived Rrs to pass through the
C-OPS Rrs at two wavelengths (second shortest and longest, respectively), and this method
was the default when the simultaneous C-OPS measurements are available. Otherwise,
the correction method was determined by the water conditions that were judged by the
pictures taken at the time of sampling, i.e., the method based on the similarity spectrum is

https://github.com/belasi01/asd
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used when the water is turbid, the UV nil radiance assumption (~350 nm) [73] was used
when the water was rich in colored dissolved organic matter (CDOM) and low in turbidity.

2.4.3. TriOS-RAMSES

An in-water TriOS-RAMSES system consists of two hyperspectral radiometers with a
sampling interval of approximately 3.3 nm and an effective spectral resolution of about
10 nm covering the spectral range 318–950 nm. One sensor was used to collect the upwelling
radiance just below the water surface Lu(0−), while the second radiometer simultaneously
recorded the downward irradiance Ed(0+) just above the water surface. The system was
deployed at the sun incidence side of the boat to minimize ship shadow. The data were pro-
cessed using a Python script developed by the Laboratoire d’Océanologie et de Géosciences
(LOG) in France. Rrs was calculated using Equations (1) and (2), Lu(0−) and Ed(0+) were
filtered according to the 25th and 75th percentile of the measurement at 490 nm before the
averages were taken. Note that the upwelling radiance was measured at about 4 cm below
the water surface, and it was assumed to approximately represent the Lu(0−) without
accounting for the effect of the top ~4 cm, leading to a slight underestimation of the Rrs.

2.4.4. HyperOCR

Similar to the above setup, two hyperspectral ocean color radiometers (HyperOCR,
Satlantic) were configured to measure the in-water upwelling irradiance just below the
water surface Eu(0−) and in-air downward irradiance Ed(0+). The radiance is measured at
about 3 nm increments from 380 to 800 nm. In addition, each spectral band is approximately
10 nm wide. The sensor measuring Eu(0−) was placed about 5–10 cm below the water sur-
face. The data were processed in R using the open-source HyperOCR package developed by
Simon Bélanger (https://github.com/belasi01/HyperocR, accessed on 20 November 2019).
The reflectance R just below the water surface was calculated using Equation (5):

R
(
0−, λ

)
= Eu

(
0−, λ

)
/
[
0.96Ed

(
0−, λ

)]
(5)

Rrs was further calculated using Equation (6) (Lee et al. [75]):

Rrs(λ) = 0.52R
(
0−, λ

)
/
(
Q− 1.7R

(
0−, λ

))
(6)

where, Q refers to the Q factor, in general, its value ranges between 3 and 6 in the nadir
direction [67]. In this study, the median Q factor (~4) measured by the C-OPS (Figure 4)
was adopted to calculate Rrs for the HyperOCR.

2.4.5. Database of Rrs

For each station, there may be more than one Rrs measurement from the different
instruments described above, but only one measurement was kept. Since the C-OPS
measurements have been well-calibrated and each vertical profile verified, they were
used as the reference. When hyperspectral measurements (Trios RAMSES, HyperOCR, or
ASD) deviated from C-OPS, the C-OPS measurements were used, when they agreed, the
hyperspectral measurements were used. If C-OPS was not available, the hyperspectral
measurement was adopted. Then, all Rrs measurements were linearly interpolated to a
1 nm interval from 410 nm to 875 nm. In order to validate the sensor-derived spectra, the
hyperspectral Rrs with 1 nm interval was then converted to the sensor (L8/OLI, S2A/MSI,
and S2B/MSI) equivalent Rrs based on the sensor’s relative spectrum response.

2.5. Atmospheric Correction Algorithms and Evaluation

When formulated in terms of planetary reflectance ρ (Equation (7)) instead of radiance L,

ρ =
πL

F0 cos θ0
(7)

https://github.com/belasi01/HyperocR
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where F0 is the extraterrestrial solar irradiance, and θ0 is the solar zenith angle, the observa-
tion of satellite sensor at TOA over inland waters ρTOA can be expressed as in Equation (8)
considering adjacency effects in general:

ρTOA = ρR + ρA + Tρsg + Tρg + tρwc + tρw + ρadj (8)

where, the subscripts R, A, g, sg, wc, w, and adj refer to the Rayleigh scattering, aerosol
scattering including multiple scattering with molecular, the reflectance due to the reflec-
tion of skylight by the water surface (skyglint), sun glint, white cap, water column, and
adjacency effects, respectively, t and T refer to the diffuse and direct transmittance in the
sea surface-to-sensor direction. AC is generally considered as the procedure of removing
all the items in the right part of Equation (8) to derive ρw. It is worth clarifying that:
(1) most AC processors do not include the removal ρadj; (2) different AC processors may
adopt different parametrization of the terms in Equation (8), e.g., the NASA level-2 genera-
tor (l2gen), ρsg is included in the lookup tables of ρR and ρA; (3) very likely in AC processors
developed to process land images ρR and ρA are for sole atmospheric scattering (i.e., the
atmosphere is bounded by an absorbing surface) and consequently they do not include
the skyglint contribution. Seven AC processors were evaluated in this study (Table 1):
l2gen (V7.5.1), ACOLITE (V20190326.0), the Landsat 8 Surface Reflectance Code (LaSRC),
Sen2Cor (V02.08.00), ICOR (V1.0), the Case 2 Regional Coast Colour processor (C2RCC,
V1.0) and the POLYnomial based algorithm (POLYMER, V4.12). LaSRC and Sen2Cor were
designed for L8/OLI and S2/MSI, respectively, while the other processors can handle
both L8/OLI and S2/MSI (Table 1). In some of the processors, more than one algorithm
or model is implemented. As a result, a total of ten configurations were tested (Table 1).
NASA’s l2gen processor was run in both the NIR-based standard algorithm (hereafter
STANDARD) [76,77] and the SWIR-based black pixel algorithm (hereafter SWIR) [78].
The STANDARD algorithm adopts an iterative scheme that is based on the ‘black pixel’
assumption and a priori, known NIR water-leaving radiance model.

The ACOLITE processor, which has been developed at the Royal Belgian Institute of
Natural Sciences (RBINS) for aquatic applications of Landsat series and Sentinel-2 (A/B)
satellite data, includes the default Dark Spectrum Fitting (DSF) algorithm [40,79]. The
DSF computes atmospheric path reflectance based on multiple dark targets in the scene or
subscene with no a priori defined dark band. For each band, the darkest object is estimated
from the offset of an Ordinary Least Square (OLS) fit to the first thousand pixels in the
histogram and aerosol model; aerosol optical thickness (AOT) at 550 nm is estimated based
on the darkest object. In this study, only the recommended DSF algorithm was evaluated.

LaSRC was developed by NASA/USGS for the atmospheric correction of Landsat-8
for terrestrial application. It calculates and removes the aerosol contribution from the
TOA reflectance using auxiliary data, such as AOT, water vapor, and ozone retrieved
from MODIS imagery, and digital elevation derived from GTOPO5, as the inputs of its
internal radiative transfer model [80]. Although the processor is not publicly accessible, its
surface reflectance products were obtained from Google Earth Engine (GEE) and the USGS
Earth Explorer.

Sen2Cor is the ESA standard atmospheric correction processor for S2/MSI which
was developed for land application [42]. It estimates the AOT at 550 nm using the Dense
Dark Vegetation (DDV) algorithm based on the scene classification results. The algorithm
requires that the scene contains reference areas of known reflectance behavior, preferably
DDV and/or dark soil and/or water bodies. If the scene contains no DDV pixels, constant
AOT which is specified in the configuration file will be used. When Sen2Cor is used for
water application, the AOT estimated over land pixels in the image is used for the water
surface, but the water surface effects such as sun and sky glint are neglected [42]. Aerosol
reflectance is then calculated and removed based on the libRadtran LUTs [81]. In addition,
AE correction is also included in the processing procedure. The AE correction algorithm is
based on the model proposed by Richter [53] (hereafter RICHTER1990). Briefly, this model
estimates the TOA reflectance due to AE by calculating the reflectance difference between
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the target pixel and its surrounding environment (default is 2 km), it was implemented
in ATCOR [82] and Sen2Cor integrated this implementation. The Sen2Cor processor is
available as a third-party plugin of the Sentinel-2 Toolbox (SNAP).

Table 1. List of the AC algorithms used to process L8/OLI and S2/MSI images in this study.

Algorithm Processor Description AE Correction Strategy of Rrs Retrieval

SWIR [78]

l2gen in SeaDAS (V7.5)

Black pixel assumption based
on two SWIR bands NO

Rrs is retrieved through
estimating and removing

aerosol attribution

STANDARD [76,77]

An iterative scheme based on
black pixel assumption a priori

known NIR
water-leaving radiance

NO

ACO_DS [40,79] ACOLITE (V20190326.0) Dark Spectrum Fitting (DSF) NO

LaSRC [80] LaSRC
L8/OLI only

The processor that generates
Rrs for GEE

NO

Sen2Cor [42] Sen2Cor (V02.08.00)
S2/MSI only,

ESA standard AC algorithm
for S2/MSI

RICHTER1990

ICOR [41] ICOR in SNAP (V7.0)
Land-based aerosol estimation

for inland waters NO

ICOR_SM [49]
Same as ICOR, but the

adjacency effects correction
algorithm is integrated.

SIMEC

C2RCC [37,38]

C2RCC in SNAP (V7.0)

NN-based, the model is
trained based on simulated
datasets for Case-2 water

NO

Rrs is retrieved directly
through optimizing a
coupled atmosphere-

water system.C2X [38]

NN-based, the model is
trained based on simulated

datasets for extremely
Case-2 waters

NO

POLYMER [39] POLYMER (V4.12) Spectral optimization NO

ICOR, previously known as OPERA [83], is a processor that performs atmospheric
correction based on the MODTRAN LUTs. ICOR can handle both land and water targets.
AOT is estimated based on an adapted version of the algorithm developed by Guanter [84]
from land pixels. Correction of adjacency effect (AE) for land and water bodies is included
in ICOR as an option. For land, AE is applied with a fixed range, while over water
the SIMilarity Environmental Correction (SIMEC) algorithm [49], which estimates the
contribution of the background radiance based on the correspondence with the Near-
InfRared (NIR) similarity spectrum, was implemented. To make a comparison, both ICOR
with and without the AE correction (ICOR_SM) were tested in this study.

The atmospheric correction algorithms STANDARD, SWIR, ACO_DS, LaSRC, Sen2Cor,
ICOR, and ICOR_SM described above, all adopt the same strategy of estimating and
removing the aerosol reflectance, although the aerosol reflectance estimation methods are
different. However, C2RCC [38] and POLYMER [39] (Polymer atmospheric correction
algorithm Issue: 2.1, 2016) do not. Instead, they adopt a coupled atmosphere-water
model and optimization technique strategy, and the aerosol optical properties and water
reflectance or Rrs are solved simultaneously by optimizing an objective function. The main
difference is that C2RCC uses a neural network for the optimization while POLYMER uses
a nonlinear optimization technique. In the C2RCC processor, two neural network (NN)
models, the C2RCC and C2X Nets, which were trained using the Case-2 and Case-2 extreme
waters dataset, respectively, are available and tested herein. Altogether, it resulted in ten
AC processing configurations (Table 1).
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2.5.1. Specific Processing Steps

Most of the default algorithms settings were kept for processing the images, however,
some were modified due to the context of this study. The key options chosen are described
in Table 2. For SWIR and STANDARD, the outband_opt option was set to 0 to ignore the
transformation to nominal wavelength. In addition, to reduce the processing time, only
a subscene of 0.05◦ by 0.05◦ (approximately 5.6 km by 3.7 km near the latitude of 48◦)
centered at the sampling station was processed. The two bands for aerosol estimation
were set as 1609 (1613) and 2201 (2200) nm when the SWIR algorithm was used to process
L8/OLI (S2/MSI). For STANDARD, the two bands were set as 865 nm and 1609 nm for
L8/OLI, and 865 nm and 1613 nm for S2/MSI. For the DSF algorithm in ACOLITE, a fixed
or a tiled path reflectance is optional, in this study, a fixed path reflectance with a subregion
of 0.05 degree by 0.05 degree centered at the sampling was chosen. For ICOR and ICOR_SM,
the window size for aerosol retrieving was set at 1000 by 1000 pixels which allowed more
chance of a successful retrieval than the default 500 by 500 pixels setting. Except for ICOR,
outputs of all the processors were resampled to the same spatial resolution of 20 m for all
of the bands of S2/MSI although the L1 image has three different resolutions (10 m, 20 m,
and 60 m). The outputs of ICOR have the same spatial resolution as the L1 image.

Table 2. Specific options of nine water-specific AC algorithms for L8/OLI and S2/MSI image
processing. LaSRC options are not listed, the Rrs spectra were obtained directly from GEE instead of
processing the L1 images of L8/OLI.

Algorithm Common Options Specific Options for L8/OLI Specific Options for S2/MSI

SWIR

maskland = off
east = lon + 0.025 west = lon − 0.025
north = lat + 0.025 south = lat + 0.025

outband_opt = 0

aer_swir_short = 1609
aer_swir_long = 2201

aer_swir_short = 1613
aer_swir_long = 2200

STANDARD Same as SWIR aer_wave_short = 865
aer_wave_long = 1609

aer_wave_short = 865
aer_wave_long = 1613

ACO_DS

dsf_path_reflectance = fixed
dsf_spectrum_option = dark_list
limit = lat − 0.025, lon − 0.025,

lat + 0.025, lon + 0.025

NA S2_target_res = 20

Sen2Cor Default NA resolution = 20

ICOR aot_window_size = 1000 NA NA

ICOR_SM aot_window_size = 1000
smiec = true NA NA

C2RCC PnetSet = C2RCC
PvalidPixelExpression =
“near_infrared > 0 and

near_infrared < 100”

PvalidPixelExpression = “B8 > 0
&& B8 < 0.5”

C2X PnetSet = C2X-Nets Same as C2RCC Same as C2RCC

POLYMER Default NA resolution = 20

2.5.2. Preparation of Matchups

Some studies have demonstrated successful matchups using less restrictive time
interval windows between image collection and ground observation of Rrs of up to 3 days
in lakes under stable hydrologic and atmospheric conditions [23,85–87]. In this study, the
time window was set to eight days (i.e., in situ date± 8 days) to obtain more matchups. The
8 days window is riskier for the validation when compared to the usual choice of 2 days
or 30 h, more chance of extreme conditions that drastically changes the optical properties
of the lakes could happen, e.g., strong winds or rainstorm. This can be detected by visual
inspection of images and photographs taken during the measurement, for example, if
the imagery shows clear water (dark blue), but the photo indicates turbid water, some
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extreme weather might have happened during the time window and this matchup was
excluded. However, subtle changes cannot be detected this way. Considering the current
cloud and cloud shadow detection algorithms are not perfect, cloud and cloud shadow was
identified after a visual inspection of the natural-color RGB image generated from the TOA
reflectance. Potential matchups were screened out when the pixels of the sampling station
were contaminated by clouds or cloud shadows. However, images with very thin clouds
(e.g., cirrus clouds) or haze were kept in this study to assess the capability of the current
AC algorithms to handle this situation. Thus, the matchups were divided into three groups
which contained all images (hereafter G-ALL), only the clear (hereafter G-CLEAR), and
very thin cloudy (cirrus and haze) images (hereafter G-CIRRUS), respectively. Very few of
the sampling stations were very close to the shore. The matchups with a minimum distance
smaller than 90 m (i.e., 3 L8/OLI pixels) were excluded. A simple threshold method that
the Rayleigh corrected reflectance in 865 nm < 0.1 was used to identify the water body.
Note that the non-water pixels identified by the method in this study may also contain the
cloudy pixels, therefore, this procedure also excluded the matchups contaminated much by
adjacent clouds. To exclude a few measurements that might have been potentially affected
by the bottom reflectance, the photos taken in the field were investigated visually.

To screen out the matchups that may be contaminated by sun glint, the Sun’s specular
reflectance was estimated using a script developed by Bailey (2014) based on the observation
geometry of the satellite image pixel at the sampling station. The wind speed was set
to 5 m/s if the measurement was not available. Potential matchups with an estimated
normalized glint radiance greater than 0.005 were excluded.

2.5.3. Evaluation Metrics

In this study, we evaluate algorithm performance following Pahlevan et al. [34] to
facilitate comparison to the recent ACIX-Aqua study and others. Three main metrics
that focused on the error, bias, and the similarity of the spectrum shape were defined as
Equations (9)–(11), respectively.

Bias = 100sign(Z)10|z|−1, where Z = median(log10

(
R′rs
Rrs

)
) (9)

Error = 100
(

10|Y|−1
)

, where Y = median
∣∣∣∣log10

(
R′rs
Rrs

)∣∣∣∣ (10)

SA = cos−1

(
R′rs·Rrs∣∣∣∣R′rs|| ||Rrs

∣∣∣∣
)

(11)

where, Rrs and R′rs refer to in situ and satellite-derived remote sensing reflectance, respec-
tively. Bias and Error represent the symmetric signed percentage bias and the median
symmetric accuracy, respectively. Similarity Angle (SA), which is the angle (degree) be-
tween the two points in the n-dimension space (n is the number of Rrs bands), represents
the similarity of the measured and satellite-derived Rrs spectrum.

In addition, some of the algorithms might fail in processing (no Rrs products were
generated) or generate NaN or negative Rrs values in certain bands. In this study, as long
as the derived Rrs spectrum has all valid values in VIS bands, it is taken into account for
the calculation of the metrics, since the VIS bands are more important for the estimation
of water constituents and most Rrs in NIR bands are very low that near zero, otherwise, it
was referred to as ‘failure’. Therefore, the number of valid matchups generated by a certain
algorithm also reflects one aspect of its performance. This number was therefore used as a
reference indicator to evaluate the performance of algorithms.
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2.6. Radiative Transfer Simulations

We modeled the adjacency reflectance ρadj as Equation (12):

ρadj = ρTOA − ρ̃TOA (12)

where, ρTOA refers to the reflectance at the sensor originating from the target waterbody
which includes the contribution from the land (i.e., the surrounding/adjacent environment),
ρ̃TOA refers to the reflectance that would reach the sensor if the surface was all covered by
the homogenous water. AE are estimated by the percent adjacency reflectance ξρt at the
sensor level (Equation (13)).

ξρt =
ρadj

ρTOA ∗100% (13)

The 3D Monte Carlo radiative transfer model MCARATS (v0.9.5) (Iwabuchi, 2006)
was used to simulate ρTOA and ρ̃TOA. To simplify the conditions of atmosphere and water,
several assumptions were made:

• Physical properties of the atmosphere are horizontally homogeneous.
• Land surface are Lambertian and flat.
• Reflectance of the water body is spatially homogeneous.
• Reflectance of the water body includes two parts, the reflectance due to the water-

leaving radiance and the water surface reflected diffuse downwelling irradiance.
• No wind over the lake, and the water surface is assumed to be Lambertian.

The NASA standard atmosphere profile of mid-latitude summer was used to cal-
culate the extinction coefficient due to Rayleigh scattering and the total gas absorption.
The inputs related to aerosol including the phase function, the single scattering albedo,
and the angstrom coefficients were calculated based on the aerosol model developed by
Ahmad [88] (hereafter referred to as Ahmad 2010) and adopted in the l2gen program. An
arbitrary vertical distribution of aerosol concentration was chosen to calculate the extinction
coefficient profile due to aerosol scattering for a given AOT.

AE were simulated for two different cases, one for an ideal scenario and another for a
real case study. In the following table, we briefly describe the main inputs of the simulations
(Table 3), and more details are available in the Supplementary Material (S2). For the ideal
scenario, the shape of the lake was assumed to be a circle and the water relatively clear, and
the surrounding land is assumed to be covered in homogenous green vegetation, the spectra
are shown as Figure S3 in the Supplementary Material S2. Four different sizes of lakes with
an area of 5, 20, 50, and 100 km2 corresponding to a radius of 1.26, 2.52, 3.99, and 5.64 km,
were simulated to analyze the impact of lake size on the adjacency effects. Five wavelengths
corresponding to the center wavelengths of VIS and NIR of L8/OLI bands were simulated.
Two AOT (0.07 and 0.2) were set to evaluate the effects of aerosol concentration on AE,
the AOT of 0.2 was only applied to the area of 20 km2. This is similar to the simulation of
Santer [44] using 5S based on single scattering approximation and an exponential decay of
the environment effect derived from the best fit of pre-existing MC simulations. It is worth
mentioning that in addition to the presence of the atmosphere, the point spread function
(PSF) of the sensor also reduces the contrast of the satellite image [89]. According to the PSF
of the Enhanced Thematic Mapper Plus (ETM+), the distance affected by the PSF is around
60 m (2 pixels), and the further away from the pixel center, the weaker (see Figures 1 and 2
in [89]). Therefore, the effect of PSF is small relative to the atmosphere. For the real case
simulation in this study, since the PSF data of L8/OLI was not found, a similar PSF ofETM+
was used instead. For the real case study, the Dragon Lake (central location, 122.414◦W,
52.954◦N; ID 11-631) located in British Columbia (BC, Canada) with an area of 0.44 km2

is used as an example. The shape of the lake and the surface reflectance by the land were
taken from the semi-synchronized S2/MSI image resampled to 30 m per pixel after AC
by Sen2Cor, and the water-leaving reflectance was taken from the nearly synchronized
measurement of station 11-631 (see Figure 5). The water body was identified using an
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experienced threshold of 0.06 for the surface reflectance at band 8 (843 nm). The value
of AOT (550) was determined from the Sen2Cor-derived level-2 product. Note that in
the two cases, the diffuse downwelling irradiance (skylight) that is reflected by the water
surface was considered. The diffuse downwelling irradiance was simulated using Second
Simulation of a Satellite Signal in the Solar Spectrum-Vector (6SV) and the reflectance
of the skylight at the water-air interface r was simply set as 0.0256 to represent a water
surface in the absence of wind (see Section 2.4.2). Therefore, the input of reflectance for
water (ρs) is the sum of the reflectance due to the water-leaving radiance (ρw) and skyglint
ρsg (Equations (14) and (15)),

ρs(λ) = ρw(λ) + ρsg(λ) (14)

ρsg(λ) = r
Ed(0+, λ)

F0(λ) cos(θs)
(15)

where, F0 refers to the extraterrestrial irradiance. For the real case simulation, PSF was not
applied, because the surface reflectance of all the bands with resolutions of 10 m, 20 m, and
60 m was resampled to 30 m, and this means it has been blurred for the bands with 10 m
and 20 m resolution.

Table 3. Main inputs of the 3D simulation.

Parameters Ideal Case Real Case

Dimension 256 × 256 pixels

Initial Photons 5 × 1010

Aerosol

AOT AOT(865) = 0.070, 0.2 AOT(550) = 0.065

Model & type
Ahmad2010

Relative Humidity (RH) = 70,
Fine Mode Fraction (FMF) = 0

Ahmad2010
RH = 75, FMF = 95

Vertical distribution Arbitrary (see Figure S2 in Supplementary Material S2)

Geometry θs = 30◦, θv = 0◦ θs = 44.9◦, θv = 8.0◦

Relative azimuth φ = 118◦

Atmosphere profile NASA standard, mid-latitude summer (see Figure S1 in Supplementary Material S1)

Surface reflectance

water
Homogenous

In situ Measurement (04-620)
(see Figure S3 in Supplementary Material S2)

Homogenous
In situ Measurement (11-631)

(see Figure S4 in Supplementary Material S2)

Land Homogenous green vegetation
(see Figure S3 in Supplementary Material S2)

Heterogeneous
Sen2Cor derived surface reflectance

(see Figure S4 in Supplementary Material S2)

Figure 5. Natural color image of Dragon Lake from S2B/MSI (S2B_MSIL1C_20190829
T190919_N0208_R056_T10UED_20190829T21). The location of the sampling station 11-631 is also shown.
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3. Results

An example for the sampling site of 11-631 (see Figure 5) is given in Figure 6 to show
the validation of AC algorithms using the in situ measurement. As shown, eight Rrs spectra
are obtained from eight AC algorithms, the SWIR algorithm is not missing because of the
failure. In addition, the STANDRAD only generates two valid values in two NIR bands,
respectively, Rrs in the other bands are negatives. Surprisingly, POLYMER also generates
negative values in two NIR bands, but valid values in the VIS bands. Except for C2RCC,
C2X, and POLYMER, of which the forward water models always generate pretty much
constant values in NIR bands, the other algorithms have significantly overestimated Rrs in
NIR bands. However, the Rrs spectra in VIS bands derived by C2RCC, C2X, and POLYMER
were much different and totally inconsistent with the measurement. According to the
method described in Section 2.5.3, STANDRAD and SWIR are considered ‘failures’, but
POLYMER is considered valid as well as the other algorithms. Statistics of the metrics and
the results of the simulations are presented as follows.

Figure 6. Comparison between the in situ Rrs measured by TriOS RAMSES (24 August 2019
18:38 UTC) and the Rrs retrieved by each algorithm for the sampling station of 11-631 from the
Sentinel-2/MSI observation (29 August 2019 19:09 UTC). The measured Chla concentration was
1.55 µg/L.

3.1. Number of Valid Matchups

After applying the criteria and methods described above, we obtained in total 214 and
413 matchups for L8/OLI and S2/MSI, respectively. The number of matchups that failed in
G-CIRRUS for L8/OLI and S2/MSI were 39 and 141, respectively. The distribution of the
number of matchup pairs falling in different time windows is shown in Figure 7.

Table 4 shows the comparison of the numbers of valid matchups for each algorithm
for L8/OLI and S2/MSI, respectively. As mentioned above, up to 214, and 413 matchups
were found for a given processor for L8/OLI and S2/MSI. As listed, the STANDARD and
SWIR algorithms have very few matchups for each band, which indicates that most of the
water-leaving radiance retrieval has failed. Except for STANDARD and SWIR, the other
algorithms have almost the same number of valid matchups, while C2RCC and C2X have
no failures. Regarding failures, they appear in both groups of G-CLEAR and G-CIRRUS,
indicating that the related algorithms failed not only for thin cloudy images but also for
clear sky images.
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Figure 7. Distributions of the maximum matchups for L8/OLI and S2/MSI in each interval (days).

Table 4. Number and percentage of valid matchups for each algorithm.

S2/MSI L8/OLI

Number Percentage (%) Number Percentage (%)

STANDARD 17 4.1 4 1.9
SWIR 6 1.5 1 0.5
ICOR 380 92.0 201 93.9

ICOR_SM 326 78.9 181 84.6
C2RCC 413 100 214 100

C2X 413 100 214 100
POLYMER 236 57.1 203 94.9

LaSRC NA NA 183 85.5
ACO_DS 376 91.0 206 96.3

SEN2COR 382 92.5 NA NA

3.2. Validation of Remote Sensing of Reflectance

This section presents the performance of the selected AC for L8/OLI (Section 3.2.1) and
S2/MSI (Section 3.2.2). The evaluation metrics of Bias and Errors were calculated for each
visible band and algorithm. The SA were also calculated for each algorithm. STANDARD
and SWIR were excluded from this evaluation as there are too few valid matchups resulting
in meaningless statistics. The metrics were also calculated for matchups in each group
(G-ALL, G-CLEAR, and G-CIRRUS).

3.2.1. L8/OLI

Figure 8 shows the performance of each algorithm for L8/OLI in terms of Bias, Errors,
and SA only for G-ALL and G-CIRRUS groups as G-CLEAR are very similar to those of
G-ALL due to a similar number of matchups. The magnitudes of Bias and Errors reach
hundreds of percent, which are much higher than the results reported in other comparison
exercises (e.g., Pahlevan et al. [34]), however, huge differences also exist between algorithms.
Focusing on the G-ALL group (upper panels in Figure 8) in terms of Bias and Errors, the
values of C2RCC and C2X, which have similar results, are lower than other algorithms.
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The other algorithms show similar but much higher values. This difference is particularly
strong in the blue band, which is most affected by atmospheric scattering including aerosol,
where Bias and Errors of C2RCC and C2X are much lower than in others. However, the
values still reach an unacceptably high value of around 200%. It is worth noting that only
the Bias of C2RCC and C2X in B4 is negative (underestimation of Lw), while others are
all positive (overestimation). The positive Bias leads to similar results for Errors shown
in the middle panels. In terms of bands, the B3 (560 nm) has the lowest Errors for all
the algorithms. Although C2RCC and C2X outperform other algorithms in terms of Bias
and Errors in each individual band, this is not the case in terms of SA (the right panels in
Figure 8). The median SA of C2RCC and C2X is only lower than POLYMER, but higher than
other algorithms. The lowest median SA (18) was returned by ACO_DS, which implies that
ACO_DS has the best performance in preserving the spectral shape, but not the magnitude.

Figure 8. Performance assessment of the processors in terms of median bias (left), errors (middle),
and similarity angle (right) for the G-ALL (upper) and G-CIRRUS group (bottom), respectively, for
Landsat 8. In the boxplots, the median values are shown as the green lines, and the circles represent
the outliers.

Considering the number of matchups for the B5 band (865 nm) is much lower because
of the absence of the NIR bands for some in situ sensors (e.g., HOCR), the evaluation of
individual matchups is less meaningful. Therefore, a comparison of the statistics between
the in situ dataset and the retrievals is made instead of matchups (Figure 9). The median
Rrs retrieved by ICOR, ICOR_SM, ACO_DS, and LaSRC are much higher than that of the
measurements (Figure 9), the relative differences reach approximately 10,000%, indicat-
ing these algorithms strongly overestimate Rrs(865). Compared with ICOR, ICOR_SM,
ACO_DS, and LaSRC, POLYMER, C2RCC, and C2X-derived Rrs have values that are
much closer to that of the measurements even though the medians are a little lower than
the measurements.
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Figure 9. Comparison of the distributions of the in situ measured Rrs and Rrs retrieved by each
processor in the NIR band (865 nm) of OLI (Landsat 8). The median values are shown as the green
lines, and the circles represent the outliers.

3.2.2. S2/MSI

The same analyses were performed for S2/MSI (Figures 9 and 10). Overall, S2/MSI
shows similar results as L8/OLI, but with higher Bias and Errors suggesting that the
algorithms have worse performance for this sensor (Figure 10). C2RCC and C2X again
outperformed other algorithms in B1 (443 nm) and B2 (490 nm), but their very low neg-
ative Bias and relative high Errors in B4 (665 nm) indicate a severe underestimation in
the red band. In terms of SA, again ACOLITE outperforms others while C2RCC and
C2X are the two worst. Some interesting results are found in terms of the matchup
groups, except for C2RCC and C2X, the other algorithms have similar trends of higher,
medium, and lower errors G-ALL (the upper panel in Figure 11) and G-CIRRUS (the
bottom panel), respectively, while C2RCC and C2X have the similar errors for G-ALL
and G-CIRRUS. This suggests that C2RCC and C2X are less sensitive to thin clouds than
the others.

Figure 10. Performance assessment of the processors in terms of median bias (left), errors (middle),
and similarity angle (right) for the G-ALL (upper) and G-CIRRUS group (bottom), respectively, for
S2/MSI. In the boxplots, the median values are shown as the green lines, and the circles represent
the outliers.
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Figure 11. Comparison of the distributions of the in situ measured Rrs and Rrs retrieved by each
processor in the NIR bands (705 nm, 740 nm, 783 nm, and 865 nm) for S2/MSI. The median values
are shown as the green lines, and the circles represent the outliers.

Large differences between measured and retrieved Rrs are also found for the four
NIR bands of S2/MSI (Figure 11). From the median Rrs shown in Figure 11, C2RCC and
C2X-derived ones are lower than the measurements while they are higher for the other
algorithms. Overall, compared with other algorithms, the differences related to C2RCC,
C2X and POLYMER are lower, especially in the longest NIR band (865 nm).

3.3. Simulations of Adjacency Effects
3.3.1. Idealized Case

The adjacency reflectance ρadj was calculated based on the simulation of ρTOA and
ρ̃TOA. Figure 12 shows ρadj images at 865 nm and 655 nm for different lake areas. The
smaller size of the lake, the greater ρadj is, indicating the stronger adjacency effects. Al-
though there is more noise is at 655 nm than at 865 nm, which was caused by same the initial
amount of photons used and the stronger extinction of the atmosphere at 655 nm (more
photons will reduce the noise but will require much more time), we can also see clearly
that ρadj(865) is approximately 10 times greater than ρadj(655), for the same lake size. For
comparison, the surface land (vegetation) reflectance (ρs) used as input in the simulations
was around 5 times higher at 865 nm relative to 655 nm (see Supplemental Materials S2).
The ρadj approximately doubles for a lake with an area of 20 km2 when the AOT increases
from 0.07 to 0.2. It also shows that the closer the pixel is to the perimeter boundary the
greater ρadj. To see the pattern clearly, the transect profiles from the boundary to the center
of the lake are plotted (Figure 13). In addition to ρadj, the percent adjacency reflectance
ξρt and the ratio of ρadj and ρw are plotted as well. In general, an exponential decreasing
value of ξρt is found with distance to shore which agrees with other reports [51,54] and the
slopes of smaller lakes were higher than larger lakes, such that the impact is not only lower
but also decreases faster with distance from shore. Although the pattern was similar at
655 nm, there was also greater noise and lower magnitude. The strongest AE was found at
865 nm near the boundary for the smallest lake, and the ρadj, ξρt and the ratio of ρadj and
ρw exceed 0.015, 40% and 80%, respectively.
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Figure 12. Images of the percent adjacency reflectance ξρt in 865 nm and 655 nm for lakes with an
area of 5 km2, 20 km2, 50 km2, and 100 km2. The letter A here represents the area.

Figure 13. Transect (along a radius) of the adjacency reflectance ρadj (upper), the percent adjacency
reflectance ξρt (middle), and the ratio of ρadj/ρw (bottom) at 865 nm (left) and 655 nm (right) for
hypothetical circular lakes with areas of 5 km2, 20 km2, 50 km2, and 100 km2.
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3.3.2. Real Case

The simulated and satellite-observed TOA reflectance (ρTOA
si and ρTOA

ob ), and their
ratio (ρTOA

si /ρTOA
ob ) for Dragon Lake (British Columbia, Canada) are shown in Figure 14.

As shown, ρTOA
si agrees very well with ρTOA

ob , especially in the blue (443 nm). For the
green band (560 nm), the simulations were slightly higher than the observations over land
surfaces. Most of the lake shows ratios close to unity but decreases toward the shoreline
(i.e., simulated < observed). This phenomenon was caused by the threshold that was used
to identify the water body of the lake, the pixels’ surface reflectance < 0.06 was identified
as water leading to the large difference between the measurements of the sampling site
and the observations near the shore-land boundary. Because pixels near shores are likely
impacted by the mixture of pixels (land), the bottom reflectance, and submerged or floating
aquatic vegetation. Bottom reflectance, however, would contribute more in the green band
where light penetration is maximum, which is not the case for NIR bands. In contrast,
aquatic vegetation would impact red-edge and NIR bands more severely than visible bands.
Figure 15 shows the simulation and observation at the sampling station near the middle of
the lake. The comparison of the two spectra confirms that the simulation over the sampling
station is acceptable. The agreement was particularly good in the NIR and blue bands, but
simulated TOA reflectance was slightly lower than the observations in the red and green
band. There are some factors that could contribute to the differences between simulations
and observations, (1) the surface reflectance of the land, and the aerosol optical thickness
at 550 that were retrieved by Sen2Cor could have some errors, and (2) the aerosol optical
properties, i.e., the phase function, the angstrom parameter, etc., as well as its vertical profile
might not represent perfectly the real ones (3). The assumptions made for the simulations,
such as the spatial homogenous atmosphere, and Lambertian surface could also have made
some contributions. The combination of the impacts on the simulations is too complicated
to be clearly analyzed here. Nonetheless, the differences are acceptable for our purpose of
illustrating the magnitude of AE but not modeling.

Figure 14. Comparison of the four S2/MSI bands (443 nm, 560 nm, 740 nm, and 865 nm) ob-
served (ρTOA

ob ) and the 3-D RTM simulated TOA reflectance (ρTOA
si ). The sampling station 11-632 is

also shown.
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Figure 15. Comparison of the S2/MSI observed (ρTOA
ob ) and the simulated TOA reflectance (ρTOA

si ) at
the location of the sampling station (11-631).

The adjacency reflectance ρadj is shown in Figure 16. The noisy images found in the
shorter wavelength (443 nm and 560 nm) were caused by the same reason explained in
Section 3.3.1. As shown, ρadj has a large difference in different bands, which is the same
as the ideal case. However, the ρadj in 865 nm, are even larger than that of the 5 km2

lake shown in the ideal case, indicating stronger AE. Compared to the ideal case, the
ρadj has a similar spatial distribution; generally, the near shore is more affected by the
adjacency environment which leads to a high value, and the offshore has a lower value.
However, the spatial distribution is much more complicated than what the ideal case shows,
this is caused by the irregular shape of the lake and the heterogeneous reflectance of the
land surfaces. For example, in the NIR band, the narrow southern shore which has a
“brighter” land adjacent to the shore shows the largest values of ρadj and ξρt which exceed
0.01 and 60%, respectively. The strength of AE varies from band to band, in terms of
ρadj (see Figure 17a), the largest and lowest values are in 783 nm and 665 nm, of which
the median values are around 0.004 and 0.01, respectively. Comparing ρadj to the water
reflectance ρw (see Figure 17b), the difference is greatest at 865 nm, where the ratio ρadj/ρw
exceeds 100, but at 560 nm, the ratio is around 1. Regarding the statistic percent adjacency
reflectance ξρt (see Figure 17c), the difference is greatest at 865 nm, where ξρt reaches
around 60%, while the lowest difference is at 443 nm and the ξρt is around only 2%.

Figure 16. Map of the adjacency reflectance ρadj of part wavebands (443 nm, 560 nm, 740 nm, and
865 nm) over the lake.
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Figure 17. Boxplots of ρadj (a), ρadj/ρw (b) and ξρt (c) at different waveband over the lake.

4. Discussion

In this study, the ten available AC algorithms/processors for S2/MSI and L8/OLI
were evaluated over small Canadian lakes. The results of the matchup exercise show that
the Bias and Errors are very large and often unacceptable while the radiative transfer
simulations indicate that the adjacency effects, especially in the NIR bands, over small
lakes with clear waters are extremely strong. Here we discuss how the strong AE might
affects the AC algorithms, and in this context, the potential improvement of atmospheric
correction for small lake application. Some sources that could have caused the uncertainty
of the evaluation are discussed as well.

4.1. Sources of Uncertainty

The main source of uncertainty arises from the time window used to match satellite
images and sampling. Since too few matchups may reduce the credibility of the statis-
tical results, we used a relatively wide time window of +/− eight days to increase the
number of matchups. However, the wide time window will undoubtedly increase the
uncertainty of the evaluation, e.g., the extreme weather conditions such as strong winds
and heavy rain may cause the resuspension and charge of sediment, which could rapidly
change the turbidity of shallow inland waters. This huge uncertainty could have been
reduced to some extent by excluding sampling stations with significant precipitation in the
time window by visual inspection as described in Section 2.5.2, however, a slight change
could be detected in this way. Here, we analyzed the performance of each algorithm
for matchups within different intervals to see if the time window has an impact on the
performance. No obvious patterns of Errors and SA in terms of intervals were found (see
Figure S10 in Supplemental Materials). This suggests that an eight-day time window for
L8/OLI and S2/MSI was reasonable for lakes in this study. It is likely that because the
errors are so large due to the current limitation of the atmospheric correction algorithms
that the variability arising from the changes in the Rrs, which must be present, is too small
to be observable.

4.2. Adjacency Effects over Small Lakes and Its Influence on Atmospheric Correction

Briefly, AE is caused by the scattering of the atmosphere and the contrast of the surface
reflectance between the target and its surrounding environment. Its strength is affected by
factors including the aerosol vertical profile and optical thickness, the observation geometry,
as well as the contrast of surface reflectance. For a given aerosol type and concentration,
the strength of AE is mainly determined by the contrast of surface reflectance. In terms
of water bodies including coastal zones and lakes, the distance to the shoreline, and the
water and the land surface reflectance all have an impact on the contrast. However, in
general, AE over lakes is stronger than that of coastal zones even when they have the
same water and land reflectance, this is because the closed shape of the lake allows it to
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gain more photons from the land (coming from all sides). According to Bulgarelli and
Zibordi [90], the maximum ξρt is approximately 30% in NIR bands based on the simulation
for the nearshore coastal waters when the surrounding land is covered with vegetation. The
present study shows much larger ξρt which could reach as much as 60% in NIR for small
lakes (see Figure 17). In terms of wavebands, ρadj(655) are much smaller than ρadj(865) in
the simulations (Section 3.3), this is also mainly because the contrast between the water
reflectance and the reflectance of vegetation in the NIR band is much greater at 865 nm than
at 655 nm. In fact, a significant difference in the contrast results in the ρadj not being constant
across wavebands but varies from waveband to waveband. As shown in the simulation
of the real case, the maximum ρadj found in the NIR band (783 nm) is around 100 higher
than ρw(783) and account for 50% of the TOA reflectance. Regarding the minimum ρadj in
the red band, although the absolute value is small, it could not be ignored when compared
to the water reflectance ρw, 2 to 3 times higher for ρadj than ρw is seen in the simulation
(Figure 17b). This implies that ignoring the correction of AE will lead to significant relative
errors in the Rrs retrieval even for the waveband that may be affected the least by AE.

Although satellite-derived AOTs were not evaluated in this study, the bias was too
large compared to the low water-leaving radiance in dark water based on previous inter-
comparisons of twelve AC processors validated using the global aerosol robotic network
(AERONET) measurements, e.g., the lowest root mean square is 0.119 (ICOR) [90]. There
are some reasons that can lead to errors in AC algorithms, such as aerosol models, invalid
assumptions, etc. Moreover, AE also has varying degrees of impact on the estimation
of aerosols in the existing atmospheric correction algorithms. In terms of the ‘NIR black
pixel’ algorithm implemented in l2gen, theoretical analysis of the propagation of the bias
introduced by AE from the NIR bands to the derived path radiance and water-leaving
radiance has been given in detail by Bulgarelli et al. [91]. The statistics of the bias based on
the AAOT site have shown that bias of the derived path radiance (including aerosol) and
water-leaving radiance had a large variability for different situations [51,92]. In general,
the path radiance and water-leaving radiance are over- and underestimated, respectively
if the land type is not snow or white land. In this study, we examined the STANDARD
and the SWIR algorithm in the l2gen processor. Although STANDARD adopts an iterative
scheme for processing non-open ocean waters, the first step in the iteration is based on the
‘NIR black pixel’ assumption, the propagation of the bias will be similar to the previous
analysis. However, in the study, because of the stronger AE over small lakes in NIR bands,
the aerosol radiance could be severely overestimated, Figure 18 shows the example of
sampling site of 11-631 (see Figures 5 and 6). This severe overestimation could result in
negative Rrs retrieval in VIS bands in the first step of the iteration, especially in the coastal
blue and blue bands at which the CDOM absorption is very high Even after setting the
concentration of Chla to 10 mg/m3 and all radiance in the red band (665 nm) assumed to be
from the water components (see the source code in l2gen) to re-estimate the water-leaving
radiance in NIR-SWIR bands in the second and third iteration, the aerosol was still high
and caused negative Rrs again (see Figure 18), and the procedure finally terminated. This
could explain the failure of STANDARD and SWIR even over clear lake waters (Table 4).

Unlike STANDARD and SWIR, ICOR, SEN2COR, and LaSRC estimate aerosols from
land pixels rather than water bodies. Although it may not be affected by AE as much as
STANDARD and SWIR because the contrast in brightness between terrestrial pixels may
be smaller than that between land and water bodies, it is inevitably affected to some extent,
and slight deviations in estimated aerosols can lead to large errors in Rrs retrievals for
waters. The ACO_DS algorithm estimates the aerosol type and optical thickness from the
fitted darkest spectrum (e.g., tree shadows on water) since the darkest spectrum is likely to
be to some extent brighter than it actually is due to AE, in addition, the strength of AE is
not constant and varies from waveband to waveband, both the aerosol type and optical
thickness could be inaccurately estimated. Undoubtedly, quantitative analysis of the bias
propagation greatly benefits the understanding of the impacts of AE on AC algorithms.
However, the strategy and complexity of a specific AC algorithm sometimes determine
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the difficulty of the quantitative analysis, for example, unlike STANDARD and SWIR,
the other algorithms in this study either retrieve aerosol based on the pixels of the entire
subscene but not on single pixels (e.g., ACOLITE, Sen2cor, ICOR), or retrieve Rrs on the
coupled atmosphere-water system using specific optimization (POLYMER) or regression
technique (NN). This determines that the propagation of biases is almost impossible to
derive and express in algebraic form like the ‘black pixel’ algorithm. Some experiments
could be potentially performed to study the statistic bias introduced by AE, for example, the
simulated TOA image based on the 3D radiative transfer model could be used to quantify
the impact of AE on ACOLITE. However, the main difficulty is that the processors can only
accept the official release of the level-1 image as input, which means studying the impact of
AE by comparing the outputs (AOT and Rrs) from the TOA reflectance with and without
AE requires a lot of extra works to adapt the source code.

Figure 18. STANDARD-derived radiance of aerosol LA for the first (green), second (purple), and
third iteration (black) in the iterative scheme for the sampling station of 11-631. The TOA radiance
after correction of Rayleigh scattering, and gas absorption (LM) is also shown (red).

For the algorithms that directly retrieve Rrs not relying on the estimation of aerosol,
they are affected by AE as well. As shown in Figs. 10 and 12, C2RCC and C2X, or
POLYMER have minimum errors in the derived Rrs in NIR bands and seem less affected
by AE, this could be explained by the predefined water model in the algorithms and thus
the magnitude of the derived Rrs in NIR bands are always in the range of the predefined
water model. However, since the reflectance contaminated by the non-constant strength of
AE spectrum is taken into account to directly derive Rrs by the neural network model or
nonlinear optimization, the algorithms will nevertheless be affected by AE although it is
unclear how it is affected, i.e., a totally incorrect Rrs spectrum shape may be derived while
the magnitude in NIR bands is correct.

4.3. Potential Method of Improvement

As analyzed above, AE can have a non-negligible impact on atmospheric correction.
The work compared matchup results with and without correcting for simulated AE, show-
ing consistent improvements in the retrieval of Rrs [89] However, unfortunately, only a
few operational correction algorithms are currently available. For the algorithms that were
selected for the evaluation exercise, only SEN2COR and ICOR_SM include the AE correc-
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tion procedure. SEN2COR integrates the RICHTER1990-based algorithm for AE correction,
this method approximates the adjacency reflectance ρadj as the difference between the
reflectance of the target (pixel) and the reflectance of its surroundings.

ρadj = q
(
ρpc − ρpc

)
(16)

where, q refers to the ratio of the diffuse to direct transmittance towards the sensor, ρpc
refers to the surface reflectance of the target retrieved from the TOA reflectance without
considering AE, and ρpc refers to the weighted average of ρpc surrounding the target
in a range of N pixels, which is needed to be specified before running the correction.
This method is well described in the ATCOR Theoretical Background Document [82].
ICOR_SM integrates the SIMEC algorithm, which was first proposed by Sterckx et al. [49]
for the correction of high-resolution airborne imaging spectroscopy data. It estimates
the contribution of the background radiance in a range of N pixels. However, unlike
SEN2COR, the range of N is not fixed but determined by an iterative method based on
the correspondence with the NIR similarity spectrum. The advantage of SIMEC is that it
does not have to make assumptions about NIR albedo, so it can be applied in moderately
turbid waters, but a constant NIR reflectance ratio may not be valid for some situations,
e.g., waters with macrophyte growth or specific algae blooms and areas where bottom
reflection is significant in the NIR.

Both RICHTER1990 and SIMEC provide rational methods for the estimation of ρadj,
but the correction processing requires knowledge of aerosol (type and optical thickness),
which is one of the main factors that determines the strength of AE. However, an aerosol is
always unknown and needs to be retrieved from the imagery itself by the AC algorithm.
In Sen2Cor and ICOR_SM, the aerosol is determined by the land-based aerosol retrieval
method, although the land pixel may be affected less by AE, the effect is inevitable when
the surface is heterogeneous, and therefore the aerosol could be inaccurately derived. Using
inaccurate aerosol to estimate ρadj will undoubtedly introduce uncertainty into it. This
may explain that the ICOR_SM does not give a satisfying result in this study, though it is
better than ICOR. It is worth mentioning that the SEN2COR generates the same results for
Rrs with the AE correction function ON or OFF, and it is not clear if it is caused by bugs
in the SNAP implementation. One of the potential solutions to improve the atmospheric
correction for small lakes is to retrieve aerosol considering AE, in other words, to couple
the procedures of traditional atmospheric correction and AE correction instead of treating
them separately. Global optimization techniques or iterative schemes could be employed
to solve the unknowns in the coupled procedure.

5. Conclusions

A large amount of good quality Rrs spectra (>300) has been collected in Canadian
lakes from three LakePulse fieldwork campaigns (2017–2019). In this study, the dataset was
used to evaluate AC algorithms for L8/OLI and S2/MSI imagery. The primary version of
this data set (2017 and 2018) was considered in the ACIX-Aqua intercomparison presented
by Pahlevan et al. [34], but all the matchups were excluded from the final analysis due
to the large error in the water retrievals. The current paper included the data from 2019
and was reprocessed and quality controlled, here we further explore the reasons why
AC failed over lakes sampled in LakePulse. By relaxing the matchups criterion in terms
of the time difference between in situ and satellite acquisition, we were able to obtain
enough data points to perform a statistical analysis of the performance of ten AC algorithm
configurations for both Landsat-8 (N = 214) and Sentinel-2 (N = 413) images.

The results from the evaluation exercise showed that all algorithms failed to meet the
requirements of retrieval accuracy when a threshold of 30% uncertainty is taken (https:
//gcos.wmo.int/en/essential-climate-variables/about/requirements, accessed on 10 May
2022), actually, even the minimum error (>100%) is significantly larger than that. However,
some interesting findings must be emphasized. Generally, as far as the visible bands are

https://gcos.wmo.int/en/essential-climate-variables/about/requirements
https://gcos.wmo.int/en/essential-climate-variables/about/requirements
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concerned, ACO_DS is better at preserving spectrum shape than other AC algorithms,
while C2RCC and C2X are better in terms of magnitude. Radiative transfer simulations
showed that AE over small lakes is much more significant than in coastal regions. The
significant AE is likely the main reason that leads to the failure of all AC algorithms,
although other issues such as the aerosol model, calibration of the sensor, and instrument
stray light contamination could also contribute to it. AE correction must be taken into
account to improve the existing algorithms for small lakes. Unfortunately, most processors
do not include AE correction, and available AE correction algorithms are rare. As far as we
know, ICOR_SM and the algorithm implemented in Sen2Cor are the only operational ones.
However, they both have a limitation in common (i.e., treating the aerosol retrieval and AE
estimation separately). This will be improved by integrating the AE estimation into the
aerosol retrieval, which may be one of the directions where more efforts should be directed
for the next generation of atmospheric corrections for inland waters.
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