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Abstract: Object tracking based on RGB images may fail when the color of the tracked object is
similar to that of the background. Hyperspectral images with rich spectral features can provide
more information for RGB-based trackers. However, there is no fusion tracking algorithm based
on hyperspectral and RGB images. In this paper, we propose a reliability-guided aggregation
network (RANet) for hyperspectral and RGB tracking, which guides the combination of hyperspectral
information and RGB information through modality reliability to improve tracking performance.
Specifically, a dual branch based on the Transformer Tracking (TransT) structure is constructed
to obtain the information of hyperspectral and RGB modalities. Then, a classification response
aggregation module is designed to combine the different modality information by fusing the response
predicted through the classification head. Finally, the reliability of different modalities is also
considered in the aggregation module to guide the aggregation of the different modality information.
Massive experimental results on the public dataset composed of hyperspectral and RGB image
sequences show that the performance of the tracker based on our fusion method is better than that of
the corresponding single-modality tracker, which fully proves the effectiveness of the fusion method.
Among them, the RANet tracker based on the TransT tracker achieves the best performance accuracy
of 0.709, indicating the effectiveness and superiority of the RANet tracker.

Keywords: fusion tracking; hyperspectral image; transformer; deep learning

1. Introduction

Object tracking has been widely used in remote sensing, such as intelligent moni-
toring [1,2], military reconnaissance [3], and geographical survey [4]. The purpose is to
estimate the status of the object in subsequent frames through the state of the object in the
initial frame (e.g., location, size). Many object tracking algorithms are developed based
on the RGB image [5,6], but the RGB image is only composed of red, green, and blue
color channels, which easily lead to the tracking algorithm based on the RGB image not
being able to accurately predict the position of objects when different substances have a
similar appearance. Compared with the RGB image, the hyperspectral image (HSI) has rich
spectral features, which can provide more discriminative information for distinguishing
objects and backgrounds. Therefore, adding hyperspectral information to the tracking
process based on the RGB image is conducive to alleviating the problem of limited tracking
performance caused by the inherent defects of RGB images. It is regretful that there is no
fusion tracking algorithm based on pairs of hyperspectral and RGB image sequences, which
promotes our exploration of how to effectively combine the information of hyperspectral
and RGB modalities to improve the tracking performance.

RGB images are the main research object in the field of object tracking. Many tracking
algorithms have been developed for RGB images [7,8]. Object tracking methods based on
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RGB images are mainly divided into two kinds—one is using the correlation filter method
to achieve tracking [9,10] and the other is using the deep-learning method to predict the
object position [11,12]. The features extracted using the deep learning method have strong
competitiveness [13], which can obtain more information than that obtained from the
correlation filter method (such as handcrafted grayscale features, histogram of oriented
gradients (HOG) [9] and other traditional descriptors [14,15]). Due to the better tracking
performance, a series of Siamese trackers [16–18] based on deep learning has become a
research focus in recent years, such as SiamRPN [19], SiamCAR [20], and SiamFC++ [21].
For most Siamese-based trackers, the correlation between the template and the search
regions plays a critical role in predicting the object location. However, the correlation
network of trackers based on Siamese cannot fully use context information, which leads
to a decrease in the accuracy of the tracking algorithms. Unlike the trackers mentioned,
Transformer Tracking (TransT) [22] effectively integrates the features of the template patch
and the search region by processing the attention module of Transformer, producing more
semantic feature maps than correlation. Despite the research of the trackers based on RGB
images having acquired achievements, RGB images easily cause the trackers to drift when
the color between the tracking object and the background [23] is similar. However, in this
case, the deep features of the foreground and background are different.

Compared with RGB images, HSIs include more details, which can reveal inconspic-
uous content in RGB images [24–27]. Since HSIs have rich spectral information, object
tracking algorithms based on HSIs have gradually been paid attention to in recent years.
In particular, the first public hyperspectral dataset significantly promoted the research of
hyperspectral object tracking. Many works have been conducted on this dataset, such as
MHT [28], MFI-HVT [29], BAE-Net [30], and SST-Net [31]. MHT [28] explores the role of
material information, which describes spectral–spatial information and material compo-
sition distribution of spectral images through multi-dimensional oriented gradients and
abundance features. MFI-HVT [29] deals with feature maps generated by HOG and the
VGG-19 network to track the object. MHT and MFI-HVT have a common characteristic,
which is to predict the position of the object by selecting specific features. However, the
representation ability of specific features is generally lower than that of features extracted
by the methods based on deep learning. Therefore, how to apply the deep-learning method
to hyperspectral object tracking becomes important. Due to the limited quantity of HSI
sequences, the requirement of a large number of training samples for deep learning is not
satisfied, which confines the development of the hyperspectral object tracking method
based on deep learning. However, BAE-Net [30] and SST-Net [31] break the deadlock by
inputting multiple three-channel images generated by the band attention network into the
trackers based on deep learning for ensemble tracking. Although the tracking algorithms
based on HSIs have achieved initial development, the success rate of hyperspectral object
tracking is seriously limited by the inherent defects of hyperspectral modality images, for
example, low resolution [32].

Fusion tracking can improve the performance of tracking algorithms by combining
the advantage features from different modality images. The fusion tracking task based on
hyperspectral and RGB modalities faces three challenges: modality-specific (MS) repre-
sentations acquisition, multi-modality information combination, and different modality
reliability evaluations. Among them, MS representations refer to information obtained
from a specific modality. First, fully obtaining MS representations of different modalities
is the basis for effectively utilizing multi-modality images for the fusion tracking task.
An important factor affecting the acquisition of MS representations is the information
transmitted from the template patch to the search region. Most popular single-modality
trackers rely on correlation to integrate object information into regions of interest. However,
the related operation is the linear transfer of local features between the template patch and
the search region, which ignores the nonlinear interaction of global information, limiting
the full capture of modality features.. Second, effectively combining the information of
different modalities is the key to improving the fusion tracking performance. Most fusion
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tracking methods [23,33,34] have been studied on the dataset which consists of pairs of
RGB and infrared image sequences. At present, most of them tend to fuse the features
of different modalities for tracking. For example, DsiamFMT [34] and SiamFT [35] are
the typical fusion tracking algorithms based on the feature-level, which adaptively fuse
the convolution features obtained by processing diverse images with two branches of the
Siamese network. However, these methods are prone to generating pseudo-features, which
easily leads to object location prediction failure. In addition, effectively evaluating the
reliability of different modality images is also an important factor affecting the performance
of the fusion tracking task. The reliability of different modality images is inconsistent under
different conditions. For example, when the appearance difference between the object
and the background is noticeable, the features (such as color and texture) provided by
the RGB images are more conducive for tracking, so the RGB modality is more reliable
than the hyperspectral modality. However, it is difficult to distinguish the object from the
surrounding environment under poor illumination conditions only based on visual infor-
mation. Thus the HSIs which can provide rich spectral information is more reliable than
RGB images. To this end, to ensure that a more reliable modality plays a more important
role in multi-modality fusion tracking, it is necessary to evaluate the reliability of different
modalities effectively.

To address the mentioned issues, we propose a novel reliability-guided aggregation
network (RANet) for hyperspectral and RGB fusion tracking to improve the object tracking
performance by efficiently combining the information of different modalities. As far as we
know, the tracking method named TransT proposed in [22] is the first method to consider
using Transformer for object tracking. It conducts global nonlinear interaction between the
information of the template patch and the search region through the attention module in
Transformer, thus generating MS representations with richer semantic information. Inspired
by the TransT algorithm, we construct a dual TransT branch structure for processing
hyperspectral and RGB images to obtain MS representations of different modalities fully.
Then, we employ different MS representations to improve the classification ability of the
tracking network. In addition, due to the inconsistent reliability of hyperspectral and
RGB modality data under different conditions, we also consider the effect of the modality
reliability on the tracking performance. This is the first work that performs the tracking task
based on hyperspectral and RGB data. Our main contributions are summarized as follows:

1. We construct a dual TransT structure as MS branches to fully extract semantic features
of muti-modality images. Two branches are employed to process hyperspectral and
RGB images to obtain MS representations, respectively. To the best of our knowledge,
this is the first work that Transformer is introduced into fusion tracking based on
hyperspectral and RGB images;

2. We design a classification response aggregation module to combine the comple-
mentary information of different modality images effectively. Different responses
generated by the MS representations predicted by the classification head are fused as
the final classification response. The purpose is to enhance the ability of the tracking
network to distinguish objects and backgrounds by using multi-modality information;

3. We propose a method to evaluate the reliability of hyperspectral and RGB modalities
to predict the contribution of different modalities for the tracking task. By reducing the
noise effect of low-reliability modality data and making a more reliable modality play
a greater contribution in the classification task to guide the aggregation of different
modality information, which can maximize the aggregation module in improving the
tracking performance.

The rest of this paper is organized as follows: Section 2 describes reliability-aware
aggregation network in detail. The experimental details and results are presented in
Section 3. In Section 4, the ablation study and analysis are presented and the discussion is
introduced in Section 5. Finally, Section 6 concludes the paper.
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2. Methods
2.1. Network Architecture

In this paper, we propose a network that implements fusion tracking by combining
the information of hyperspectral and RGB images. The flowchart of the proposed RANet is
shown in Figure 1. The tracking task is divided into two sub-tasks: classification prediction
and regression prediction, which are used to obtain the classification results of the object
and background and the normalized regression coordinates of the object. Due to the small
amount of hyperspectral video data, the generalization ability of the feature extracted
based on this modality is poor; overusing these modality features will inhibit the object
tracking ability. Therefore, we use multi-modality information to enhance the ability of
the tracking network to distinguish between object and background and then use RGB
modality features with high generalization ability to predict the object bounding box to
maximize the performance of the tracking network.

Hyperspectral 
images

RGB images

Hyperspectral  
Branch

RGB Branch

Classification 
Prediction Head

Regression 
Prediction Head

Classification 
Response

results

Regression 
Response 

Figure 1. The flowchart of the RANet. In this flowchart, the input is hyperspectral and RGB images,
and the output is the prediction result of the object position.

The network architecture of the proposed RANet is shown in Figure 2. The RANet
contains two MS branches, two classification prediction heads, and a regression prediction
head, which are used to obtain the MS representations of multi-modality data, predict
the object/background, and predict the regression box of the object. As we can see, the
template patch and the search region of the hyperspectral image and the RGB image are
the input of this network. In general, the first frame image containing the object state in
the video is taken as the object frame image. The template patch that includes the object’s
information and its local surrounding scene is extended by twice the side length from the
center of the object in the object frame image and is reshaped to 128 × 128. The search
region covering the range of possible objects in the current frame is expanded four times the
side length from the center of the object in the previous frame and is reshaped to 256 × 256.
The template patch and the search region are taken as the inputs of the MS branch to extract
the MS representations.

Hyperspectral and RGB MS representations are obtained by two MS branches, re-
spectively. To improve the classification ability of the fusion tracking network, we in-
put hyperspectral and RGB MS representations into the proposed classification response
aggregation module to generate the fused classification response. Specifically, two MS
representations are processed separately by the classification prediction head to obtain the
classification response of hyperspectral and RGB, and then combine them to generate the
final classification response. In particular, to maximize the role of the aggregation module,
we consider the reliability of different modality images to adjust the MS representations
used for classification tasks. In addition, the regression prediction head predicts the RGB
MS representations to generate the regression response. Eventually, the fused classification
response and the regression response jointly predict the object’s state in the current frame.
The proposed RANet method is shown in Algorithm 1.
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Figure 2. The RANet network architecture. CH represents the classification prediction head and RH
represents the regression prediction head. In addition, α and β represent the predicted contribution
of HSI and RGB, respectively, and the symbol ⊕ represents the merge operation. The object’s final
position is determined by the classification and the regression responses.

Algorithm 1 Reliability-guided Aggregation Network (RANet)

Input: HSI and RGB sequences and the object state (ground truth) in first frame, and α and
β are the contribution values of hyperspectral modality and RGB modality, respectively;

Output: State (position and size) of the object in each frame;
1: Tracking:
2: for each frame i do
3: if i is first frame then
4: Crop HSI to obtain the HSI template patch Ht;
5: Crop RGB to obtain the RGB template patch Ct;
6: Calculate the HSI reliability Hr;
7: Calculate the RGB reliability Cr;
8: else
9: Crop HSI to obtain the HSI search region Hs;

10: Crop RGB to obtain the RGB search region Cs;
11: Put Ht and Hs into the HSI MS branch to obtain the HSI MS representations

Hmsr;
12: Put Ct and Cs into the RGB MS branch to obtain the RGB MS representations

Cmsr;
13: if Hr > Cr then
14: α > β and α + β = 1;
15: else
16: α < β and α + β = 1;
17: end if
18: Put α × Hmsr into the classification prediction head to obtain the HSI classifica-

tion response Hcr;
19: Put β × Cmsr into the classification prediction head to obtain the RGB classifica-

tion response Ccr;
20: The classification response Fc = Hcr + Ccr;
21: Put Cmsr into the regression prediction head to obtain the regression response Fr;
22: The final location of the object is determined by Fc and Fr;
23: end if
24: end for
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2.2. Modality-Specific Branch

MS branch is the key to effectively obtaining MS representations of different modalities.
This branch mainly includes the backbone part for feature extraction and the information
transfer part for combining the features of the template patch and the search region. To fully
obtain the MS representations, it is necessary to consider the nonlinear interaction between
the global information of the template patch and the search region to transfer the modality
information fully. TransT proposed in [22] uses the attention module in Transformer to
provide a new solution for the nonlinear interaction of global information between the
template patch and the search region. Therefore, we construct a dual TransT structure as MS
branches to fully obtain MS representations of different modalities. Each branch is designed
based on the TransT algorithm, the structure of the MS branch is shown in Figure 3. The
ResNet50 presented in [36] is employed as the backbone to extract features, and the features
of the template patch and the search region are processed by the Transformer Feature
Fusion Network Module (TFFM) to produce the MS representations.

ResNet50

reshape

reshape

256

1024

TFFM

MS Branch

Template Patch

Search Region

1024

MS 
Representations

Figure 3. The MS branch’s structure. The input is the template patch and search region, and the
output is the MS representations. Two sub-branches are used to process the template patch and the
search region, respectively. Then disseminate the template information to the search information
through the Transformer-based Feature Fusion Module (TFFM) to obtain the MS representations.

The TFFM using the attention mechanism of the Transformer is the significant compo-
nent of TransT, mainly including four feature fusion layers and a separate part of feature
fusion, as shown in Figure 4. There are two Ego-Context Augment modules and two
Cross-Feature Augment modules in each feature fusion layer. The Ego-Context Augment
module is employed to enhance the features of the template patch and the search region,
and the Cross-Feature Augment module is used to fuse them. In addition, the spatial
position-coding provides position information for the Ego-Context Augment module and
the Cross-Feature Augment module. By utilizing the attention mechanism of Transformer
to establish long-distance associations of the template patch features and the search region
features, the MS representations with richer semantic information can be generated.

ECA CFA

 4 

k, v

k, v

q

q q

k, v

TFFM

CFA

CFA

ECA

Figure 4. Structure of the Transformer Fusion Feature Module (TFFM). ECA represents the Ego-
Context Augment module and CFA represents the Cross-Feature Augment module. As shown in the
dotted box, two ECAs and two CFAs form a fusion layer. The fusion layer is repeated four times, and
then a CFA is added to fuse the feature maps of the two branches.
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2.2.1. The Attention of Transformer

The attention mechanism in Transformer is the essential component of the Ego-Context
Augment module and the Cross-Feature Augment module. An attention function can be
described as a mapping query (Q), keys (K), and values (V) to an output. The output is
computed as a weighted sum of the values, where the weight assigned to each value is
computed by a compatibility function of the query with the corresponding key [37]. The
scaled dot-product attention is defined as:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V, (1)

where dk represents the dimension of input.
Multi-head attention is used in Transformer to describe the global dependency between

input and output. The structure of multi-head attention is shown in Figure 5. Multi-head
attention is a global receptive field in the region, which can focus on the information of
different subspaces at different locations through multiple heads. All attention distributions
are calculated by scale dot-product attention. The multi-headed attention is assumed to
contain q heads, which is defined as:

MultiHead(Q, K, V) = Concat(H1, ..., Hq)WO, (2)

where Hi = Attention(QWQ
i , KWK

i , VWV
i ), (3)

where WO represents parameter matrices, WQ, WK, and WV are radiation projections of
parameter matrices.

Multi-Head Attention

Linear

Scaled Dot-Product Attention

Concat

VKQ

Linear Linear Linear

q

Figure 5. Structure of the multi-head attention module. It consists of several attention layers running
in parallel. The symbol q represents the number of attention layers. Each layer takes scaled dot-
product attention.

2.2.2. Ego-Context Augment Module

On the left of Figure 6 is the structure of the Ego-Context Augment module. The
feature vectors of the template and the search region are adapted to the focus context
through the multi-headed self-attention in the form of residuals, respectively. By using
this module, the semantic information of images can be better correlated and their feature
representations can be enhanced. This module can be defined as:

XAF = X + MultiHead(X + P, X + P, X), (4)

where P indicates the spatial coding position and XAF is the enhanced features of the output.
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Ego-Contexteature Augment 

Spatial 
positional 
encodingMulti-Head Self-Attention

q

Input: X

kv

Add & Norm

Output: XAF

a

Cross-Feature Augment 

Spatial positional 
encoding

Multi-Head Cross-Attention

v k q

Input: Xkv

FFN

Spatial positional 
encoding

Add & Norm

Add & Norm

Output: XCF

Input: Xq

b

Figure 6. The structure of the Ego-Context Augment module (ECA) is on the left (a), and that of the
Cross-Feature Augment module (CFA) is on the right (b). In particular, there is one input in the ECA
and two inputs in the CFA.

2.2.3. Cross-Feature Augment Module

On the right of Figure 6 is the structure of the Cross-Feature Augment module. The
enhanced features of the template and the search region obtained by the Ego-Context
Augment module are fused through multi-head cross-attention in the form of residual to
transmit the object information better. In addition, the Cross-Feature Augment module
also adds a Feed Forward Network (FFN) to increase the fitting ability of the model. This
module can be defined as:

XCF = X̂CF + FFN(X̂CF), (5)

X̂CF = Xq + MultiHead(Xq + Pq, Xkv + Pkv, Xkv), (6)

the symbol Xq represents the input features of one branch, and Pq is the spatial position
coding for the coordinate of Xq. Xkv stands for the input features of the other branch, and
Pkv is the coordinate encoded by the spatial position of Xkv. In addition, FFN is defined as:

FFN(x) = ReLU2(max(0, ReLU1(x))), (7)

ReLUi(x) = Wix + bi. (8)

Please refer to the reference [22] for more detailed descriptions.

2.3. Classification Response Aggregation Module

How to effectively combine the information of different modalities is an important
issue in the field of the fusion tracking task. Therefore, we design a classification response
aggregation module to combine the information of hyperspectral and RGB modalities,
aiming to improve the tracking performance by enhancing the discrimination between
the object and the background. In addition, the reliability of different modality images
under different conditions is inconsistent, so the fusion based on the reliability-aware of
different modalities can make full use of multi-modality information to improve tracking
performance. To reduce the noise effect caused by low-reliability modality data and ensure
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that a more reliable modality plays a more important role in the multi-mode fusion tracking,
we also propose a method to evaluate the reliability of hyperspectral and RGB modalities
and guide information fusion through the modality reliability.

2.3.1. The Evaluation Method of Modality Reliability

Since the features of the template patch need to propagate to all subsequent frames, the
reliability of different modality template patches is an essential factor affecting the tracking
performance. Based on this, we use the reliability of the template patch to represent the
modality reliability. In this part, we propose a simple method to evaluate the reliability of
the template patch. The evaluation flow is as follows:

First, the gray template patch of different modalities. Readjust the template patch
according to the weight calculated by the mean value of each channel in the template patch
of different modalities. Then, the processed template patch is superimposed along the
channel direction to obtain the gray template patch. In particular, in order to facilitate
calculation, the gray template patch of different modalities is standardized.

Second, statistics of the number of different modality gray levels. The gray range
of the gray template patch is divided into M gray levels. The number of gray levels is
obtained by counting the number of gray levels of pixels not less than N in each modality.

Third, calculate the sharpness of different modality template patches. The sharpness
of the template patch is related to the high-frequency component. When the template
patch is clear, the high-frequency component is at its highest, and the difference between
the mutation pixel and the adjacent pixel becomes larger. We calculate the sharpness of
different modality template patches by calculating the square of the difference between
each pixel and its horizontal right second nearest neighbor, which can be summarized as:

d( f ) = ∑
y

∑
x
| f (x + 2, y)− f (x, y)|, (9)

where f (x, y) is the gray value of the pixel (x, y) corresponding to gray template image f
and d( f ) is the sharpness of gray template image.

Finally, evaluate the reliability of the different modality template patches. The reliabil-
ity of the different modality template patches Ri is calculated as follows:

Ri =


γ

gi
di

, if di > t and dA−i > t,

γ
1

gi + di
, if di < t and dA−i < t,

γdi, else,

(10)

where A represents the collection of the modality kinds of RGB and hyperspectral, i ∈ A
represents a modality, γ ≥ 1 is the coefficient in reliability, t represents a threshold, gi
represents the gray levels number of i template patch, and di represents the sharpness of i
template patch.

If the sharpness of the template patch is greater than a certain threshold, it indicates
that the template patch is relatively clear. When both kinds of modality template patches
have high sharpness values, we use α times the ratio of the number of gray levels to
image sharpness to represent the reliability of template patches. At this time, if one
modality template patch contains more gray levels than the other modality template patch,
it indicates that the semantic information contained in this kind of modality template patch
is richer, so the reliability value of this kind of modality template patch is higher.

On the contrary, if the sharpness of the template patch is less than a certain threshold,
it means that the template patch is relatively blurred. When both kinds of template patches
are blurred, we use α times the reciprocal of the sum of the gray levels number and the
image sharpness to represent the reliability of the template patch. At this time, if one
modality template patch contains more gray levels than the other modality template patch,
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the noise contained in this modality template patch is larger, so the reliability value of this
modality template patch is lower.

However, if one kind of modality template patch is clear and the other is blurred, we
use α times the sharpness of the template patch to directly represent the reliability of the
template patch. Obviously, in this case, the clear template patch has a higher reliability
value than the blurred template patch.

Two examples are used to verify the reliability of two modality template patches in
Figure 7. The related images of the Coin are at the top of Figure 7, and that of the Rider2 are
at the bottom. The RGB template patches are displayed in the second column. Columns 3
and 4 are grayscale images of RGB and hyperspectral template patches, and columns 5 and
6 are the feature thermal images of RGB and hyperspectral template patches, respectively.
In this work, M is 500, N is 12, γ is 1, and t is 76.

(a) Original Images (b)RGB Template 
Patches

(c)RGB Grayscale 
Images

(d)HSI Grayscale 
Images

(e)RGB Feature 
Thermal Images

(f)HSI Feature 
Thermal Images

Figure 7. Examples of the reliability of hyperspectral and RGB modality template patches. The blue
box in the (a) column is the initial position of the object. The top images are the related images of
the Coin, and the bottom images are the related images of the Rider2. Among them, two images of
the (a) column are original images, and that of the (b) column displays the RGB template patches.
In addition, columns (c,d) are grayscale images of RGB and hyperspectral template patches, and
columns (e,f) are the feature thermal images of RGB and hyperspectral template patches, respectively.

We can see that the third and fourth images of the video named Coin are very clear,
and the fourth image contains more visual information than the third image. Therefore, it
can be judged that the reliability of the fourth image is higher than that of the third image,
and more useful features can be extracted from it. In addition, it can be seen from the
feature thermal images of different modality patches that the feature area displayed in the
sixth image is more matched with the object area, and the interference feature around the
object is minor, which also shows that the sixth image corresponding to the fourth image
is more reliable. The reliability of the third and fourth images of the coin is calculated by
the proposed method. The sharpness of the two images is 189 and 96, respectively, which
are greater than the threshold, so both images are relatively clearer. The reliability of the
fourth image is 4.896, which is higher than that of the third image (1.709), consistent with
subjective feelings.

It is easy to observe that the third and fourth images of the video named Rider2 are
both blurred. Compared with the fourth image, the third image is more complex, and
the quality is poor. It is difficult to extract useful features from it, so the reliability of
the third image is low. It can also be verified that the fourth image is more reliable by
comparing the feature thermal images shown in the fifth and sixth images of the Rider2
video. From a numerical point of view, the sharpness of the third and fourth images is 66
and 74, respectively, which are both smaller than the threshold, and the reliability of the
third image is 2.18× 10−3, and that of the fourth image is 2.49× 10−3, so the fourth image
is more reliable and conforms to the visual characteristics.
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2.3.2. Classification Response Aggregation Module

The structure of the classification response aggregation module is shown in Figure 8.
To reduce the noise effect caused by low-reliability modality data and to make a more
reliable modality play a more important role in the classification task, we use the modality
reliability to predict the contribution of different modalities for the classification task and
use the contribution value to process the MS representations of the corresponding modal-
ity, to maximize the role of the aggregation module in improving tracking performance.
We denote the contribution of HSI as α, and the contribution of RGB as β (α + β = 1).
Comparing the reliability of hyperspectral and RGB template patches, if the reliability
of the hyperspectral template patch is higher than that of RGB, α > β. On the contrary,
if the reliability of the hyperspectral template patch is smaller than that of RGB, α < β.
The processed MS representations of different modalities are input into the classification
prediction head, respectively, and the classification response of hyperspectral and RGB can
be obtained. The final classification response results from the fusion of different modality
classification responses. Denote CResponse as the final classification response, msrh as the
HSI MS representations, msrc as the RGB MS representations, φ and φ′ as hyperspectral
and RGB classification prediction heads, respectively. We utilize the same network for clas-
sification prediction, so this study has identical φ and φ′. The final classification response is
defined as:

CResponse = φ(α×msrh) + φ′(β×msrc). (11)

Classification 
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Classification 
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Reliability 
Evaluation

a × HSI MS  
Representations

HSI MS 
Representations

RGB MS 

Representations

HSI Template 
Patch

RGB Template 
Patch
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Classification 
Prediction Head

Classification 
Prediction Head

 b × RGB MS 
Representations Classification 

respone2

Figure 8. Structure of the classification response aggregation module. α and β represent the predicted
contribution of HSI and RGB, respectively. The symbol ⊕ represents the merge operation.

3. Experiments

To test the performance of the proposed RANet, experiments are conducted on the
dataset composed of hyperspectral and RGB. We compare the performance of the RANet
tracker with that of 10 state-of-the-art trackers.

3.1. Dataset and Compared Trackers

The dataset proposed in [28] includes various aligned hyperspectral and RGB video
pairs used for the evaluation. As far as we know, this is the first public hyperspectral
dataset published in the Hyperspectral Object Tracking Competition 2020. At present, some
researchers have carried out work based on this dataset in the field of remote sensing. The
hyperspectral image sequences are collected by a snapshot mosaic hyperspectral camera
at a video rate. Each image contains 512 pixels and 16 bands in the wavelength from
470 nm to 620 nm. RGB videos are acquired in a close viewpoint as hyperspectral videos.
Although the spatial resolution of hyperspectral data is relatively low, it has rich material
information, which can provide more object features to separate objects and backgrounds
in the case of a similar appearance. Therefore, the effective use of the material information
obtained by hyperspectral data and the visual information obtained by RGB data is of great
significance in improving tracking performance. The dataset covers eleven challenging
factors, including occlusion (OCC), illumination variation (IV), background clutters (BC),
scale variation (SV), deformation (DEF), motion blur (MB), fast motion (FM), in-plane
rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), and low resolution (LR).
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There are 40 video pairs composed of hyperspectral and RGB in the training set and
35 hyperspectral and RGB video pairs in the testing set. Table 1 lists the sequence names
and corresponding attributes of the testing set. Table 2 shows the number of sequences
corresponding to different attributes in the testing set.

Table 1. Sequence names and attributes of the testing set. The challenge attributes of 35 image
sequences are included.

Name Attribute Name Attribute

Ball SV, MB, OCC Forest2 BC, OCC
Basketball FM, MB, OCC, LR Fruit BC, OCC

Board IPR, OPR, BC Hand BC, SV, DEF, OPR
Book IPR, DEF, OPR Kangaroo BC, SV, DEF, OPR, MB
Bus LR, BC, FM Paper IPR, DEF, OPR, SV
Bus2 IV, SV, OCC, FM Pedestrian IV, SV

Campus IV, SV, OCC Pedestrian2 LR, OCC, IV, DEF
Car SV, IPR, OPR Player IPR, DEF, OPR, SV

Car2 SV, IPR, OPR Playground SV, OCC
Car3 SV, LR, OCC, IV Rider1 LR, OCC, IV, SV
Card IPR, BC, OCC Rider2 LR, OCC, IV, SV
Coin BC Rubik DEF, IPR, OPR
Coke BC, IPR, OPR, FM, SV Student IV, SV
Drive BC, IPR, OPR, SV Toy1 BC, OCC

Excavator IPR, OPR, SV, OCC, DEF Toy2 BC, OCC, SV, IPR, OV, OPR
Face SV, MB, IPR, OPR Truck OCC, OV, SV

Face2 IPR, OPR, SV, OCC worker SV, LR, BC
Forest BC, OCC

Table 2. Video numbers information of each challenge attribute in the testing set.

Attribute Video Numbers Attribute Video Numbers

OCC 18 FM 4
IV 8 IPR 14
BC 14 OPR 15
SV 23 OV 2

DEF 8 LR 7
MB 4

Due to the first hyperspectral-RGB fusion tracking algorithm, to test the performance
of the RANet tracker, we compare the RANet tracker with 10 state-of-the-art single-modality
trackers, including MHT [28], BAE [30], SST [31], TransT [22], SiamGAT [38], SiamCAR [20],
SiamBAN [39], ECO [40], SiamDW [41], and fDDST [42]. These methods can represent the
current high level of the single-modality tracker. In these methods, MHT, BAE, and SST are
designed for the tracking task based on hyperspectral images, while the others are only
developed for the tracking task based on RGB images.

3.2. Implementation Details

All experiments are implemented using a desktop equipped with an Intel(R) Xeon(R)
Silver 4210R CPU, NVIDIA RTX 3090 GPU. The contribution of the more reliable modality
is set as 0.9, and that of another modality is set as 0.1, that is, if the reliability of the
hyperspectral modality is higher than that of the RGB modality, we set α as 0.9. On the
contrary, if the reliability of the RGB modality is greater, parameter β is set as 0.9. During
the training process, the RGB branch is initialized with the weights that are pretrained on
COCO [43], TrackingNet [44], LaSOT [45], and GOT 10 K [46] datasets, and the HSI branch
is trained with stochastic gradient descent (SGD) on the hyperspectral training set. The
batch size is set as 16, and the learning rate is decayed from 0.001 to 0.0005 over a total
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of 20 epochs. Weight decay and momentum of the HSI branch are set as 0.0001 and 0.9,
respectively. The processing speed of the program is 10.0 fps.

3.3. Evaluation Metrics

The area under the curve (AUC) score of the success rate plot and the precision rate at
the threshold of 20 pixels (DP_20) value are utilized to evaluate the performance of fusion
tracking in this work [47]. Success means that the overlapping between the bounding box
predicted by the algorithm and the groundtruth box is greater than a certain threshold. The
overlapping represents Intersection over Union (IOU), which is defined as:

O =
|G ⋂

A|
|G ⋃

A| , (12)

where G indicates the groundtruth box and A is the predicted bounding box. The symbol
of | · | represents the number of pixels in the area. Success rate represents the ratio of
successful frames to total frames in a series of frames. The success plot shows the success
rate trends when the threshold changes from 0 to 1 at an interval of 0.02. The area under
the curve (AUC) of each success rate curve is used to rank the success performance of
the tracker.

Precision means that the center position error represented by the average Euclidean
distance between the center position of the object algorithm prediction and the groundtruth
accurate position is less than a certain threshold. The precision rate represents the ratio of
precision frames to total frames in a series of frames. The precision plot shows the trends of
precision rate when the threshold changes from a small value to a large value. The precision
rate at the threshold of 20 pixels is used to sort the precision performance of the tracker.
The center position error formula is as follows:

D =
√
(x2 − x1)2 + (y2 − y1)2, (13)

where (x1, y1) is the center position of prediction and (x2, y2) is the center position of
groundtruth.

3.4. Results and Analysis

In this section, we compare the AUC score and the DP_20 value of the RANet tracker
with that of 10 advanced trackers and analyze the performance of the RANet tracker from
both quantitative and qualitative aspects.

3.4.1. Quantitative Analyze

Table 3 shows the quantitative results of the AUC score and the DP_20 value on each
sequence of the RANet tracker and the selected trackers, respectively. In general, the
RANet tracker is superior to the selected comparative trackers in the AUC score and the
DP_20 value. In addition, it is clear to see that the overall performances of the RANet
tracker outstrips all the compared trackers in terms of both success rate and precision
rate from Figure 9a,b. The results exhibit the effectiveness of the proposed network in
hyperspectral-RGB fusion tracking.

Table 3. AUC score and DP_20 value of 11 trackers on 35 sequences. The best three results are labeled
in red, green, and blue, respectively.

MHT BAE SST TransT SiamGAT SiamCAR SiamBAN ECO SiamDW fDSST RANet

AUC 0.592 0.614 0.631 0.687 0.636 0.613 0.608 0.570 0.547 0.467 0.709
DP_20 0.882 0.876 0.915 0.920 0.864 0.841 0.833 0.840 0.854 0.725 0.952



Remote Sens. 2022, 14, 2765 14 of 22

Comparison with the TransT tracker. We can observe from Table 3 that the performance
of RANet is superior to TransT, although TransT performs well in the tracking task based
on RGB images. As shown in Figure 9, RANet is more competitive than TransT in almost
all scenarios, such as LR, IV, OCC, and BC. Especially in the scene of LR, the AUC score
and the DP_20 value of RANet are 5.5 and 8.3 percent higher than TransT, respectively. The
only exception is that RANet performs slightly worse than TransT when the object moves
rapidly. The experimental results show that using both hyperspectral and RGB data can
effectively improve the tracking performance.

Comparison with other RGB trackers. We compare the performance of the proposed
RANet tracker with that of other RGB trackers. Table 3 shows that the AUC score and the
DP_20 value of the overall performance of the RANet tracker are superior to other state-
of-the-art RGB trackers. From Figure 9, it is clear to see that the RANet tracker performs
better than other RGB trackers in terms of success rate in 11 challenging scenarios. In terms
of precision rate, the RANet tracker outperforms almost all RGB trackers in most scenarios
except for a slightly worse performance than SiamCAR in the scene of motion blur and fast
motion. It is exhibited that hyperspectral images can provide more robust spectral features
in some complex situations, such as OCC, IV, and LR. Therefore, the RANet tracker can
provide a robust performance under different challenging scenarios.

Comparison with hyperspectral trackers. From Table 3, we can observe that the
overall performance of RANet is 7.8 percent higher than that of SST in the AUC score and
3.7 percent higher in the DP_20 value, although SST shows the best performance of the
above hyperspectral trackers. It also can be discovered from Figure 9 that the performance
of RANet is better than that of hyperspectral trackers in most scenarios such as DEF, OV,
and SV. The results show that the proposed RANet makes up for the defect of the low
resolution of hyperspectral images using the reliable features provided by RGB images,
enhancing the tracking robustness.
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Figure 9. Success plots and precision plots of 11 trackers under overall attributes and different
challenge attributes.

3.4.2. Qualitative Analyze

Figure 10 shows the qualitative tracking results of different trackers in some image
sequences, which can intuitively compare the tracking performance of the RANet tracker
and other trackers.

Using the Pedestrian2 image sequences, we can intuitively compare the performance
of different trackers in tracking low resolution and occluded objects. It can be observed
from 159, 263, and 330 frames that, compared with other trackers, the RANet tracker
can accurately track objects with low resolution. In addition, it also can be seen from
263 frames that the RANet tracker still has good tracking robustness when obstacles block
the object. These show that the RANet tracker can track objects with low resolution and
that are occluded.

The video named Student mainly faces the challenge of illumination and scale varia-
tions. During the movement, the object’s scale decreases continuously, and the brightness
of the object and its surrounding environment darkens gradually. It can be seen from 106,
151, and 233 frames that the RANet tracker can track the object of scale change with good
performance. In addition, compared with other trackers, the RANet tracker also has a better
tracking performance under poor illumination conditions, as shown in 151 and 233 frames.
The above shows that the RANet tracker can sufficiently cope with the challenges of object
scale variation and illumination variation.

We mainly consider the problem of background clutter in the image sequences of Coin.
In this video, the tracking object is a gold coin, and the tracking background is some silver
coins with different denominations. It can be observed from frames 35, 45, and 70 that most
trackers are prone to failure due to the interference of the surrounding environment. In
contrast, the RANet tracker can still accurately predict the object’s location in this scenario,
indicating that the proposed method can effectively reduce the influence of background
clutter on the tracking results.
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— GroundTruth — TransT— SiamCAR — SiamBAN — ECO

— SiamDW — fDDST — RANet

#0001 #0159 #0263 #0330
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#0001 #0071 #0278 #0462

—
SiamGAT

Figure 10. Qualitative comparison of 8 trackers and groundtruth on some videos in some challenging
scenarios. Among them, the tracking result of RANet is marked with the red box, and the groundtruth
is marked with the yellow box. The video name from top to bottom are Pedestrian2, Student, Coin,
and Excavator.

In the image sequences from the video with the name of Excavator, the shape and
proportion of the object have changed greatly. It can be seen from frames 71, 278, and 462
that different trackers have different robustness in dealing with the above two scenarios,
and the proposed RANet tracker can still successfully track the object even if other trackers
lose it. This shows that the RANet tracker is more robust in challenging scenarios of SV
and DEF.

It can be clearly seen from the above results that the RANet tracker can effectively deal
with various challenging scenarios, such as BC, OCC, LR, and IV, which fully demonstrates
the competitive advantage of using complementary multi-modality information in the
tracking process.

4. Ablation Study and Analysis
4.1. The Ablation Study of the Fusion Structure

A reasonable fusion structure can effectively combine the information of different
modality images. To explore the effects of different fusion structures, we design two
trackers by improving the structure of the classification response aggregation module in
Figure 2 and keeping other components unchanged. The fusion structure used in the first
tracker is single fusion based on MS representation layers, and that of the other tracker is a
single fusion based on response layers. Two fusion structures are described as follows:
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4.1.1. Single Modality-Specific Representations Layers Fusion

The MS representations of hyperspectral and RGB as the inputs of the aggregation
module are processed by the predicted corresponding modality contributions and then
fused as the final MS representations. The classification head is used to predict the processed
MS representations to obtain the classification response for the fusion tracking task.

4.1.2. Single Response Layers Fusion

The MS representations of hyperspectral and RGB as the input of the aggregation
module are directly predicted by two classification heads to obtain two classification
responses. Then, two responses are processed by the corresponding modality contributions,
and the processed responses are combined as the final classification response to predict the
object and background.

4.1.3. Results and Analysis

Ablation studies are used to explore the effects of different fusion structures of trackers.
The tracker with single fusion based on MS representations layers is RANet-mf, which
combines the multi-modality information by combining processed MS representations
of different modalities. The other tracker with single fusion based on response layers
is RANet-rf, which combines the multi-modality information by combining processed
classification responses of different modalities. The performance of three trackers with
different fusion structures is shown in Table 4.

Table 4. AUC score and DP_20 value of three RANet models with different fusion structures. The
best results are labeled in the red font.

Fusion Structure AUC DP_20

RANet 0.709 0.952
RANet-mf 0.693 0.927
RANet-rf 0.702 0.942

It is obvious that the AUC score and the DP_20 value of the proposed RANet tracker
are higher than that of the RANet-mf tracker and the RANet-rf tracker. This is because the
single fusion structure based on MS representations layers increases the possibility of gener-
ating pseudo-features, which easily causes tracking deviation. Besides, the fusion structure
based on the response layers alone is too dependent on the classification vectors, which
easily leads to the failure of the tracking task when the classification vectors of a modality
data cannot be accurate enough to predict the object and background. The fusion structure
of the RANet tracker introduces the different predicted modality contributions to the MS
representations layer and combines the information of different modalities in the classifica-
tion response layer, which not only reduces the dependence on the classification vectors
and reduces the probability of pseudo-features but also effectively uses the information of
different modality images to improve the performance of the tracking network.

4.2. The Ablation Study of the Contribution Value of Different Modalities

The contribution value of different modalities for the fusion tracking task is predicted
based on the modality reliability. The contribution value of the high-reliability modality
should be relatively larger. In this work, we set the contribution value of the modality with
high reliability as 0.9 and the contribution value of the modality with low reliability as 0.1.
To verify the effectiveness of the contribution value we set, we conduct the ablation study.
Since the contribution value of the modality with higher reliability is greater than that of
the modality with lower reliability, and the sum of the two contribution values is 1, we test
the AUC score and the DP_ 20 value when the contribution value of the higher reliability
modality changes from 0.5 to 1 at an interval of 0.05, as shown in Table 5.
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Table 5. AUC score and the DP_20 value of different contribution values of the modality with higher
reliability. The best results are labeled in the red font.

θ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.0

AUC 0.695 0.698 0.694 0.695 0.698 0.702 0.705 0.705 0.709 0.702 0.699
DP_20 0.934 0.936 0.934 0.933 0.939 0.941 0.948 0.951 0.952 0.942 0.938

θ represent the different contribution value of the modality with higher reliability.

It can be seen from Table 5 that the AUC score and the DP_ 20 value are the highest
when the contribution value of the modality with a higher reliability is set as 0.9, which
indicates the effectiveness of the contribution value we set.

5. Discussion

In this paper, we propose a novel reliability-guided aggregation network (RANet) for
hyperspectral and RGB fusion tracking. The RANet model is proposed based on the TransT
tracker. To further verify the effectiveness of our fusion method, we also designed two
RANet models in which the basic trackers of the two models are replaced by the SiamCAR
tracker and the SiamGAT tracker, respectively, and tested their performance. The RANet
model that used the SiamCAR as the basic tracker is termed SiamCAR_fusion. The RANet
model that used the SiamGAT as the basic tracker is termed SiamGAT_fusion. The results
are shown in Table 6. It can be seen that the AUC score of the SiamCAR_fusion tracker
(64.3%) outperforms that of the SiamCAR tracker (61.3%) by 3%, and the DP_20 value of
the SiamCAR_fusion tracker (91.1%) is more than that of the SiamCAR tracker (84.1%) by
7%. It also can be seen that the SiamGAT_fusion tracker outperforms the SiamGAT tracker
in terms of the AUC score and the DP_20 value. In addition, the AUC score of the proposed
TransT_fusion tracker (70.9%) is higher than that of the TransT tracker which is the basic
tracker of TransT_fusion (68.7%), and the DP_20 value of the TransT_fusion tracker (95.2%)
is more than that of the TransT tracker (92.0%). Particularly, the TransT_fusion tracker
is the proposed RANet tracker. From the above results, we can see that the AUC score
and DP_20 value of the three fusion trackers are higher than their corresponding basic
trackers, which fully demonstrates the effectiveness of our fusion method. In addition,
that the performance of multi-modality trackers (SiamCAR_fusion, SiamGAT_fusion, and
TransT_fusion) with multi-modality data is higher than their corresponding single-modality
trackers also proves that multi-modality data are effective for improving performance.

Table 6. AUC score and the DP_20 value of the SiamCAR_fusion tracker, the SiamGAT_fusion tracker,
the TransT_fusion tracker, the SiamCAR tracker, the SiamGAT tracker, and the TransT tracker. The
best value is labeled in red.

AUC ∆(AUC) DP_20 ∆(DP_20)

SiamCAR 0.613 - 0.841 -
SiamCAR_fusion 0.643 ↑ 0.030 0.911 ↑ 0.070

SiamGAT 0.636 - 0.864 -
SiamGAT_fusion 0.652 ↑ 0.016 0.877 ↑ 0.03

TransT 0.687 - 0.920 -
TransT_fusion 0.709 ↑ 0.022 0.952 ↑ 0.032

6. Conclusions

In this paper, we propose a reliability-guided aggregation network (RANet) for
hyperspectral and RGB fusion tracking to improve the tracking performance by aware-
aggregating the information of different modalities through the modality reliability. To
the best of our knowledge, this is the first time that Transformer has been applied to
the field of fusion tracking based on hyperspectral and RGB images. Two TransT-based
modality-specific (MS) branches are used to process hyperspectral and RGB modality
images, respectively. Then the MS representations of the different modalities are combined
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by the classification response aggregation module to enhance the ability of the tracking
network to distinguish objects and backgrounds. Furthermore, we also consider the re-
liability of different modality images to maximize the role of the aggregation module in
improving the performance of the fusion tracking task. Massive experimental results show
that when hyperspectral data are used as a multi-modality information supplement, the
performance of the fusion tracker based on our fusion method is better than that of the
corresponding single-modality tracker. Among them, the AUC score of the fusion tracker
is increased by at least 1.6%, especially the RANet based on the TransT tracker achieving
the best performance, which fully confirms the superiority and effectiveness of the RANet
algorithm and the multi-modality data. The proposed method improves the tracking
performance by calculating two modality information, which will inevitably increase the
computational complexity. In the future, we will further improve the method that reduces
the computational complexity and improves the performance of hyperspectral and RGB
fusion tracking.
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