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Abstract: The identification and early warning of potential landslides can effectively reduce the
number of casualties and the amount of property loss. At present, interferometric synthetic aperture
radar (InSAR) is considered one of the mainstream methods for the large-scale identification and
detection of potential landslides, and it can obtain long-term time-series surface deformation data.
However, the method of identifying anomalous deformation areas using InSAR data is still mainly
manual delineation, which is time-consuming, labor-consuming, and has no generally accepted
criterion. In this study, a two-stage detection deep learning network (InSARNet) is proposed and used
to detect anomalous deformation areas in Maoxian County, Sichuan Province. Compared with the
most commonly used detection models, it is demonstrated that the InSARNet has a better performance
in the detection of anomalous deformation in mountainous areas, and all of the quantitative evaluation
indexes are higher for InSARNet than for the other models. After the anomalous deformation
areas are identified using the proposed model, the possible relationship between the anomalous
deformation areas and potential landslides is investigated. Finally, the fact that the automatic and
rapid identification of potential landslides is the inevitable trend of future development is discussed.

Keywords: deep learning; InSAR; landslides; object detection; surface deformation

1. Introduction

Landslides are a natural phenomenon during which soil and rock slide down the
slope as a whole or as separate masses under the action of gravity [1]. Landslides are
driven by river erosion [2], groundwater activity [3], rainfall [4,5], earthquakes [6–8], and
human activities [9,10], and they cause large numbers of injuries and deaths each year
all over the world. According to the Global Fatal Landslide Database (GFLD), although
the number of landslides is correlated with periodic extreme weather events, the annual
global losses of life and property are still large compared to other disasters [11]. According
to the Statistics of the China Geological Disasters Bulletin, the average direct economic
losses caused by disasters in China in the past 10 years were 4 billion yuan per year.
However, fortunately, 948 geological disasters were successfully predicted in 2019, direct
economic losses of 830 million yuan were avoided, and more than 24,000 people’s lives
were protected [12]. Therefore, effective methods of identifying potential landslides and
providing early warning are still urgently needed.

In 2019, Xu et al. [13] proposed an integrated space-air-ground multi-source monitor-
ing system for early detection, i.e., the three-step investigation system. It includes a general
investigation stage, which involves scanning potential geological hazards within a wide
spatial range; a detailed investigation stage, which includes determining the geological
hazard risk sections within a local range; and a verification stage, which includes in-situ
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confirmation. The traditional surface deformation detection method is mainly on-site
detection. GPS has the advantages of simple operation, small error accumulation and the
ability to obtain 3D absolute deformation information of the surface in real time. Therefore,
it is widely used in deformation monitoring such as slope, dam and surface settlement [14].
Borehole inclinometers are another typical method for measuring landslide phenomena [15].
It can timely obtain the position, development speed and development direction of land-
slide displacement surface by measuring the variation value of the inclination angle at
different depths of the inclinometer pipe through the sensor [16]. In addition, time domain
reflectometry (TDR) optical fiber sensing technology [17,18] and RGB-D sensors [19,20]
are also commonly used deformation monitoring methods. However, the above methods
need to deploy many instruments on site for collection, which is more suitable for detec-
tion in a certain area. At the initial stage of landslide identification, in the face of a large
range and complex terrain, these methods will face the problems of high cost and low
efficiency, which makes it difficult to realize effective monitoring. Interferometric synthetic
aperture radar (InSAR) is one of the most appropriate methods for use in the general
investigation stage due to its advantages of wide coverage, high spatial resolution, and low
comprehensive cost [21]. Differential InSAR (D-InSAR) was originally used for landslide
monitoring, but in applications, especially in mountainous areas with large topographic
relief, the application effect of spaceborne InSAR is often restricted by geometric distortion,
spatiotemporal decoherence, and atmospheric disturbance, resulting in unsatisfactory re-
sults [22]. Subsequently, time series InSAR techniques, such as persistent scatterer InSAR
(PS-InSAR) [23], corner reflector InSAR (CR-InSAR) [24], and small baseline subset InSAR
(SBAS-InSAR) [25], weakened the influences of the interfering factors, more accurately
restored the real deformation of the surface, and identified potential landslides. However,
at present, the main method of identifying anomalous deformation areas based on InSAR
data is manually delineated [26,27], which is time-consuming, labor-consuming, and has
no commonly accepted criterion [28]. Thus, an automatic or semi-automatic method of
identifying anomalous deformation areas that can improve the identification efficiency and
avoid the omissions caused by manual identification is needed.

The automatic and semi-automatic extraction technology of landslides originated in
the early 21st century. In the early stage, the main method was landslide sustainability
mapping. According to whether the model takes into account the internal physical and
mechanical mechanism of landslide, the landslide sustainability mapping model can be
divided into a deterministic model and a non-deterministic model [29]. The deterministic
model is based on the mechanical mechanism and physical process of slope failure, and uses
the stability state of slope as the evaluation index. Deterministic models have high accuracy,
including the Sinmap model [30], the TRIGRS model [31], etc. Its advantage is that it can
quantitatively calculate the slope stability, but the deterministic model should have detailed
mechanical and physical parameters as the model input, and the model is very sensitive
to these parameters. It is more suitable for the landslide research model in small-area
homogeneous areas, while for large-area areas, the model parameters are not easy to obtain,
the calculation is complex and the cost is high. Through the statistical analysis of historical
disaster information, the non-deterministic model establishes the mathematical relationship
between geological disasters and influencing factors, and applies this relationship model
to similar geological environment areas. Common non-deterministic methods include the
logistic regression model [32], SVM [33], neural network [34], and other machine learning
methods [35]. Applying multi-source data to change detection is also one of the effective
methods to identify potential landslides [36]. InSAR surface deformation data is one of the
important factors in these models [37].

With the rapid development of artificial intelligence technology, a series of model
methods represented by deep learning algorithms have attracted considerable attention
in the field of remote sensing. Deep learning algorithms have higher accuracy, faster
operation speeds and less computational space [38]. At present, the potential landslide
identification model based on InSAR deformation data and deep learning models is still
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in the exploratory stage, while the extraction of potential landslide according to surface
deformation is urgently needed by local governments to control landslide. Therefore, this
study aims to establish a model to realize the rapid identification of landslides in a large
area through more advanced and faster deep learning algorithms.

In the last few decades, deep learning (DL) architectures have become one of the
most rapidly developing technical methods in the computer vision field. The concept of
deep learning was first proposed in 2006. Hinton et al. proposed stacking layer by layer
unsupervised pre-training models to build a deep neural network model [39]. The layer
by layer pre-training strategy solves the difficult problem of neural network parameter
training and expands the application scope of neural network. Since then, deep learning
has ushered in a period of rapid development. The outbreak of deep learning began in
2012. Krizhevsy et al. proposed the deep convolution neural network alexnet [40] in the
Imagenet international image classification competition, and finally won the competition
with an overwhelming advantage of more than 10 percentage points. After that, CNN
has become the research focus of deep learning and has been widely used in the field
of computer vision. Many excellent models have been proposed, such as VGGNet [41],
ResNet [42], Fast R-CNN [43], DeepLab [44], etc. and they have been widely applied in the
fields of image classification [45], segmentation [46], and detection [47]. The purpose of a
detection model is to determine where and what the object is, which is very consistent with
the requirements for identifying anomalous deformation areas. Image object detectors are
usually divided into two categories. The first category includes two-stage detectors [48],
in which the detection is segmented. First, candidate object bounding boxes are proposed
through a regional proposal network, and then the features are extracted for each proposed
object bounding box to enable classification and bounding box regression. The advantage of
a two-stage detector is the higher positioning and object recognition accuracies. The second
type includes one-stage detectors, which skip the step of extracting the prediction frame
and directly extract it from the image instead. One-stage detectors have significantly better
detection speeds, and their advantage in efficiency makes it possible to achieve real-time
detection [42,49,50]. However, to avoid major casualties caused by miss identification,
accuracy is a more important factor in landslide identification, and it is worth losing a little
operation time to ensure accuracy. Therefore, a two-stage model is a more suitable potential
landslide identification model.

In this study, a new detection model (InSARNet) was developed to detect anomalous
deformation areas. The SBAS-InSAR deformation results for Maoxian County were used as
the samples. The InSARNet was compared with several models, and its unique advantages
in identifying anomalous deformation in mountain areas were investigated. After the
anomalous deformation areas were identified using the model, the suspected potential
landslide was calibrated to provide a basis for subsequent judgment.

2. Study Area and Materials
2.1. Description of the Study Area

Maoxian Country, which is located on the eastern margin of the Qinghai-Tibet Plateau
in the western Sichuan Basin and has an area of 3903.28 km2, was selected as the study
area (31◦25′–32◦16′N, 102◦56′–104◦10′E). The study area contains high/extremely high
mountains and deep valleys (Figure 1). The terrain of Maoxian County is high in the
northwest and low in the southeast. The altitude fluctuates greatly. The highest point is
located on the Wannian snow mountain in the west, with a height of 5230 m. The average
altitude in Maoxian County is 1580 m. The regional landforms mostly include the Minshan
Mountain Range of the Qionglai Mountain system, and the southeastern border is the tail
section of the Longmen Mountain system [51]. The study area has a subtropical monsoon
climate, with an average annual precipitation of 484.1 mm over the region [52]. The river
systems in Maoxian County include the Minjiang River system and the Tuojiang River
system, and there are more than 170 rivers and 25 lakes in the study area [53].
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Figure 1. Geographic location of the study area.

Affected by the 1933 Diexi Earthquake and 2008 Wenchuan Earthquake, once heavy
rainfall occurs, there is a high risk of geological hazards such as landslides, rock falls, and
dammed lakes [54,55]. Therefore, disaster prevention based on remote sensing identifica-
tion is urgently needed in Maoxian Country.

2.2. Acquisition of Surface Deformation Data

The SAR image data used in this study were acquired by the sentinel-1A satel-
lite, which was launched by the European Space Agency (ESA) in 2014. In this study,
46 ascending single look complex (SLC) images and 37 descending SLC images of Mao
County acquired from January 2015 to July 2017 were selected. The specific image date
and track direction are shown in the Appendix A (Table A1). The imaging mode was
the interference wide (IW) mode, and the polarization mode was vertical-vertical (VV)
polarization. The corresponding precise orbit data published by the ESA and the Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) with a resolution of
30 m were used to correct for the image orbit error and terrain phase.

SBAS-InSAR was used to produce the InSAR time series deformation results. The
Sarscape 5.2 from the ENVI software platform of Swiss SARMAP company was used. The
first step of SBAS-InSAR processing is to generate a connection plot. A long time baseline
will lead to a large number of incoherence and affect the accuracy of the results. Therefore,
considering the characteristics of the data itself and the characteristics of the region, while
ensuring the number of image pairs in the small baseline set, we reduced the impact of
seasonal changes on the interference processed images. In this study, the maximum time
baseline for ascending orbit data is 90 days. In the descending orbit data, the maximum
time baseline for orbit lowering is 180 days in order to ensure the number of image pairs in
the set because the data from September 2016 to February 2017 cannot be obtained. The
corresponding time-position plot and time-baseline plot of the ascending and descending
orbit are shown in Figures 2 and 3.

The second step of SBAS-Insar is the interference workflow. The interference pairs are
processed by differential interference to remove the error caused by the flatten effect, and
the random noise is eliminated by filtering. The filtering method selected in the study is
the Goldstein filtering method. Further, the filtered interferogram is phase unwrapped, so
that the phases in the processed interferogram are between one cycle. In order to show the
effect of interference and unwrapping, two image pairs in orbit lifting and descending are
selected for display and description. Figure 4 is the interference result diagram of 20170425–
20170507, and Figure 5 is the interference result diagram of 20170219–20170303, in which
(a), (b) and (c) are the overall interferogram, coherence coefficient diagram and unwrapping
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results of Maoxian County, and (d), (e) and (f) are the partial amplified interferogram,
coherence coefficient diagram and unwrapping results. The coherence coefficient map is
represented by gray scale, and dark color indicates that the coherence of the two images
is weak, while light color indicates that the correlation between the two images is strong.
The after filtering interferogram can determine the interference effect of the two images
through the color continuity. The better the interference effect, the more continuous the
color distribution on the image. Figures 4 and 5 confirm that the unwrapping effect in this
study is correct. Then, 120 ground control points (GCPs) were selected to estimate and
remove the residual phases.

Figure 2. Time-position plot and time-baseline plot of ascending orbit data.

Figure 3. Time-position plot and time-baseline plot of descending orbit data.
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Figure 4. Interferogram and partial amplified diagram of 20170425-20170507 ascending orbit data.
(a) is the overall interferogram of Maoxian county, (b) is the coherence coefficient diagram of Maoxian
county, (c) is the unwrapping results of Maoxian County, (d) is the partial amplified interfero-
gram, (e) is the partial amplified coherence coefficient diagram, and (f) is the partial amplified
unwrapping results.

Figure 5. Interferogram and partial amplified diagram of 20170219-20170303 descending orbit data.
Interferogram and partial amplified diagram of 20170425-20170507 ascending orbit data. (a) is the
overall interferogram of Maoxian county, (b) is the coherence coefficient diagram of Maoxian county,
(c) is the unwrapping results of Maoxian County, (d) is the partial amplified interferogram, (e) is the
partial amplified coherence coefficient diagram, and (f) is the partial amplified unwrapping results.
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Finally, the deformation sequence is extracted by two inversions. In the first inversion,
the residual phase in the overall phase is separated by the secondary unwrapping of the
minimum cost flow method, and the deformation rate is preliminarily estimated. The
second inversion eliminates the influence of atmospheric phase and noise phase in the
overall phase by filtering. The linear model with the highest robustness was used to
estimate the deformation rate and the residual phase of each image pair. The deformation
results from the ascending orbit dataset and the descending orbit dataset are shown in
Figure 6.

Figure 6. SBAS-InSAR deformation results obtained from the ascending orbit dataset (a) and the
descending orbit dataset (b).

Through the line of sight cumulative deformation extracted by the ascending and
descending orbit data, it can be seen that the overall distribution of the high deformation
area is similar, but there are differences in some areas. There are three reasons for the
difference: (1) Differences in satellite data acquisition. The observation direction of the
sentinel sensor is the right viewing direction, so the data of ascending orbit and descending
orbit are different in the observation direction. At the same time, with the differences of
satellite incident angle, route angle and acquisition time, the same deformation shows
different results in ascending orbit and descending orbit results. (2) The study area is
a mountainous area with complex terrain, geometric distortions such as overlap and
perspective shrinkage will occur in the hillside and areas with large topographic relief,
resulting in inconsistent results of ascending orbit and descending orbit in such areas.
(3) For the East–West slope in the study area, the projection of the same deformation in the
line of sight direction of ascending and descending orbit is opposite, which also leads to
the difference in the deformation results of ascending and descending orbit. In summary,
it is not accurate to identify the potential landslide directly through the single line of
sight deformation data obtained from ascending orbit data or descending orbit data. The
deformation result of the single line of sight may have a large deviation from the real
surface deformation. Therefore, it is necessary to obtain accurate and real slope surface
shape variables through further analysis and processing.

The InSAR deformation results are the one-dimensional deformation in the line-of-
sight direction. However, the slope direction is diverse, and the actual surface deformation
direction does not coincide with the line of sight of the radar instrument, which leads to
reduced availability of the results and the inability to meet the requirements for landslide
deformation monitoring. Interpolation was used to register and fuse the InSAR deformation
results obtained from the ascending orbit dataset and the descending orbit dataset on the
temporal and spatial scales. The technology flowchart is shown in Figure 7.
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Figure 7. The technology flowchart of slope deformation extraction by ascending and descending
orbit data fusion.

In order to retain more real measurement data, this study takes the ascending orbit
deformation with more data as the main data and the descending orbit deformation with
less data as the auxiliary data. The continuous displacement sequence is obtained by
using Akima interpolation on the time scale of the descending orbit deformation, and the
data with the same time as the ascending orbit deformation data is extracted from it to
realize the registration on the time scale. Further, the synonym points in the ascending and
descending orbit deformation image of after time registration are extracted, and the vertical
deformation difference of the synonym points is obtained. Taking the longitude, latitude
and aspect as factors, the difference is regressed by geographical weighted regression
(GWR) method, and the corresponding point difference value of the overall study area is
estimated. The estimated interpolation and the descending orbit deformation are added to
realize the registration on the spatial scale of ascending and descending orbit deformation.
Finally, the corrected dT1T2 and dT′1T′2

and the 2D deformation are obtained by the spatial
geometric relationship (Equation (1)).{

dT1T2 = dV cos θ − dE cos
(

ϕ− 3
2 π
)

sin θ

dT′1T′2
= dV cos θ′ − dE cos

(
ϕ′ − 3

2 π
)

sin θ′
, (1)

According to Equation (2), the deformation results were transformed into the slope
direction according to the spatial geometric relationship (Figure 8).

dSlope = dV/ sin(S) + dE/ cos(S) sin(A− π/2), (2)

where, S is the surface slope, A is the surface slope direction, dV is the vertical deformation
component, and dE is the East–West deformation component.
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Figure 8. Deformation of slope direction in the study area.

3. Methods
3.1. Framework of Model

To achieve the high-precision identification and detection efficiency required for
potential landslide detection, based on the characteristics of InSAR deformation data, a
two-level detection network (InSARNet) was constructed in this study. InSARNet uses a
mask region-based convolutional neural network (RCNN) as the basic framework, uses a
new convolution mode involution operator to improve the operation efficiency, and uses
deformable region of interest (ROI) pooling to improve the ability to monitor small-scale
targets. The structure of InSARNet includes the input, backbone, neck, head, and output.
The specific structure is shown in Figure 9.

Figure 9. Architecture of InSARNet. (CNN: convolutional neural network, RPN: region
proposal network).
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3.2. Backbone

As the basis and core of the target detection model, the main task of the backbone
network is to extract the characteristics of the input data and output the characteristics of
the response for the subsequent parts. By introducing a residual module, ResNet eliminates
the gradient disappearance and gradient explosion that occur in traditional neural networks
through the deepening of the network, making it one of the most commonly used and
efficient backbone CNN models.

In a CNN, the convolution layer is the main structure used for the feature extraction.
In the current widely used convolution algorithm, to reduce the number of parameters, the
same convolution kernel is used to scan one channel, and different convolution kernels are
selected in different channels. As is shown in Figure 10, the convolution can be expressed
as follows:

Yi,j,k = ∑Ci
c=1 ∑(u,v)∈∆K

Fk,c,u+[K/2], v+[K/2], [kG/2]Xi+u,j+v,c, (3)

∆K =

[
−
[

K
2

]
, · · · ,

[
K
2

]]
×
[
−
[

K
2

]
, · · · ,

[
K
2

]]
, (4)

where C0 and Ci are the numbers of output and input channels, X ∈ RH×W×Ci is the input
data, Y ∈ RH×W×C0 is the output data, K is the kernel size, and F ∈ RC0×Ci×K×K is the
convolution kernel. Its parameter sharing effectively reduces the number of parameters.
However, the disadvantages of spatial-agnostic and channel-specific methods are also
obvious. The number of channels is usually large. Therefore, to limit the scale of the
parameters and the computation, the value of K is often small, which limits the ability of
the convolution operation to capture long-distance relationships at one time.

Figure 10. Schematic diagram of the conventional convolution (C is feature channel, k is
convolution kernel).

To improve the detection ability and operation efficiency of the model, we selected
a new operator-based network (RedNet) as the backbone network. The main difference
between traditional operators and RedNet is that the 3 × 3 convolution in ResNet is
replaced by involution. The involution operator is a new type of neural network operator,
which was proposed by Li et al. in 2021 [56]. Compared with traditional convolution
operators, it is more efficient because it has fewer parameters and less computation. The
involution operator is designed from the opposite perspective of a convolution operator.
The corresponding involution kernel is generated based on the input feature map in the
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spatial dimension, and the kernel is shared in the channel dimension. The operation of the
involution is as follows:

Yi,j,k = ∑
(u,v)∈∆K

Hi,j,u+[K/2], v+[K/2], [kG/C]Xi+u,j+v,k, (5)

whereH ∈ RH×W×K×K×G is the involution kernel. Instead of using a fixed weight matrix
as the learnable parameter, the involution operator generates the corresponding operator
for the input characteristic graph. As is shown in Figure 11, for a point feature vector in
the input feature map, the involution kernel is generated through channel transformation
expansion, and then, it is multiplied and summed with the neighborhood of the input
feature map to calculate the final output feature map.

Figure 11. Schematic diagram of the involution (C is feature channel, k is involution kernel).

3.3. Neck

As the link between the backbone network and the head network, the neck network
can obtain more complex features by adding the network layer of the feature map in differ-
ent stages. During the traditional target detection process, after the feature information is
extracted by the backbone network, it is directly input into the head network for classifi-
cation and target frame prediction. This is feasible for the detection of objects with large
targets. However, for the detection of objects with small targets, the feature mapping of the
head network directly divides the coordinates by the step size. However, when the convo-
lution pool is deep, the mapping is extremely small or it disappears. The InSAR anomalous
deformation areas have different sizes and shapes. Therefore, it is necessary to use the
feature pyramid network as the neck network to meet the needs for multi-scale detection.

The feature pyramid network (FPN) was proposed in 2017 [36]. By changing the
network connection method, the FPN network can greatly improve the ability of the
network to monitor small target objects without changing the number of calculations of the
original model. A schematic diagram of the FPN network structure is shown in Figure 12.



Remote Sens. 2022, 14, 2690 12 of 30

Figure 12. Schematic diagram of the feature pyramid network (FPN) network structure (C is feature
channel, P is the channel through lower connection and horizontal connection).

3.4. Head

As the output framework, the purpose of the head network is to predict the type and
location of the object detection. The head network can be divided into two parts according
to its purpose. One part classifies the input feature map and predicts the target candidate
box regression, and the other part generates the mask for the pixel-level segmentation
prediction. Before the two parts of the prediction are conducted, the feature map needs
to be extracted using a region proposal network (RPN) to extract the target frame, extract
the features of the different feature layers, and then carry out their respective convolution
operations to obtain the final results. The overall framework of the head network is shown
in Figure 13.

Figure 13. Schematic diagram of the FPN network structure.

In the initial two-stage detection framework, after the RPN is applied, the role of
the ROI pooling is to pool the corresponding area into a fixed-size feature map in the
feature map according to the coordinates of the preselected box to conduct the subsequent
classification and bounding box regression operations. Since the position of the preselected
box is calculated through model regression, and the coordinates are usually floating-point
numbers, the ROI pooling needs to be quantified twice to fix the size. First, the candidate
box boundary is quantized into integer point coordinate values. Then, the quantized
boundary region is evenly divided and the boundary of each unit is quantized. However,
the quantized candidate frame has a certain deviation from the initial regression position,
which affects the accuracy of the detection or segmentation. Due to this disadvantage of
ROI pooling, the Mask-RCNN network was used to improve this defect by proposing an
ROI alignment [37]. The ROI alignment cancels the quantization operation and uses the
bilinear interpolation method to obtain the image values of the pixels, the coordinates of
which are floating-point numbers, to transform the entire feature aggregation process into
a continuous operation. The geometric structure detected using the ROI alignment is fixed,
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and it is difficult to conduct geometric transformation of the object’s size, attitude, and
angle. To dynamically adjust the receptive field, the deformable ROI pooling from the
deformable conventional network [38] was introduced into InSARNet. The operation of
the deformable ROI pooling is

y(i, j) = ∑p∈bin(i,j) x
(

p0 + p + ∆pij
)
/nij, (6)

where bin(i,j) is the total number of pixels in the grid at coordinates (i,j), p0 + p is the
coordinate of the sampling point, and ∆pij is the offset generated from the feature mapping.

As is shown in Figure 14, the main principle of deformable ROI pooling is to add a
displacement variable in the convolution sampling layer, which is learned from the data.
After the offset, it is equivalent to the scalable change in each block of the convolution
kernel to expand the range of the receptive field.

Figure 14. Schematic diagram of the deformable regions of interest (ROI) pooling.

3.5. Loss Function

The loss function is used to test the gap between the predicted value and the real data.
The optimization process of the neural network is the process of minimizing the loss func-
tion. The loss function L used in this study consists of three parts: the classification loss Lcls,
positioning frame regression loss Lbox, and mask loss Lmask. The Lcls is determined using
the L1 loss function, and Lbox and Lmask are determined using the cross-entropy function.

4. Experiment and Results
4.1. Datasets

In this study, the InSAR deformation rate in Maoxian was used to construct the
anomalous deformation area dataset, which was divided into east and west parts as the
training area and test area, respectively (Figure 15). The training area was 3089.6 km2, and
the image size was 8477 × 4279 pixels. The test area on the west side was 819.7 km2, and
the image size was 4279 × 2302 pixels. To highlight the changes in the surface deformation,
the deformation image was transformed into a gray-scale image. Since the positive and
negative signs only represent the directions of the displacement relative to the satellite,
and the focus of this study was the size of the shape variable, the absolute value of
the image shape variable was calculated during the conversion to the gray-scale image
(Figure 15b). The surface deformation resolution calculated from the Sentinel-1 data is
20 m, the deformation result is in the form of grid data, and each grid corresponds to 32-bit
floating-point data.
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Figure 15. Division of training area and test area (a), and gray-scale conversion (b).

In this study, it is determined that the anomalous deformation area needs to meet
the following three conditions: (1) The internal deformation difference in the anomalous
deformation area shall not exceed 5 mm. (2) The difference between internal and external
deformation at the boundary of anomalous deformation area is greater than 5 mm. (3) The
anomalous deformation area is a closed polygon, and the number of internal grids is not
less than 16. The distributions of the 316 training samples and 103 test samples are shown
in Figure 16.

Figure 16. Delineation of anomalous deformation areas in the study area.

Through the statistical analysis, the size of the dense area was concentrated in the
56 × 56–128 ×128 interval, and the largest intensive deformation area was 256 × 116,
so the size of a single training image was set to 256 × 256, which ensured that all of
the anomalous deformation areas were fully reflected in a single image and reduced the
computer performance requirements. Based on this, the data were enhanced via rotating
and flipping (Figure 17), and 1896 training samples and 618 test samples were obtained.
Then, labelme software was used to label the anomalous deformation area samples image
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by image, and to convert them into a coco format dataset. Finally, 2514 dataset samples
and their corresponding label files were obtained.

Figure 17. Schematic diagram of the data augmentation. (a) Original image, (b) Rotated 90◦,
(c) Rotated 180◦, (d) Rotated 270◦, (e) Flip horizontally, and (f) Flip vertical.

4.2. Experimental Setup

The experiments were implemented using the PyTorch 1.9 software on an NVIDIA
GeForce RTX 2080Ti GPU. The model code was written in Python 3.6, the computer
environment was a Linux system, and the graphics memory was 64 GB. The training
parameters are listed in Table 1.

Table 1. Experimental parameter settings of the network model.

Parameter Value

Optimizer SGD
Validation data scale 0.25

Epoch 30
Iteration 7110

Batch size 8
Initial learning rate 0.001

Learning rate decay interval 10
Learning rate attenuation 0.1

After 30 training epochs, InSARNet converged. The training and verification curves
are shown in Figure 18.
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Figure 18. Loss curves for the training and testing of the InSARNet model.

4.3. Evaluation Index

In InSAR anomalous deformation area detection, the calibration samples can be
divided into two categories: anomalous deformation areas (True) and non-anomalous
deformation areas (False). The detection results can also be divided into two categories:
the areas determined as anomalous deformation areas by the classifier (Positive) and the
areas determined as non-anomalous deformation areas by the classifier (Negative). We
used a combination of two initials to represent the number of samples in the different cases.
For example, TP represents the number of samples with anomalous deformation areas
determined through both manual calibrations and using the classifier. In this experiment,
the sample data were used to verify the accuracy from the perspective of five common
verification indexes: precision, recall, F1 score coefficient, overall accuracy (OA), and kappa
coefficient. The indexes were calculated using the following equations:

Precision = TP/(TP + FP), (7)

Recall = TP/(TP + FN), (8)

F1 = 2× (Precision× Recall)/(Precision + Recall), (9)

OA = (TP + TN)/(TP + TN + FP + FN), (10)

Kappa =
OA− [(TP+TN)×(TP+FP)+(FP+FN)×(TN+FN)]

n×n

1− [(TP+TN)×(TP+FP)+(FP+FN)×(TN+FN)]
n×n

. (11)

The accuracy, recall, and F1 score reflect the recognition effect of the model in the dense
deformation areas, while the overall accuracy and kappa coefficient are overall evaluation
indicators, which more comprehensively reflect the extraction effect of the model in the
dense deformation areas.

4.4. Experimental Results

In this study, three rectangular areas (1024 × 1024 grids, about 11 km) in the study
area were selected for analysis to verify the recognition accuracy of InSARNet. One of the
verification areas was located in the training area and the other two were located in the test
area (Figure 19).
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Figure 19. Locations of testing areas. (A) InSAR result of test area A, (B) InSAR result of test area B,
and (C) InSAR result of test area C.

4.4.1. Comparison of Modules

To test the effect of introducing an involution operator and deformable ROI pooling
into the model, we tested and compared the traditional Mask RCNN, the Mask RCNN
with only an involution operator, the Mask RCNN with only deformable ROI pooling,
and InSARNet with both an involution operator and deformable ROI pooling. These
four models were labeled model I, model II, model III, and model IV, respectively. The
corresponding network framework is shown in Table 2. The same training environment,
training strategy, and parameters were used for the tests, and the training test was carried
out using the same dataset.

Table 2. Detection models with different module combinations.

Model Backbone Neck Head

I ResNet-50 1 FPN 2 RPN + ROI Align

II ResNet-50 1 FPN
RPN + Deformable

ROI pooling
III RedNet-50 1 FPN 2 RPN + ROI Align

IV RedNet-50 1 FPN
2 RPN + Deformable

ROI pooling
1 FPN: feature pyramid network. 2 RPN: region proposal network.

Area A is located in the middle of Maoxian County and has a relatively flat terrain.
The InSAR results show that the anomalous deformation areas are obvious and the noise is
smaller. The recognition results of the four models in test area A are shown in Figure 20. It
can be seen that the four models effectively identified most of the anomalous deformation
areas, but model I and model III had higher missed detection rates. The introduction
of deformable ROI pooling improved the ability of model II and model IV to monitor
small targets, but model IV had fewer false detection areas than model II. Therefore,
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comprehensively, for area A, model IV controlled both the missed detection and false
detection rates and had a better detection effect.

Figure 20. Comparison of the different modules for test area A.

This is also reflected in the quantitative evaluation indicators of the four models
(Table 3). The four models had good detection effects in test area A. For the monitoring
accuracy, InSARNet (model IV) had the highest accuracy, exceeding 0.92, which is nearly 2%
higher than that of model II, which had the second-highest accuracy. The recall rates of the
four models exceeded 0.9. The effect of InSARNet was better than those of the other three
models, and its recall rate exceeded 0.93, that is, 1% better than those of the other models.
The F1 coefficient and kappa coefficient of InSARNet reached 0.93 and 0.86, respectively,
and were higher than those of the other three models. The overall accuracies of the four
models exceeded 0.90, indicating that the four models effectively extracted the target and
background. Among them, the effect of InSARNet was slightly better than those of the
other three models.

Table 3. Comparison of the accuracies of the models with different module combinations in test
area A.

Model Precision Recall F1 Kappa 1 OA

I 0.8984 0.9133 0.9058 0.8074 0.9050
II 0.9076 0.9167 0.9121 0.8219 0.9117
III 0.8935 0.9233 0.9082 0.8081 0.9067
IV 0.9274 0.9367 0.9320 0.8621 0.9317

1 OA: Overall Accuracy.
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Area B was located in the western part of Maoxian County. Compared with area A,
the situation of test area B was more complex. There are more anomalous deformation
areas with a wide distribution range and different sizes, and the noise is also significantly
higher than that in area A. The detection results of the four models are shown in Figure 21.
Although most of the anomalous deformation areas were identified by the four models,
many false detections occurred in models I and III. Model II and model IV had good detail
recognition abilities. The introduction of the deformable ROI pooling improved the detail
recognition in small areas. In addition, model II also had many small areas of missed
detection. Although InSARNet also had a certain degree of missed detection in these
areas, compared with the other three models, it had fewer missed detection areas, and the
boundary of the monitored area was more consistent with the real values, indicating that
the introduction of the involution operator also improved the model’s detection ability.

Figure 21. Comparison of the different modules in test area B.

The quantitative evaluation indexes for the four models in test area B are presented in
Table 4. Compared with area A, the values of all of the indicators were lower, but the four
models still successfully achieved object detection. Among the four models, InSARNet still
had the highest precision (0.89), followed by model II (0.86). Compared with the other three
networks, the detection accuracy of InSARNet was nearly 5% better on average. The recall
rates of all of the models exceeded 0.8, and the recall rate of InSARNet reached 0.92, which
was the highest of the four models. Similarly, for the F1 values and kappa coefficients, the
values of the InSARNet model were also significantly higher than those of the other three
models. The overall accuracies of the four models also exceeded 0.80, indicating that the
four models effectively extracted the target and background. The comprehensive results
show that for the more complex situation, the simultaneous introduction of an involution
operator and deformable ROI pooling resulted in a better performance.
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Table 4. Comparison of the accuracies of the models with different module combinations in test
area B.

Model Precision Recall F1 Kappa OA

I 0.8289 0.8400 0.8344 0.6637 0.8333
II 0.8696 0.8667 0.8681 0.7373 0.8683
III 0.8466 0.8833 0.8646 0.7144 0.8617
IV 0.8990 0.9200 0.9094 0.8131 0.9083

The identification results of the four models for test area C are shown in Figure 22. Area
C was located to the east of area B, and area C contained scattered anomalous deformation
areas and had more noise. Model I had more false detection areas. Although model II and
model III produced better results, they still had many missing detection areas. Model IV
exhibited an excellent effect in small target detection, but there was also a certain amount
of false detection areas.

Figure 22. Comparison of different modules in test area C.

The quantitative evaluation indicators of the four models in area C are presented
in Table 5. The detection effects of the four models decreased with increasing image
interference. For the accuracy, the InSARNet still had the highest accuracy (0.88), which
was nearly 5% higher than the second-highest accuracy (model II), but the accuracy of
model I was only 0.76. For the recall rate, the effect of InSARNet was also significantly
better than those of the other three models. Its recall rate exceeded 0.85, which was 5%
higher than that of model III, which had the second-highest recall rate. In particular, the
kappa coefficient of InSARNet exceeded 0.75, which was much higher than those of the
other three models. The overall accuracies of most of the models exceeded 0.80, except
for model I (0.76). This shows that although the four models completed the basic task of
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detection, the detection effect gradually varied with the complexity of the situation, and
InSARNet exhibited unique advantages in the area with more noise.

Table 5. Comparison of the accuracies of the models with different module combinations in test
area C.

Model Precision Recall F1 Kappa OA

I 0.7616 0.7667 0.7641 0.5250 0.7633
II 0.8386 0.7967 0.8171 0.6544 0.8217
III 0.8013 0.8200 0.8105 0.6111 0.8083
IV 0.8822 0.8733 0.8777 0.7585 0.8783

For object detection, the accuracy of the detection needs to be guaranteed, but the
performance and actual needs of the computer, the operation speed of the model, and the
space it occupies are also important indicators. In this study, the parameters, floating-point
operations per second (FLOPS), training time, and testing time were selected to compare
and analyze the models.

The results are compared in Table 6. The results show that the training time and test
time were significantly improved by the introduction of the involution operator. Regarding
the complexity of the model, compared with model II (ResNet50 + deformable ROI pooling),
the number of parameters and FLOPS of model I (Mask RCNN) were slightly higher, and
the corresponding training time was longer. However, the number of parameters and
FLOPS of model III (Rednet50 + ROI Align), which includes a revolution operator, were
greatly improved, the number of parameters was reduced by 29.8%, and the FLOPS
were reduced by 10.62%. In addition, model IV (InSARNet), which has an involution
operator and deformable ROI pooling module, the number of parameters and FLOPS were
larger than those of model III, and the calculation time was slightly longer. However,
according to the requirements for accuracy comparison and deformation anomaly area
detection, it is feasible and worth sacrificing the operation speed and storage space to
obtain higher accuracy.

Table 6. Comparison of parameters, floating-point operations per second (FLOPS), and training and
testing times of the different modules.

Model
Param. FLOPS Training

Time
Testing
Time

Testing
Time

Testing
Time

(M) (M) (ms/Step) (s/Image A) (s/Image B) (s/Image C)

I 37.41 334.02 253 2.56 3.14 3.26
II 46.15 351.22 262 2.65 3.37 3.58
III 26.34 290.59 144 1.85 1.64 1.52
IV 32.18 298.53 157 1.81 1.96 2.27

4.4.2. Comparison of Models

To verify the detection effect of InSARNet in regions with various shapes, five target
detection models with strong universality and good effects, which have been widely
verified and widely recognized, were selected for comparative analysis. The frameworks
of the five models and InSARNet are described in Table 7. To ensure the fairness of the test,
all of the models were trained using the same dataset, and no pre-training parameters were
used in the training process. To display the results, the three sample areas described in
Section 4.4.1 were also used for the comparative analysis.
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Table 7. Detection models and their structures.

Model Backbone Neck Head

Faster-1 RCNN ResNet-50 FPN RPN Head + ROI Pooling
Mask-1 RCNN ResNet-50 FPN RPN Head + ROI Align

Deform 1 RCNN ConvNet-50 FPN RPN Head + ROI Align
RetinaNet ResNet-50 FPN Retina Head
YOLO V3 Darknet-53 YOLO V3 YOLO V3

InSARNet RedNet-50 FPN RPN Head + Deformable
ROI pooling

1 RCNN: Region Convolutional Neural Networks.

The detection results of each detection network in area A are shown in Figure 23.
Unlike the Mask RCNN and InSARNet, the other four detection models are not equipped
with a mask module, so their detection results are rectangular target frames. In terms of the
detection effect, the false detection rate of the one-stage model was higher, and the accuracy
of the two-stage detection model was higher than that of the one-stage detection model. In
area A, which had low noise, the accuracy of the two-stage detection model was almost the
same, and the detection accuracy of InSARNet was slightly higher than those of the other
two-stage models.

Figure 23. Comparison of different models in test area A.

The evaluation of the quantitative detection accuracies of the different networks in
area A is shown in Table 8. The various accuracy evaluation indexes of InSARNet were
better than those of the other models, which demonstrates that it had the best effect in the
identification of the InSAR anomalous deformation areas. Among them, the precisions
of all of the models were >80%, indicating that in area A, all of the models could identify
most of the anomalous deformation areas. Among them, the accuracies of the two one-
stage monitoring models were slightly lower than those of the other two-stage monitoring
models, and InSARNet was the only model with an accuracy of >90%. Similarly, for the
recall index, InSARNet had the highest recall rate (93.67%). Those of the Mask RCNN and
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Deform RCNN were also >90%, while the recall rates of the other detection models were
relatively low and were concentrated at about 85%. The F1 coefficient of InSARNet was
the best (0.93). For the kappa coefficient, InSARNet also had unique advantages (0.86),
while those of the RetinaNet, Yolo V3, and Faster RCNN were less than 0.7. The OA values
of the Mask RCNN and InSARNet exceeded 0.9, and those of the other models were also
good (>0.8).

Table 8. Comparison of the accuracies of the different detection models in test area A.

Models Precision Recall F1 Kappa OA

Faster RCNN 0.8328 0.8467 0.8396 0.6729 0.8383
Mask RCNN 0.8984 0.9133 0.9058 0.8074 0.9050

Deform
RCNN 0.8658 0.9033 0.8841 0.7552 0.8816

RetinaNet 0.8267 0.8547 0.8405 0.6763 0.8389
YOLO V3 0.8415 0.8500 0.8457 0.6878 0.8450
InSARNet 0.9274 0.9367 0.9320 0.8621 0.9317

The detection results of the different detection networks in area B are shown in
Figure 24. As the noise increased, the false detection rates and missed detection rates of
all of the models increased significantly. InSARNet still had a high detection accuracy.
Among them, due to the poor recognition effect of small targets of the one-stage network,
the missed detection rate increased significantly.

Figure 24. Comparison of different models in test area B.

The quantitative evaluation of the accuracies of the different detection models in area B
is presented in Table 9. The results of the quantitative evaluation also confirm the detection
ability of InSARNet in complex images. In region B, which had more noise, the indexes
of all of the models were lower than in region A. The precision of the one-stage model
was less than 0.8 due to its limited ability to identify small anomalous deformation areas.
Among the other models, InSARNet had the highest accuracy (0.89). For the recall index
and F1 coefficient, InSARNet still had the best performance (>0.9). For the kappa coefficient,
InSARNet (0.81) had an absolute advantage over the other models. Of the other models,
only the Deform RCNN had a value of >0.7. For the overall accuracy index, except for that
of the RetinaNet (<0.8), the other models had good detection abilities.
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Table 9. Comparison of the accuracies of the different detection models in test area B.

Models Precision Recall F1 Kappa OA

Faster RCNN 0.8026 0.8000 0.8013 0.6041 0.8016
Mask RCNN 0.8289 0.8400 0.8344 0.6637 0.8333

Deform RCNN 0.8614 0.8500 0.8557 0.7160 0.8566
RetinaNet 0.7631 0.7733 0.7682 0.5299 0.7666
YOLO V3 0.7901 0.8533 0.8205 0.6069 0.8133
InSARNet 0.8990 0.9200 0.9094 0.8131 0.9083

The detection results of the detection networks in area C are shown in Figure 25. For
area C, which had more noise and deformation anomaly areas with different sizes, the
missed detection rate and false detection rate of each model were further improved. Except
for the Mask RCNN and InSARNet, the other models were generally sensitive to the large
anomalous deformation areas, while for smaller areas, they suffered from missed detection
and/or target frame mismatch. The reason for this phenomenon is that the models identify
these areas as anomalous deformation areas at different scales, thus retaining the largest
edge frame. Its essence is the false detection of anomalous deformation areas.

Figure 25. Comparison of different models in test area C.

The quantitative evaluation indexes of the accuracies of the different detection models
in area C are presented in Table 10. In area C, which had a lower image quality, as the
accuracy index of each model continued to decrease, the advantage of InSARNet was
further demonstrated. While these indexes remained optimal, the accuracy decreased
slightly. Specifically, in terms of accuracy and recall, the average decrease of the other
models was 6–7%, but that of InSARNet only decreased by 4%. For the F1 coefficient, only
the values of the Deform RCNN and InSARNet remained above 0.8, and those of the other
models were only about 0.75. The kappa coefficients of the models significantly decreased,
and only that of InSARNet remained above 0.7. In particular, the kappa coefficient of the
RetinaNet was less than 0.4. The gap between the overall accuracies of the various models
and that of InSARNet gradually widened. Those of InSARNet and Deform RCNN were still
>0.8, so they had a good detection effect. The overall accuracies of the Faster RCNN, Mask
RCNN, and Yolo V3 were about 0.75, which were lower than in the other two test areas. The
overall accuracy of the RetinaNet was less than 0.7, indicating that it could not effectively
detect the anomalous deformation areas under the condition of more noise interference.
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Table 10. Comparison of the different detection models in test area C.

Models Precision Recall F1 Kappa OA

Faster RCNN 0.7684 0.7300 0.7487 0.5221 0.7550
Mask RCNN 0.7616 0.7667 0.7641 0.5250 0.7633

Deform RCNN 0.8148 0.8066 0.8107 0.6256 0.8116
RetinaNet 0.6953 0.7000 0.6976 0.3917 0.6966
YOLO V3 0.7361 0.7533 0.7446 0.4774 0.7416
InSARNet 0.8822 0.8733 0.8777 0.7585 0.8783

5. Discussion

Through analysis of the performances of the modules and evaluation of the accuracies
of the different models, it was confirmed that InSARNet is feasible, and it can effectively
delineate large-scale InSAR anomalous deformation areas. Compared with the other object
detection models, InSARNet had the best accuracy and stability.

There are two reasons why we selected the object detection model to identify the
anomalous deformation areas of landslides. First, the anomalous deformation areas ex-
tracted using InSAR do not correspond to potential landslides. The causes of surface
deformation are diverse, and vegetation growth, human activities, and other factors may
also cause surface deformation. Therefore, it is necessary to screen non-potential landslides
using basic geographic information, geological information, and other factors. However,
the anomalous deformation areas after screening still corresponded to the boundary of the
abnormal sliding area, so it is inaccurate to regard it as the boundary of the entire landslide.
Using the segmentation model for recognition is a waste of efficiency and computational
power. Second, for the general landslide investigation stage, the primary task is to deter-
mine the location of the potential landslide. Compared with the shape of the landslide, it is
more important to determine the location of the landslide. In the investigation and verifi-
cation stages, using unmanned aerial vehicle (UAV) surveys and airborne light detection
and ranging (Lidar) or ground-based 3-D laser scanning technology, combined with optical
images and field investigations, the boundary and shape of the slope can be obtained more
accurately, and more targeted and accurate treatment and protection can be achieved.

The InSARNet model is still in the preliminary stage. At present, it is only used as the
detection of anomalous deformation areas, and there is still great potential for improvement
in the future. We improved and perfected the model along two sides. (1) With the addition
of different vegetation and land lithology, the recognition ability under different conditions
can be improved through the learning of different vegetation indexes. Different surface
environment and vegetation coverage are important factors affecting the accuracy of InSAR
results. LULC and NDVI are two typical data indicating surface type and vegetation
cover [36]. More landslides and corresponding data will be collected in the future, which
makes the model more applicable. (2) Adding optical image and geological information,
combined with a variety of information, realizes the automatic extraction of potential
landslide. The causes of landslides are diverse. Surface deformation is only a response to
incentives. Therefore, starting from the inducement of landslide, its geological structure,
lithology, rainfall and temperature change are all potential factors to improve the accuracy
of the model. In the future, we will try to input such data into the model as a factor to
improve the accuracy of model recognition.

In addition, the current definition of a potential landslide is a slope that may cause
harm to human production and life or roads and rivers. Therefore, the distribution of roads
and rivers were taken as the center, a 1 km buffer zone was established, and the anomalous
deformation areas in the buffer zone were identified as potential landslides (Figure 26). A
total of 98 potential landslide points were identified. Comparing the identification results
with the potential landslides provided by the Ministry of Natural Resources of China, a total
of 92 identification results belong to the known potential landslides, and the identification
accuracy rate is 93.88%. The results prove the accuracy of the InSARNet model.
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Figure 26. Extraction of potential landslide site in the study area.

The buffer method selected in this study is based on the consideration of actual needs.
The treatment of potential landslide is to ensure the safety of personnel, roads and rivers.
To identify potential landslides more accurately, the landslides map with the slope map
defined according to thresholds recognized significant for triggering landslides is a more
accurate method [57]. Deformation analysis based on landslide unit can identify landslide
boundary more accurately, but there may be some misjudgment [58]. According to different
needs, combined with the results of InSARNet model, appropriate methods can be selected
to classify potential landslides.

After identifying the potential landslide, it is also meaningful to model and numerically
simulate the landslide, according to the deformation rate and geological data, in order to
assess the maximum run out and volume deposition [59]. This would provide a reliable
and useful landslide map [60]. It can also provide more accurate and effective information
to the local government and on-site investigators, so as to realize the effective treatment
and protection of potential landslides.

6. Conclusions

A two-stage target detection model (InSARNet) was developed in this study to over-
come the problem of the time-consuming and laborious nature of manual delineation and
the low accuracy of large-scale InSAR anomalous deformation areas, in addition to achiev-
ing automatic extraction of InSAR anomalous deformation areas. Based on the Mask RCNN,
InSARNet constructed a model suitable for InSAR detection of anomalous deformation
areas by introducing an involution operator and a deformable ROI pooling module. Com-
pared with other existing models, InSARNet had a significantly better detection accuracy
and anti-noise ability. Based on the identified anomalous deformation areas, supplemented
by geographical information such as rivers and roads, the potential landslides were divided
to provide scientific theoretical support for local landslide treatment.

The experimental results showed that (1) InSARNet could effectively extract anoma-
lous deformation areas from complex InSAR results, and its overall accuracy is about 90%;
(2) after the introduction of the RedNet module, including the involution operator, the
number of parameters and calculations of InSARNet were reduced by about 30%, and its
detection accuracy was also slightly improved (by 1%); (3) after introducing the deformable
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convolution module, the ability of the model to recognize small-scale deformation anomaly
areas was improved, and the overall accuracy was improved by 3–4%; (4) by comparing and
analyzing InSARNet with the commonly used one-stage detector and two-stage detector
models, it was found that its detection accuracy was better than all of the models evaluated.
Although its operation efficiency was slightly lower than that of the one-stage detector,
it was worth sacrificing a little speed to obtain higher accuracy in combination with the
accuracy factors and the recognition requirements of the anomalous deformation area.

Landslides are still one type of natural disaster that causes a large number of casualties
every year. InSAR has been the basis of numerous achievements in the field of landslide
monitoring. In practical applications, large-scale, periodic, and systematic InSAR monitor-
ing is a common method at present. However, after calculating a large number of InSAR
results, InSAR takes considerable time to manually delineate the potential landslides, and
the standard is not unified. The application of deep learning in the identification of land-
slides enables the quick delineation of potential landslides, improves the identification
efficiency, reduces labor costs, and realizes the systematization and automatic identification
of potential landslides. As such, it is the inevitable trend for the development of landslide
identification in the future.
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Appendix A

Table A1. Sentinel-1 Data List.

No. Data Orbit No. Data Orbit No. Data Orbit

1 2015-01-18 Ascending 29 2016-11-20 Ascending 57 2015-10-16 Descending
2 2015-02-11 Ascending 30 2016-12-14 Ascending 58 2015-11-09 Descending
3 2015-03-07 Ascending 31 2017-01-07 Ascending 59 2015-12-03 Descending
4 2015-03-31 Ascending 32 2017-01-31 Ascending 60 2015-12-27 Descending
5 2015-04-24 Ascending 33 2017-02-12 Ascending 61 2016-01-20 Descending
6 2015-05-18 Ascending 34 2017-02-24 Ascending 62 2016-02-13 Descending
7 2015-06-11 Ascending 35 2017-03-20 Ascending 63 2016-03-08 Descending
8 2015-07-05 Ascending 36 2017-04-01 Ascending 64 2016-04-01 Descending
9 2015-07-29 Ascending 37 2017-04-13 Ascending 65 2016-04-25 Descending

10 2015-08-22 Ascending 38 2017-04-25 Ascending 66 2016-05-19 Descending
11 2015-09-15 Ascending 39 2017-05-07 Ascending 67 2016-06-12 Descending
12 2015-10-09 Ascending 40 2017-05-19 Ascending 68 2016-07-30 Descending
13 2015-11-02 Ascending 41 2017-05-31 Ascending 69 2016-08-23 Descending
14 2015-11-26 Ascending 42 2017-06-12 Ascending 70 2016-09-16 Descending
15 2015-12-20 Ascending 43 2017-06-24 Ascending 71 2017-02-19 Descending
16 2016-01-13 Ascending 44 2017-07-06 Ascending 72 2017-03-03 Descending
17 2016-02-06 Ascending 45 2017-07-18 Ascending 73 2017-03-15 Descending
18 2016-03-01 Ascending 46 2017-07-30 Ascending 74 2017-03-27 Descending
19 2016-03-25 Ascending 47 2015-01-13 Descending 75 2017-04-08 Descending
20 2016-04-18 Ascending 48 2015-02-06 Descending 76 2017-04-20 Descending
21 2016-05-12 Ascending 49 2015-03-14 Descending 77 2017-05-02 Descending
22 2016-06-05 Ascending 50 2015-04-07 Descending 78 2017-05-14 Descending
23 2016-06-29 Ascending 51 2015-05-01 Descending 79 2017-05-26 Descending
24 2016-7-23 Ascending 52 2015-5-25 Descending 80 2017-6-7 Descending
25 2016-8-16 Ascending 53 2015-6-18 Descending 81 2017-6-19 Descending
26 2016-9-9 Ascending 54 2015-7-12 Descending 82 2017-7-13 Descending
27 2016-10-3 Ascending 55 2015-8-5 Descending 83 2017-7-25 Descending
28 2016-10-27 Ascending 56 2015-8-29 Descending
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