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Abstract: With the rapid development in the field of computer vision, the vision-based approach to
unmanned aerial vehicle (UAV) tracking and landing technology in weak global positioning system
(GPS) or GPS-free environments has become prominent in military and civilian missions. However,
this technique still suffers from problems such as interference by similar targets in the environment,
low tracking accuracy, slow processing speed, and poor stability. To solve these problems, we propose
the designated target anti-interference tracking (DTAT) method, which integrates YOLOv5 and
SiamRPN, and built a system to achieve UAV tracking and the landing of a designated target in an
environment with multiple interference targets. The system consists of the following parts: first, an
image is acquired by a monocular camera to obtain the pixel position information of the designated
target. Next, the position of the UAV relative to the target is estimated based on the pixel location
information of the target and the known target size information. Finally, the discrete proportion
integration differentiation (PID) control law is used to complete the target tracking and landing
task of the UAV. To test the system performance, we deployed it on a robot operating system (ROS)
platform, conducted many simulation experiments, and observed the real-time trajectories of the
UAV and the target through Gazebo software. The results show that the relative distance between
the UAV and the target during the tracking process when the target was moving at 0.6 m/s does
not exceed 0.8 m, and the landing error of the UAV during the landing process after the target is
stationary does not exceed 0.01 m. The results validate the effectiveness and robustness of the system
and lay a foundation for subsequent research.

Keywords: UAV tracking and landing; visual anti-interference; deep learning

1. Introduction

The UAV industry has grown rapidly in recent decades and the market is becoming
larger [1]. The tracking and landing of moving targets has been an active research area dur-
ing the development of UAV systems [2]. There are a wide range of application scenarios,
including agricultural remote sensing [3], marine transportation [4], police search-and-
rescue [5], etc. The production method of UAV-supervised agricultural machinery has
become an important part of unmanned agricultural remote sensing. To build a UAV track-
ing and landing system, more technologies are being developed and applied, including
multi-sensor fusion [6], visual navigation [7], communication between UAV and ground
targets [8,9], target search [10], suitable landing area search [11], etc. However, there are
still many challenges to be faced in refining the system, such as target localization in similar
target interference environments, real-time target tracking, and robust flight control.
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To solve the above problems, many researchers have used traditional vision methods
to build autonomous UAV tracking and landing systems. Compared with acquiring the
target position by radar [12,13], GPS [14], or SBAS [15,16], the vision-based method is
more resistant to interference, faster, more accurate, and suitable for many scenarios. For
example, Le et al. [17] proposed an autonomous tracking and landing system based on the
Aruco code as the target with a high accuracy, but the target is limited and influenced by
the light factor. Phang et al. [18] proposed an autonomous tracking system based on an
infrared camera; it can help the UAV to land and still detect targets at night in low-light
conditions. However, the accuracy is low and the tracking effect is poor.

In recent years, the field of computer vision has developed rapidly, especially in the
area of target detection and tracking [19,20]. Based on deep learning, target tracking and
detection methods improve target localization accuracy, and also have significantly im-
proved computing speed [21], which is suitable for deployment in embedded systems such
as UAV. Based on this, many studies have been carried out. Chen et al. [22] summarized
the target tracking methods applied to UAV, and reported that computer vision tracking
performs better than traditional tracking methods in terms of target occlusion, deformation,
and similar background interference, but still suffers from environmental interference and
difficulty in distinguishing between designated targets. Yang et al. [23] used the YOLOv3
object detection method and incorporated depth camera-based state estimation to success-
fully track and land on a target in a GPS-free environment, but the processing speed was
slow and the target was easily lost.

The problems, such as interference from similar targets, slow processing speed, and
inaccurate tracking, still exist in the above tracking and landing algorithms. To solve these
problems, this paper proposes the DTAT method, which integrates YOLOv5 and SiamRPN,
and uses it to build a system to achieve UAV tracking and landing of the designated target
in an environment with multiple interference targets. The proposed method is proved to
be effective in solving the above problems through experiments. The contributions of this
work are as follows:

• First, we propose the DTAT method to obtain the pixel position information of the
target. It effectively solves the problem of tracking a designated target in an environ-
ment with interference from similar targets. The method integrates target detection
and tracking algorithms to provide a solution for subsequent research.

• Second, we design a method to obtain the relative positions of the UAV and the target,
which is acquired from the pixel coordinates of the vertices of the target frame in the
image through a coordinate system transformation. Compared with the traditional
method, the estimation accuracy of the relative position is effectively improved.

• Finally, we employ a strategy based on the discrete PID control law to manage the
UAV flight state and integrate the above methods to complete the closed-loop control
system for UAV tracking and landing. After extensive simulation experiments, the
system was verified to be significantly better than the general system in terms of
tracking and landing accuracy, which has practical application significance.

The rest of the paper is organized as follows. In Section 2, we present the framework
for the tracking and landing system and the details of the DTAT method. In Section 3, we
describe the simulation experiments of the methods and the overall system. In Section 4,
we analyze the experimental results and discuss the design process of the method, as well
as its advantages and disadvantages, and finally analyze the shortcomings of the system.
Finally, we conclude the paper in Section 5.

2. Autonomous UAV Tracking and Landing System

In this section, the authors introduce the UAV autonomous tracking and landing
system in detail. The system hardware includes the UAV and the monocular camera. For
the UAV, we selected the P450-NX produced by AMOVLAB as the experimental model,
which has open-source control system code and easily completes algorithm deployment.
The system uses a DF500-1944P industrial camera (Jieruiweitong Inc., Shenzhen, China),
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which is small in size and convenient to carry. The system software framework is shown
in Figure 1. It consists of two main parts: the designated target anti-interference tracking
system and the UAV flight control system. For the former, we designed a DTAT method
to enable the UAV to accurately track the target under conditions of visual interference.
The system flow is shown in the panel on the left. The camera image is passed through the
YOLOv5 algorithm to get all potential targets in the field of view and we select the tracking
target to initialize the DTAT. When the next image frame arrives, the DTAT calculates and
outputs the pixel position of the designated target frame. The flow of the flight control
system is shown in the panel on the right. We use the output pixel coordinates to estimate
the relative position of the UAV to the target and obtain the coordinates of the target under
the inertial system of the airframe. With these coordinates used as the error term, a PID
control law is used to control the flight speed of the UAV to achieve tracking and landing.
The implementation process is described in detail below.

Remote Sens. 2022, 14, 2825 3 of 23 
 

 

2. Autonomous UAV Tracking and Landing System 
In this section, the authors introduce the UAV autonomous tracking and landing 

system in detail. The system hardware includes the UAV and the monocular camera. For 
the UAV, we selected the P450-NX produced by AMOVLAB as the experimental model, 
which has open-source control system code and easily completes algorithm deployment. 
The system uses a DF500-1944P industrial camera (Jieruiweitong Inc., Shenzhen, China), 
which is small in size and convenient to carry. The system software framework is shown 
in Figure 1. It consists of two main parts: the designated target anti-interference tracking 
system and the UAV flight control system. For the former, we designed a DTAT method 
to enable the UAV to accurately track the target under conditions of visual interference. 
The system flow is shown in the panel on the left. The camera image is passed through 
the YOLOv5 algorithm to get all potential targets in the field of view and we select the 
tracking target to initialize the DTAT. When the next image frame arrives, the DTAT 
calculates and outputs the pixel position of the designated target frame. The flow of the 
flight control system is shown in the panel on the right. We use the output pixel 
coordinates to estimate the relative position of the UAV to the target and obtain the 
coordinates of the target under the inertial system of the airframe. With these coordinates 
used as the error term, a PID control law is used to control the flight speed of the UAV to 
achieve tracking and landing. The implementation process is described in detail below. 

 
Figure 1. UAV autonomous tracking and landing system. 

2.1. Specifying the Acquisition of Target Pixel Coordinates 
The position of the designated target under the pixel coordinate system is required 

for the subsequent control of the UAV flight speed. For the speed and accuracy 
requirements of the algorithm during system deployment in the embedded environment, 
this paper proposes the DTAT method, integrating the YOLOv5 target detection 
algorithm, which has excellent accuracy performance, with the SiamRPN target tracking 
algorithm, which has fast speed and good embedded portability, to obtain the location of 
the designated target. The YOLOv5 algorithm can get the candidate frame position and 
size of all potential targets in the image with high detection accuracy but cannot locate the 
specified target. The SiamRPN algorithm uses a Siamese network to extract the given 
target information and is capable of tracking a single target, but the tracking accuracy is 
low and the target position is inaccurate. Therefore, the authors combined the two to 

Figure 1. UAV autonomous tracking and landing system.

2.1. Specifying the Acquisition of Target Pixel Coordinates

The position of the designated target under the pixel coordinate system is required for
the subsequent control of the UAV flight speed. For the speed and accuracy requirements
of the algorithm during system deployment in the embedded environment, this paper
proposes the DTAT method, integrating the YOLOv5 target detection algorithm, which
has excellent accuracy performance, with the SiamRPN target tracking algorithm, which
has fast speed and good embedded portability, to obtain the location of the designated
target. The YOLOv5 algorithm can get the candidate frame position and size of all potential
targets in the image with high detection accuracy but cannot locate the specified target. The
SiamRPN algorithm uses a Siamese network to extract the given target information and is
capable of tracking a single target, but the tracking accuracy is low and the target position
is inaccurate. Therefore, the authors combined the two to construct the DTAT method,
which ensures target tracking and improves accuracy at the same time. The implementation
process of the algorithm is described in detail below.

2.1.1. Yolov5 and SiamRPN

Among target-detection algorithms, the YOLO series [24,25], a single-stage detection
algorithm, performs well in many official datasets. YOLOv5 (Ultralytics LLC, Washington,
DC, USA) is an improved version of YOLOv4 with better detection speed and accuracy
that can be deployed in embedded systems. Its network model is shown in Figure 2; the
detection results of the target are represented by the pixel box center coordinates and size.
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Since the UAV processor uses the Jetson Xavier NX (NVIDIA Corporation, Los Angeles,
CA, USA) embedded platform, to improve the algorithm inference speed, we use the open-
source TensorRT high-performance optimized inference engine from NVIDIA. It works
in three stages: network model parsing, engine optimization, and inference execution. In
practical applications, TensorRT does not require any deep learning framework support
to achieve the inference acceleration of the existing network models, which improves the
real-time performance of the system.

SiamRPN, a single-target tracking algorithm that was proposed by Li et al. [26] at a
computer vision and pattern recognition conference (CVPR) in 2018, is used for large-scale
end-to-end image training and online detection of targets in an offline environment. It
addresses the problem of target interference by lighting, distortion, and occlusion in visual
tracking and the time-consumption problem of traditional tracking algorithms. Due to
its good real-time performance, it can be applied to airborne embedded platforms. The
SiamRPN algorithm consists of a Siamese network and a region proposal network (RPN),
and its network structure is shown in Figure 3. The tracking result is determined based
on the score of the classification and the offset of the regression, which means the target
location and size are obtained.
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2.1.2. Designation of Target Design

To build a target dataset to train the network model, the target shape and size need
to be designed. In the calculation for the processing of relative position estimation, we
assumed that the XY plane of the UAV body coordinate system would remain parallel to
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the horizontal plane of the target. For the accuracy of estimation, we designed the external
contour of the target as a circular frame, making the length and width of the detection
frame as equal as possible. Its outermost border was 50 cm in length and 50 cm in width,
the same size as a typical landing target. To make the network learn the general features of
the target and improve the recall rate when the target is occluded, we experimented with
various internal markers, such as “A”, “W”, and “H”. The “H” target worked best. The
overall width and height of the internal marker was 30 cm. To resist the mosaic effect, the
target and background plate were patterned in white and black. The final target effect is
shown in Figure 4.

Remote Sens. 2022, 14, 2825 5 of 23 
 

 

 
Figure 3. SiamRPN model structure. The star symbol represents Depthwise convolution. 

2.1.2. Designation of Target Design 
To build a target dataset to train the network model, the target shape and size need 

to be designed. In the calculation for the processing of relative position estimation, we 
assumed that the XY plane of the UAV body coordinate system would remain parallel to 
the horizontal plane of the target. For the accuracy of estimation, we designed the external 
contour of the target as a circular frame, making the length and width of the detection 
frame as equal as possible. Its outermost border was 50 cm in length and 50 cm in width, 
the same size as a typical landing target. To make the network learn the general features 
of the target and improve the recall rate when the target is occluded, we experimented 
with various internal markers, such as “A”, “W”, and “H”. The “H” target worked best. 
The overall width and height of the internal marker was 30 cm. To resist the mosaic effect, 
the target and background plate were patterned in white and black. The final target effect 
is shown in Figure 4. 

 
Figure 4. Designation of the target. 

2.1.3. Designated Target Anti-Interference Tracking Method 
As mentioned earlier, YOLOv5 was trained with a large-scale target detection dataset 

and had high model capacity and good algorithm accuracy. It can effectively detect all the 
target locations when the background changes, but lacks the specified target information. 
SiamRPN can be used for target tracking alone, but it has lower accuracy than YOLOv5 
and is prone to tracking failure when the environment changes, resulting in target loss. 
Both algorithms are suitable for embedded platforms because of their relative lightness. 
To obtain the pixel coordinates of the target and improve the tracking accuracy, this paper 

Figure 4. Designation of the target.

2.1.3. Designated Target Anti-Interference Tracking Method

As mentioned earlier, YOLOv5 was trained with a large-scale target detection dataset
and had high model capacity and good algorithm accuracy. It can effectively detect all the
target locations when the background changes, but lacks the specified target information.
SiamRPN can be used for target tracking alone, but it has lower accuracy than YOLOv5
and is prone to tracking failure when the environment changes, resulting in target loss.
Both algorithms are suitable for embedded platforms because of their relative lightness.
To obtain the pixel coordinates of the target and improve the tracking accuracy, this paper
proposes a DTAT method that integrates YOLOv5 and SiamRPN. The structure of DTAT is
shown in Figure 5.
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The DTAT method first uses the YOLOv5 algorithm to detect the de-distorted images
transmitted by the UAV’s on-board camera to obtain all potential target candidate frames.
The tracking target is artificially specified and its YOLOv5 detection frame is used as a
sampling sample to initialize the SiamRPN model. When the new image frame arrives, it
is simultaneously fed into the YOLOv5 and SiamRPN networks to obtain two detection
results. When there is no YOLOv5 detection result in the image, the detection result of
SiamRPN is used, while the sampling sample is not updated. Intersection over union (IoU)
is an evaluation metric used to measure the accuracy of an object detector on a particular
dataset. When the YOLOv5 target detection results are present, the IoU and centroid
distance between all target detection frames and SiamRPN detection frames are judged.
When the IOU value is greater and the centroid distance is less than the set threshold, the
YOLOv5 detection frame with the largest IOU value is used as the target-tracking result,
and the pixel coordinates of the target frame are output; then the target frame is used as the
SiamRPN sampling sample for the new image frame. If there is no target detection frame
within the threshold, the SiamRPN detection result is used and the sampling sample is
not updated. In summary, according to the DTAT method, the final output of the target
frame information with center pixel coordinates in the image is prepared for the UAV speed
control. The above IoU and distance thresholds are designed empirically and are related to
the camera parameters.

2.2. Target and UAV Relative Position Estimation

To control the flight speed of the UAV, its relative position to the target has to be
calculated in real time. It is assumed that the camera is rigidly connected to and mounted
directly below the UAV with the lens pointing vertically downward. Due to the compact
structure of the UAV, the camera origin and the UAV body origin are considered to be
the same point. The right-handed coordinate system is used as the reference to establish
the coordinate system of the relative position of the UAV and the target, as shown in
Figure 6. The figure includes five coordinate systems at different levels: A, pixel coordinate
system O(u, v); B, image plane coordinate system Os(x, y); C, camera coordinate system
Oc(Xc, Yc, Zc); D, target body inertia system Ow(Xw, Yw, Zw); and E, UAV body coordi-
nate system Ob(Xb, Yb, Zb). The following describes the conversion relationship between
coordinates and the relative position estimation method.
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2.2.1. Coordinate SYSTEM Conversion Relationship

The image plane coordinate system is the coordinate system of the camera’s light-
sensitive imaging element. If the light-sensitive size of each pixel is dx and dy and the
coordinates of the image plane coordinate system origin Os in the pixel coordinate sys-
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tem are (uo,vo), the conversion relationship between the two coordinate systems is the
following equation: {

u = x
dx

+ uo

v = y
dy

+ vo
(1)

Based on the pinhole imaging principle, we set the camera focal length as f and the
distance from the optical center to the object as U, and the following basic relationship exists:

X
U

=
x
f

(2)

The relationship between the image plane coordinates (x, y) of the image point p and
the camera coordinates (Xc, Yc, Zc) of the object point P is as follow:

x
f = Xc

Zc
y
f = Yc

Zc

, (3)

The relationship between the pixel and camera coordinate systems can be obtained by
substituting Equation (1) into Equation (3) as follows:u = Xc

Zc
fu + uo

v = Yc
Zc

fv + vo
, (4)

In the formula, fu = f
du

, fv = f
dv

. Rewriting the above equation into matrix form,
we get:

Zc

u
v
1

 =

 fu 0 uo
0 fv vo
0 0 1

Xc
Yc
Zc

 = KP , (5)

In the above equation, the matrix composed of intermediate quantities is called the
internal reference matrix of camera K. In summary, the conversion relationship between
pixel and camera coordinates is obtained, and the method for finding the relative position
is introduced below.

2.2.2. Relative Position Estimation Method

To solve the relative position, first we solve the coordinates of the target within the
camera coordinate system. Knowing u, v, and the internal reference matrix K, to solve for
Xc, Yc, and Zc, the Zc value needs to be found first. The length of the target is the same
as the width, and the actual length is assumed to be known. We use the two diagonal
points of the border in the pixel coordinate system to estimate the Zc value. Let the two
points be (u1,v1) and (u2,v2). Their corresponding camera coordinates are (Xc1, Yc1, Zc1)
and (Xc2, Yc2, Zc2). The relationship can be derived as the following equation:{

u1 = Xc1
Zc1

fu + uo

v1 = Yc1
Zc1

fv + vo

{
u2 = Xc2

Zc2
fu + uo

v2 = Yc2
Zc2

fv + vo
(6)

The two equations are subtracted to obtain the following equation:u1 − u2 = Xc1
Zc1

fu − Xc2
Zc2

fu

v1 − v2 = Yc1
Zc1

fv − Yc2
Zc2

fv

, (7)
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Assuming that the UAV is parallel to the target plane, Zc1 = Zc2, the following
equation is obtained: u1 − u2 = fu ∗

(
Xc1−Xc2

Zc

)
v1 − v2 = fv ∗

(
Yc1−Yc2

Zc

) , (8)

This leads to the following equation:Zc = fu ∗
(

Xc1−Xc2
u1−u2

)
Zc = fv ∗

(
Yc1−Yc2
v1−v2

) , (9)

Depth Zc can be calculated from the target width and height. During the experiment,
to address the situation where only a part of the image is in the field of view when the
target is at the edge, the longer edge of the target detection is selected to calculate depth
Zc, and then the Xc and Yc values are calculated to obtain the coordinates Xc, Yc, Zc of the
target in the camera coordinate system.

From the above definition and as shown in Figure 6, the origins of the camera and of
the body coordinate systems are the same, dual x-, y-direction and opposite z-direction,
and the matrix is expressed as follows:Xb

Yb
Zb

 =

 0 −1 0
−1 0 0
0 0 −1

Xc
Yc
Zc

, (10)

Based on the three-axis rotation matrix, the equation for converting from the UAV
body coordinate system to the body inertial system is as follows:Xe

Ye
Ze

 = R

Xb
Yb
Zb


R =

 cos θ cos ψ cos θ sin ψ − sin θ
sin φ sin θ cos ψ − cos φ sin ψ sin φ sin θ sin ψ + cos φ cos ψ sin φ cos θ
cos φ sin θ cos ψ + sin φ sin ψ cos φ sin θ sin ψ − sin φ cos ψ cos φ cos θ

 (11)

In the above equation, R is the rotation matrix, where θ, ψ, and φ are the pitch, yaw,
and roll angles, respectively, and the magnitudes are calculated by the UAV flight control
based on the IMU information. The coordinate values Xe, Ye, and Ze of the target within
the body inertial system are obtained, which means that the position estimation of the UGV
relative to the UAV is obtained, and then the UAV tracking and landing are controlled
according to the estimated coordinate values.

2.3. Drone Tracking and Landing Control

Based on the relative position information obtained above, the three-axis velocities
vxe, vye, and vze of the UAV under the body inertia system need to be calculated. Since the
UAV height can be controlled individually, the main focus is on the two-axis velocities
vxe and vye. The tracking speed is controlled by the discrete PID method during UAV
tracking. Using the above relative position information as the error term, the velocity
control method is established as follows:{

vxe2 = Kp × x2e + Kd(x2e − x1e)

vye2 = Kp × y2e + Kd(y2e − y1e)
, (12)

In the equation, vxe2, vxe1, vye2, and vye1 refer to the velocity of the UAV on the x- and
y-axes of the body inertia system for the current and previous frame, respectively. x2e, x1e
are the position of the target’s current and previous frame on the x-axis under the body
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inertia system, respectively. y2e, y1e are the position of the target’s current and previous
frame on the y-axis under the body inertia system, respectively. Kp is the scale factor and
Kd is the differential factor. Due to the uncertainty of the target, the UAV tracking process
changes dynamically, so the integration term is not set.

For the scale factor Kp, when Kd is 0, the UAV control state changes to linear control;
assuming the target speed is 1 m/s and the value of Kp is 0.5, there will be a steady-state
error of 2 m between the UAV and the target, which in turn leads to tracking failure. Based
on the consideration of stability and oscillation reduction, Kp = 1.5 is set, and the target
may be lost when it moves too fast. To avoid oscillation, the trend of the target is predicted
by increasing the differential term and Kd = 0.6 is set.

During the UAV landing, the drone continuously tracks the target. When the detected
object is located in a circular area with a radius of 0.03 m from the origin in the UAV body
inertial system, the system instructs the UAV to land directly. Due to the existence of
steady-state errors in the tracking process and practical considerations, the target needs to
be stationary before the landing process to achieve a safe landing.

3. Results

To evaluate the performance of the autonomous tracking and landing system, a
number of simulation experiments were conducted. First, to evaluate the image target
tracking performance, a target tracking experiment was conducted. The experiment was
divided into two parts: (1) YOLOv5 target detection and (2) DTAT target tracking. Second,
we conducted experiments to estimate the relative position of the UAV to evaluate the
accuracy. Finally, to evaluate the system’s effectiveness, we conducted overall UAV tracking
and landing experiments.

The simulation environment uses the Jetson Xavier NX processor, which is the same
as the actual UAV flight environment. The simulation environment is built based on the
Gazebo function package under the ROS framework. We added an unmanned vehicle with
landing landmarks and a UAV with a monocular camera to imitate the real environment of
UAV flight, and the experimental procedure and results are as follows.

3.1. Experiments and Results of Target Tracking in Images
3.1.1. Yolov5 Target Detection Experiment

First, the target dataset was established. Since the UAV tracking and landing experi-
ment was conducted in the Gazebo simulation environment, the dataset was collected by
intercepting the screen in that environment. The dataset consisted of 240 target images,
including five top view angles of 90◦, 80◦, 70◦, 60◦, and 50◦ of the Zc axis relative to the
horizontal plane of the target, eight yaw angles of the target around the Zc axis, and six
size occupancies of the target in the field of view. Figure 7 shows some examples of the
original and labeled target images at a top view angle of 90◦, a yaw angle of 90◦, and a
large field-of-view occupancy.

Based on the above dataset, the YOLOv5 network model was trained and pretrained
models were used. The hyperparameters were the same as the official recommendations,
and the learning rate was trained with 100 epochs using cosine annealing. To qualitatively
evaluate the model performance, we detected the target in a complex scene and the results
are shown in Figure 8. The YOLOv5 target detection performance was good when the
camera view was tilted, the target was occluded, and the target was small (fewer than
36 pixels in the field of view). For quantitative analysis of model performance, the three
indices of mean average precision (mAP)@0.5, mAP@0.5:0.95, and frames per second (FPS)
of YOLOv5 and YOLOv5 + TensorRT models were compared and analyzed based on this
dataset and the results are shown in Table 1. We can see that for the YOLOv5 model,
mAP@0.5 detection accuracy is 99.55%, mAP@0.5:0.95 is 87.16%, and FPS is 51.25 detection
frames. YOLOv5 combined with TensorRT improved FPS by 32.2, although there was a
decrease in detection accuracy, which better meets the real-time target detection task.
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Table 1. Model Performance Comparison.

Model mAP@0.5(%) mAP@0.5:0.95(%) FPS

YOLOv5 99.55 87.16 51.25
YOLOv5+TensorRT 99.46 86.23 83.45

3.1.2. Designated Target Anti-Interference Tracking Experiment

To effectively evaluate the target tracking performance of the DTAT method, we built a
multi-target disturbance scenario based on the Gazebo platform, including a UAV platform
with a moving target to be tracked and one stationary disturbance target. The tracking
experiments were based on video of the moving target captured by the UAV. The target
moved forward while the UAV was hovering and the airframe carried a camera to collect
video information. The 200 frames where the target was in the UAV’s field of view were
intercepted as the target tracking evaluation dataset, and DarkLabel software was used to
construct the label information of the target for model evaluation.

One-pass evaluation (OPE) [27] was carried out, using the position of the first ground-
truth frame of the target to initialize different tracking algorithms, and the recognition
results of the algorithms for each frame were compared with the true value to obtain the
precision rate (P) and success rate (S) to quantitatively analyze the tracking model. The
results of accuracy rate and success rate of the SiamRPN and DTAT algorithms are shown
in Figure 9a,b, respectively. Due to the small dataset, both models exhibited some degree
of overfitting in both the accuracy and success rate plots. To effectively differentiate the
effect, we changed the accuracy rate metric to the integrated area of the curve with respect
to the x-axis, as shown in the figure legend. On the precision rate index, the DTAT method
performed better at a low pixel threshold with high tracking accuracy. On the success
rate index, the DTAT method could still recall the target under a high IOU threshold, and
the tracking regression rate was high. In summary, compared with the single SiamRPN
algorithm, the DTAT method performed better.
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We selected frames 20 and 167 to show the tracking results, as shown in Figure 10. The
yellow dotted and solid boxes shown in the figure represent the interference target and
designated target obtained by the DTAT method. The red box represents the tracking of the
designated target obtained by the SiamRPN algorithm. Both Figure 10a,b showed that the
DTAT algorithm was able to distinguish between the specified target and the interfering
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target, and also had higher tracking accuracy for the designated target compared with the
SiamRPN algorithm.
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Figure 10. Multi-frame target tracking result. (a) Frame 20. (b) Frame 167.

3.2. Simulation Experiments and Results of Relative Position Estimation

Based on the pixel coordinates obtained by DTAT, we estimated the relative positions
of the UAV and the ground target. To verify the effectiveness of relative position estimation,
we estimated the relative position of the UAV to the target in the following four cases. As
shown in Figure 11, the target was placed on the ground and the drone was in hovering
mode. The yaw angle of the body rotation relative to the UAV system Zb was 0◦, 90◦, 180◦,
and 270◦. To eliminate the occasional factor, the experiment was repeated four times at
each yaw angle.
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Figure 12. (a) True position of drone and target; (b) relative difference between real and estimated
distance; and (c) bias in relative position estimation algorithm.

Based on the monocular camera information from the UAV, the pixel coordinates of the
target were detected and the relative position was estimated. The estimation bias was ob-
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tained by subtracting the estimated value from the true value provided by Gazebo to verify
the estimation effect, and the experimental results are shown in Figure 12. Figure 12a shows
the real positions of the target and the UAV provided by Gazebo, that is, the coordinate
positions of the x- and y-axis. The target and UAV coordinates were subtracted to obtain
the true value of the relative position. Figure 12b shows the estimated value obtained by
the relative position algorithm and the true value obtained by the true position calculation.
Finally, the results of four replicate experiments for each yaw were summarized to obtain
the errors of relative position estimation in the x- and y-directions in 16 experiments, as
shown in Figure 12c.

As shown in Figure 12c, the error range of the relative position estimation algorithm
with a static target was no more than 8 cm maximum error in the x-direction and 15 cm
in the y-direction. The experimental results indicate that the relative position estimation
algorithm met the UAV tracking and landing accuracy requirements.

3.3. Target Tracking and Landing Simulation Experiments and Results

To effectively evaluate the performance of the system, we designed a simulation
experiment of UAV tracking and landing. The target was set to move along different paths
(reciprocal straight line, circle, and rectangle), and the UAV tracked the target after a period
of time and landed when the target was stationary. We chose the reciprocal straight-line
trajectory for quantitative analysis, and the experimental results are shown in Figure 13. It
should be noted that the effective estimated height range of the airborne monocular camera
was about 0.3–6 m. When the flight height of the UAV was higher than the effective range
of the camera, the position estimation would be inaccurate. Therefore, the flight height of
the UAV was controlled within the effective range.
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comparison between drone and target.

Figure 13a shows the process of target tracking and landing of the UAV. The red
and blue paths represent the real position trajectory curves of the target and the UAV,
respectively. First, the UAV took off to the designated point, while the target made a
circular reciprocal motion along the x-axis at 0.6 m/s. It can be seen from the Figure 13a that
the UAV constantly followed the moving ground target, conformed to the target motion
curve in the x- and y-directions, and maintained a relatively fixed height difference with
the target in the z-direction. Figure 13b shows the tracking results of the UAV in the three
axis directions with errors. As shown in the figure, the errors ranged from −0.8 to 0.8 (m)
and −0.2 to 0.2 (m) in the x- and y-directions, respectively. During the motion, the relative
height of the z-axis was set to 2 m, and the real-time error was up to 0.5 m. When the target
was stationary and the UAV started to land, the landing error of both x- and y-axis was
0.01 m, indicating high landing accuracy. Figure 13c shows the real-time velocity of the
UAV and the target, indicated by two colors. From the figure, it can be seen that the UAV’s
operation speed tended to be close to the real speed of the target, and when the target speed
changed, the UAV could react faster and track the target continuously.



Remote Sens. 2022, 14, 2825 17 of 20

Figure 14 showed the UAV’s following trajectory results when the target was moving
in a circular and rectangular shape. When the target was moving at 0.4 m/s in rectangular
and circular trajectories, respectively, the UAV’s tracking trajectory matched the target’s
running trajectory and the system still worked well, although it could not overlap the target
in real time.
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4. Discussion

With the above experimental results, we can eliminate the influence of interfering
targets in the tracking process. The tracking system based on the DTAT method has
more advantages of anti-interference and tracking accuracy compared with other tracking
systems mentioned before. In this section, we further discuss the factors that affected the
performance of the UAV tracking and landing system. First, for the DTAT method, we
analyze the reasons for the method design and discuss the experimental results to propose
the factors that affect the performance of the method and possible improvements. Second,
for the relative position estimation experiments, the reasons affecting the experimental
accuracy are analyzed. Finally, the overall situation of the system is discussed, and the
limitations and areas for improvement are analyzed.

4.1. DTAT Method Design and Performance Analysis

The DTAT method combines YOLOv5 and SiamRPN, two algorithms used for target
detection and tracking. The system was not designed using only a tracking algorithm based
on the following considerations: the SiamRPN algorithm trains the target based on video
frames, which has smaller data volume and fewer scenes. At the same time, the model
capacity is smaller and the tracking accuracy is lower compared to the target-detection
algorithm. The DTAT method is based on the advantages of the target-detection method
and uses a large-scale image dataset, and the model has a better detection effect, while
incorporating the target-tracking algorithm, which can achieve tracking of a specified target.
In addition, target-detection and -tracking algorithms are now more widely studied; this
paper mainly considers the features of light weight and portability and selects two classical
algorithms, YOLOv5 and SiamRPN; the use of other model combinations can be considered
in subsequent research.

In the tracking experiments using the DTAT method with the SiamRPN algorithm for a
specified target, it can be seen from Figure 9 that SiamRPN had very low or even zero accuracy
at low pixel thresholds. The DTAT method can quickly improve the accuracy at low pixel
thresholds, which shows that the YOLOv5 algorithm is more robust in the tracking process
and SiamRPN is easily affected by the results of the previous frame and has poor tracking
accuracy. DTAT performs better in success-rate tracking experiments compared to SiamRPN
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and easily tracks targets, presumably mainly because the large YOLOv5 dataset provides
robustness to target background changes and improves target recall.

In the DTAT method, we place the YOLOv5 detection results at a higher confidence
level, but because of the limitations of the training dataset, background environmental
noise, and the scaling of the field of view caused by the different flight altitudes of the
UAV, sometimes neither target detection nor tracking can obtain accurate pixel coordinates,
which in turn affects the relative position estimation of the target and leads to UAV tracking
and landing failure. To effectively estimate the pixel coordinate position of the target,
subsequent experiments could add Kalman filtering. When the target is within a certain
distance threshold, only the original target detection result is used instead of the Kalman
filter to fuse the target detection and tracking results, with the YOLOv5 detection result as
the measured value and the SiamRPN tracking result as the state value, so as to estimate
the target pixel coordinates and obtain improved accuracy.

4.2. Performance Analysis of Relative Position Estimation Method

The UAV was fixed and the target was placed around the z-axis of the UAV body
system at four angles, and four sets of static estimation experiments were performed for
each angle to verify the effectiveness of the relative position estimation algorithm. The
final estimation error is shown in Figure 12c. It can be seen that each group of experiments
had a certain regularity. When the x-axis of the target was parallel to the global x-axis, the
relative position estimation method had a larger deviation in the x-direction and a smaller
deviation in the y-direction. When the x-axis of the target was parallel to the global y-axis,
the relative position estimation method deviated more in the y-direction and less in the
x-direction. These deviations are always present, independent of the target’s position in
the airframe. We can conclude that the relative position estimation method is inaccurate
in estimating the position of the target in the x-direction, i.e., the direction of the two long
edges of H, and relatively accurate in estimating the position of the target in the y-direction,
i.e., the direction of the shorter middle edge of H.

Therefore, the factor affecting the relative position estimation may be the training
accuracy of the YOLOv5 network model, which is more accurate when it is better trained
for the short-edge direction. Poor training for the long-edge direction results in lower
accuracy. In actual flight, the UAV will have a certain degree of offset, which does not
meet the assumptions of the relative position estimation algorithm and will therefore also
produce a certain degree of error. To improve the relative position estimation accuracy, a
model with higher accuracy can be selected for tracking, while controlling the degree of
UAV offset and reducing the violent jitter during flight.

4.3. Tracking and Landing System Analysis and Constraints

In this system, the UAV uses a Jetson Xavier NX processor for autonomous tracking
and landing. To evaluate the execution efficiency of the system, we built the same experi-
mental simulation environment based on the ROS system framework. The environment
consists of four nodes: the gazebo simulation node, the pix4 feedback node, the target de-
tection and tracking node, and the nonlinear control node. The environment was deployed
in the Jetson Xavier NX processor, and the processing time of each module is shown in
Table 2. The system took 30.44 ms from inputting a picture to the UAV performing flight
control, generating roughly 33 Hz to meet the actual flight requirements.

Table 2. Node test time.

Content Jetson Xavier NX Test Time (ms)

Gazebo simulation node 3.24
Pix4 feedback node 2.73
Target detection and tracking node 19.72
Nonlinear control node 4.75
Total running time 30.44
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Through qualitative and quantitative analysis, this paper verifies the tracking perfor-
mance of a system for a designated target in the case of multi-target confusion; however,
there are still some limitations of the system, mainly the following two aspects:

(1) The flight control algorithm takes the relative position of the airframe and the target
as input variables and uses feedback PID control, so there is a certain steady-state
error in the tracking process. In the process of following the target at low altitude,
if the target moves too fast, it will rush out of the UAV’s field of view and the UAV
cannot respond effectively, which in turn leads to the failure of target tracking.

(2) The system needs to have real information about the target in advance. The YOLOv5
detection process requires datasets made by real targets, and the relative positional
solution process relies on the real size information of the target. In the actual tracking
process, it is difficult to track unfamiliar targets.

5. Conclusions

In this paper, we proposed a DTAT method and built an autonomous UAV tracking
and landing system that enables UAV tracking and the landing of a designated target in an
environment with multiple interference targets. The image information transmitted by the
monocular camera was processed by DTAT and coordinate transformation to obtain the
spatial coordinate information of the specified target; then, the discrete PID control method
was adopted to realize tracking and the landing of the UAV on the designated target.

Extensive simulation experiments were conducted to evaluate the system performance.
The effectiveness and reliability of the algorithm and system were analyzed qualitatively
and quantitatively with regard to various aspects, such as the target pixel coordinates, the
position of the UAV relative to the target, and the tracking and landing process. The results
show that the relative distance between the UAV and the target during the tracking process
when the target was moving at 0.6 m/s did not exceed 0.8 m. The landing error of the
UAV during the landing process after the target was stationary did not exceed 0.01 m. In
addition, the advantages and disadvantages of the system were discussed at the level of
both processor hardware and algorithm design, and corresponding suggestions were made
for different problems. In the future, we will use multi-sensor fusion, such as radar and
a depth camera, to achieve target tracking and landing without a priori information, and
explore more intelligent and stable tracking algorithms to make UAVs more adaptable to
complex environments.
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