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Abstract: On-farm genotype screening is at the core of every breeding scheme, but it comes with
a high cost and often high degree of uncertainty. Phenomics is a new approach by plant breeders,
who use optical sensors for accurate germplasm phenotyping, selection and enhancement of the
genetic gain. The objectives of this study were to: (1) develop a high-throughput phenotyping
workflow to estimate the Normalized Difference Vegetation Index (NDVI) and the Normalized
Difference Red Edge index (NDRE) at the plot-level through an active crop canopy sensor; (2) test
the ability of spectral reflectance indices (SRIs) to distinguish between sesame genotypes throughout
the crop growth period; and (3) identify specific stages in the sesame growth cycle that contribute
to phenotyping accuracy and functionality and evaluate the efficiency of SRIs as a selection tool. A
diversity panel of 24 sesame genotypes was grown at normal and late planting dates in 2020 and
2021. To determine the SRIs the Crop Circle ACS-430 active crop canopy sensor was used from the
beginning of the sesame reproductive stage to the end of the ripening stage. NDVI and NDRE reached
about the same high accuracy in genotype phenotyping, even under dense biomass conditions where
“saturation” problems were expected. NDVI produced higher broad-sense heritability (max 0.928) and
NDRE higher phenotypic and genotypic correlation with the yield (max 0.593 and 0.748, respectively).
NDRE had the highest relative efficiency (61%) as an indirect selection index to yield direct selection.
Both SRIs had optimal results when the monitoring took place at the end of the reproductive stage
and the beginning of the ripening stage. Thus, an active canopy sensor as this study demonstrated
can assist breeders to differentiate and classify sesame genotypes.

Keywords: sesame; phenotyping; spectral reflectance; NDVI; NDRE; indirect selection

1. Introduction

Modern agriculture and food production systems have to withstand escalating pres-
sure from climate change, land and water availability, and more recently, a pandemic.
Sesame (Sesamumindicum L., 2n = 2x = 26), one of the oldest oil crops, was domesti-
cated about 3500 years ago from Sesamum indicum subsp. Malabaricum in the Indian
sub-continent and has been cultivated since then in subtropical and temperate regions
around the world [1–3]. In 2019, mainly in developing countries, more than 6.5 million tons
of sesame seeds were produced from nearly 13 million ha [4]. With good adaptation to
drought-prone and marginal environments, it can play an active role in the development of
an ecologically and societally resilient, sustainable agriculture. The seeds are being used
for an array of products in the food (high-quality oil, tahini paste, cooking and backing)
and pharmaceutical industries [5]. Acknowledged as an important functional food, it
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is progressively gaining popularity due to the high content in nutritional components
with antihypertensive, anticarcinogenic, anti-inflammatory and antioxidative effects [6–8].
Immense progress has been made with continually advancing genomics technologies to
decipher and understand crop genomes. For sesame, an orphan crop until recently, despite
its long history of cultivation, breeding efforts were mostly concentrated on addressing
the low yield (400–500 Kg/ha) [4] that seed shattering, indeterminate growth habit and
asynchronous capsule ripening causes [9–13]. In the past few years, sesame came across to
the “Omics” era, and as with other crops, a substantial amount of genomics data began to
amass [14–16].

However, the impact of genomics data on crop improvement is still far from satisfac-
tory, and our ability to accurately assess crop status in field scale is lacking compared to the
current capacity to generate high-throughput genomics data. Thus, the research bottleneck
in plant sciences shifts from genotyping to phenotyping. A phenotype is the composite of
an observable expression of a genome for traits in a given environment. Traits could be
visible to the naked eye (conventional phenotype), or visible by using technical procedures.
Phenomics, the systematic genome-wide study of an organism’s phenotype is an emerging
approach that aims to automate and standardize phenotyping [17–19]. To mitigate this
‘phenomics bottleneck’, innovations such as trait data recording through sophisticated
non-invasive imaging, spectroscopy, satellite image analysis, high-performance computing
facilities, phenomics databases, robotics and Artificial Intelligence (AI) have been utilized.
The phenomics revolution is here, and the monitoring of thousands of plants in a single
day for traits such as plant architecture, photosynthesis ability and biomass productivity
made it possible for “speed breeding” to unravel [20–22]. Genetic gain is a fundamental
concept in breeding and can be enhanced by increasing selection intensity, accuracy and
genetic variation and/or reducing the cycle time. Phenotyping contributes both directly
and indirectly to these variables [23], but it comes with a high cost.

Simple active radiometer sensors, on the other hand, may enable phenotyping of field
experiments in a rapid and cost-effective way. Remote sensing, through a set of spectral
vegetation indices, has been used in breeding trials just recently [24]. Strong associations
have been demonstrated between spectral reflectance indices and attributes of crop growth,
and the development of new instruments enhances their monitoring [25–29]. Leaf pig-
ments (e.g., carotenoids and anthocyanins) absorb various amounts of light in the visible
range of the spectrum. These leaf characteristics influence the reflectance signature of
plants. Reflectance measurements made near the crop canopy integrate plant-to-plant
variation throughout plant growth cycles, associated with the impacts of senescence or
stress conditions (e.g., due to water or nutrient deficits) on the leaf characteristics [30]. Pre-
cise non-destructive biomass estimates in breeding programs, could be useful in selection,
particularly if they are quick, cheap and easy to perform [24].

The Normalized Difference Vegetation Index (NDVI) is one of the most utilized spectral
reflectance indices (SRIs) for indirect selection in breeding programs. Cabrera-Bosquet
et al. [28] showed that a spectral vegetation index such as NDVI is a promising tool to screen
genotypes. NDVI and other spectral reflectance indices have the potential to differentiate
spring wheat genotypes from heading to grain filling stages for crop biomass and grain
yield under irrigated conditions [31]. Ma et al. [32] reported that NDVI could differentiate
between high and low grain yield among soybean (Glycine max, L., Merr.) genotypes. They
concluded that NDVI can be a reliable and fast index. Moreover, the reflectance of red
light is a good way to quantify plant chlorophyll content until the canopy approaches
closure. Once the canopy closes, red light reflectance remains very low and thus is no
longer responsive to changes in plant chlorophyll content. Reflectance in the red-edge
region of the spectrum has been shown to be quite sensitive to canopy chlorophyll content
over a wide range of biomass conditions and thus the value of the normalized difference red
edge index (NDRE). Canopy biomass is best quantified by measuring near-infrared (NIR)
reflectance. In a practical sense, NIR reflectance quantifies the size of the photosynthetic
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factory while red and red-edge reflectance collectively characterize how fast the factory can
operate [33,34].

Recent advances in precision agriculture technology have led to the development
of ground-based active remote sensors (or crop canopy sensors) that calculate a set of
reflectance indices such as NDVI, NDRE and NIR. Active sensors have their own source
of light energy and allow for the determination of those indices at specific times and loca-
tions throughout the growing season without the need for ambient illumination or flight
concerns. Crop canopy sensors are relatively small in size and contain an integrated light
source. They operate by directing visible (VIS) light (400–700 nm) as well as near-infrared
(NIR) (700–1300 nm) light at the plant canopy of interest [35]. One of the most reliable
types of sensors used mainly for scanning crops to make nitrogen (N) fertilizer recommen-
dations, assess forage biomass, estimate yield, estimate crop leaf area and geospatially
map agricultural landscapes is the Holland Scientific Crop CircleTMACS-430 plant canopy
reflectance sensor [36–40]. The Crop Circle TM sensor is active and operates under the
same principles as that of the GreenSeekerTM sensor; the principles and physics behind
the operation of those sensors are described in detail in Inman et al. [40]. The Crop Circle
TM sensor generates light with a wavelength of 590 nm in the VIS band and 880 nm in the
NIR band. The Crop Circle ACS-430 sensor showed the best results, displaying the greatest
range of measured values and the highest sensitivity as a biomass predictor, when used in
comparison with other devices in sugarcane [41–43].

In many recent studies, SRIs from proximity sensors were used for early wheat selection
breeding cycles [44–47]. Selection in early breeding generation is challenging because the
small-size plots and the large number of lines under evaluation do not allow for an accurate
determination of the yield, and for this reason breeders typically rely on visual selection.

Moreover, the phenotyping in each crop/variety is significantly affected by the growth
stage; thus, many researchers focus on investigating the optimal growth stage of scanning
that could be used in the breeding trials. For wheat, a recent study showed that under
dryland conditions, there is a reliable correlation between grain yield and NDVI at the
early growing season, the anthesis growth stage and the mid-grain filling growth stage,
as well as a poor association under irrigated conditions [48]. Relative differences in leaf
senescence patterns of soybean cultivars have been studied to accurately calculate the
observed maturity rate [49,50].

Using spectral reflectance indices for sesame phenotyping and yield estimation in a
breeding program has only been recorded once before [51].

The objectives of this study were to: (1) develop a high-throughput phenotyping
workflow to estimate the NDVI and NDRE at the plot-level through the active crop canopy
sensor; (2) test the ability of SRIs to distinguish between sesame cultivars throughout
the crop growth period; and (3) identify specific stages in the sesame growth cycle that
contribute to phenotyping accuracy and functionality.

This article is structured as follows. In Section 2, we will describe the experimental
design and the genetic material that we used, the phenotyping workflow that we established
and the statistical analysis that was applied. In Section 3, we will present the results for the
ability of the SRIs to differentiate sesame genotypes at different stages of their development,
and we will unravel the genetics behind the SRIs in single and multi-environments sesame
trials. In Section 4, we will discuss if the results of this study showed that we can integrate
SRIs and high throughput phenotyping in a sesame breeding scheme. Finally, the article
will end with a brief presentation of the conclusions in Section 4 (Figure 1).
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Figure 1. Graphical abstract of the workflow of our study.

2. Materials and Methods
2.1. Experimental Conditions

Field experiments were conducted in 2020 and 2021 at the Institute of Industrial and
Forage Crops (IIFC) of the Hellenic Agricultural Organization—DIMITRA (ELGO-DIMITRA)
in Larissa (x: 2496060, y: 4809270, Projected Coordinate Systems WGS_1984_Web_Mercator),
central Greece (Figure 2). The climate in the region of Larissa is a semi-arid Mediterranean
climate and is classified as Csa (temperate climate with a hot-dry summer) by the Köppen–
Geiger system [52].
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Figure 2. Location map of the research area (left). Plots of sesame, late planting at the front and
normal at the back (Right, above). Sesame phenotyping with proximity sensor (Right, below).

Soil physicochemical analyses were provided by the accredited under international
quality standards (ELOT EN ISO/IEC 17025, 2017) Soil, Water and Plant Analysis lab of
IIFC. Both experiments were carried out on a Vertisol [53] clayey soil (37% sand, 21% silt,
42% clay) with poor organic carbon content (0.36–0.75%) at 30 cm depth. The soil had low
carbonate content (1.2%) and electrical conductivity (393 µS/cm), was slightly alkaline in
pH (7.4), had high concentrations of K (508 mg/kg), and low Olsen P (18 mg P/kg).
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2.2. Experimental Design and Crop Management

To examine the use of a proximity sensor as an in-field phenotyping tool for sesame
(Sesamum indicum L.) breeding, four experiments occurred on two planting dates for two
consecutive years.

Planting for the full-season crop system (normal planting 2020, NP20) was carried out on
11 May 2020, whereas for the double-crop system (late planting 2020, LP20) on 9 June 2020
and in 2021 on 13/5 and 11/6, respectively (NP21 and LP21). For NP, the dates were chosen in
such a way to evaluate sesame’s rotational fit with other summer crops (cotton) in the region.
LP could be useful for determining the utility of sesame in a double crop system with winter
crops (cereals, legumes, etc.) or to serve as a rescue crop in case of crop failure.

Field preparation consisted of disking, turning the soil with a moldboard plow, and
smoothing the surface with a field cultivator 20 days before sowing. Previous cultivation
was sesame. Balanced pre-plant fertilization with 100 kg ha−1 in the form (11-15-15) was
incorporated in the soil before sowing. Treatments of 24 sesame genotypes were randomly
assigned within each of the four blocks to follow a randomized complete block design with
96 total number of plots for each planting date. Each plot consisted of 4 rows 3 m long
with 25 cm row spacing and a seeding rate of 40 seeds per meter. Sprinkler irrigation was
applied right after sowing. Manual thinning was performed when the plants reached a
height of 10–12 cm, so as to reach a plant population density of 200,000 plants ha−1 (on-row
plant spacing of 20 cm). In-season N fertilization was performed at the beginning of the
sesame reproductive stage (≈50 Days after planting, DAP) by 70 kg ha−1 of nitrogen in
the form of nitrate nitrogen (34.5-0-0). Sprinkler irrigation was applied throughout the
growing season to sustain plant development. The plots were weeded manually once a
week, and phytosanitary actions were performed to keep them free of pests. All the soil
and crop management was the same for both planting days (NP and LP) and cropping
years (2020, 2021).

2.3. Plant Material

The plant material used in this work included a total of 24 sesame (Sesamum indicum L.)
genotypes. Seventeen of them were second generation “sister lines”, one was a commercial
variety from Turkey and six were Greek parental landraces from the IIFC’s gene bank
with different eco-geographical origin (Table 1). The sister lines were selected from the
six landraces during IIFC’s sesame breeding project in which single plant selection with
honeycomb methodology under low plant density (nil-competition) was the core idea.
A field evaluation methodology that is advantageous in relation to the elimination of
the masking effects of soil heterogeneity, maximization of phenotypic expression and
application of high selection intensity was applied [54–56].

Table 1. List of the 24 sesame genotypes used in the present study. NP: sister line derived from
normal planting. LP: sister line derived from late planting. Com: commercial variety. PL: parental
landrace. The parental landraces are named after their region of origin. So, our materials are high-rate
homozygous lines derived from 5 parental landraces.

GEN Parental
Landrace GEN Parental

Landrace GEN Parental
Landrace GEN Parental

Landrace

1 (NP) Kilkis 7 (NP) Kokkina 13 (LP) Sidirochori 19 (PL) Ormenio
2 (NP) Kilkis 8 (NP) Serres 14 (LP) Sidirochori 20 (PL) Kokkina
3 (NP) Kilkis 9 (NP) Serres 15 (LP) Sidirochori 21 (PL) Sidirochori
4 (NP) Sidirochori 10 (NP) Ormenio 16 (LP) Kokkina 22 (PL) Serres
5 (NP) Sidirochori 11 (LP) Kilkis 17 (LP) Evros 23 (PL) Kilkis
6 (NP) Sidirochori 12 (LP) Kilkis 18 (Com) Turkey 24 (PL) Evros
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2.4. Crop Phenotyping

The canopy reflectance of each plot was measured by a single Crop Circle ACS-430 active
canopy sensor interfaced to a GeoScout X data logger (Holland Scientific, Lincoln, NE, USA)
from a nadir view 0.5 m above the crop canopy several times in the growing period.

Field scans were performed with the sensor mounted on a portable frame, with an
average speed of 4 km h−1 e between 8:00 a.m. and 9:30 a.m. local time, spanning the
monitoring period from the early reproductive stage to mid-ripening stage. For each plot,
40–50 data points of canopy reflectance were recorded as the average of more than 4000 sensor
readings by plot.

For both planting dates and years, monitoring started when all genotypes were at
the reproductive stage. The canopy reflectance was measured at 670 nm (RRED), 730 nm
(RRED EDGE) and 780 nm (RNIR) wavelengths. The spectral reflectance data from the three
bands were used to derive two vegetation indices: normalized difference vegetation index
(NDVI) (1) and normalized difference red edge (NDRE) (2), which were evaluated as
potential tools for genotype classification.

NDVI = (RNIR − RRED)/(RNIR + RRED) (1)

NDRE = (RNIR − RRED EDGE)/(RNIR + RRED EDGE) (2)

The data points obtained on each day were later processed to get one average value
for each plot. The NDVI is related to crop parameters such as leaf area index, biomass
and fractional vegetation cover, whereas the NDRE characterizes the chlorophyll/nitrogen
status of crop canopies.

The soil plant analysis development (SPAD), an index for chlorophyll content, recorded
at the beginning of the reproductive stage with the CCM-200 plus SPAD-meter from five
randomly selected plants of each plot.

Seed yield (kg/ha) was assessed at the harvest maturity stage of each cultivar. The
two central rows from each plot were harvested by hand, threshed with a Wintersteiger LD
350 laboratory thresher, and the seed produced was weighed.

All the trait measurements were taken from the two central rows in each plot to avoid
edge effects.

2.5. Growing Degree Days and Weather Parameters

Growing degree day (GDD) values specific for sesame were calculated for each day
during the growing season for both planting days. Data on air temperature, precipitation,
relative humidity and solar radiation were acquired from the automatic meteorological
station that the IIFC operates in collaboration with the National Observatory of Athens
(IERSD) in its experimental fields. The following equation was used to calculate daily GDD
values (3):

GDD = [(TMIN + TMAX)/2] − Tb = TAVC − Tb (3)

where TMIN and TMAX are the daily minimum and maximum temperatures, TAVG is the
daily average temperature, and Tb is the base temperature for sesame. Angus et al. [57]
demonstrated in their study the value of a linear day-degree system for predicting crop
phasic development, modeled the response of 44 species to temperature and presented
their respective base temperatures. For sesame, it was 15.9 ◦C, and we used it as Tb [58].
On days when TAVG was below Tb, the GDDs for that day were set to 0. Daily GDDs were
separately summed to calculate the accumulated GDD value from sowing to harvest.

2.6. Statistical Analysis

The R-program (www.R-project.org, accessed on 7 February 2022) with the packages
Metan and Agricolae were used to perform all the statistical analysis [59–61].

An analysis of variance (ANOVA) including the factors sesame line and block was
performed on data of separate growing conditions (NP and LP) and cropping years to verify

www.R-project.org
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the occurrence of genetic variation among lines for each trait. If significant differences
were found, Tukey’s HSD (honestly significant difference) method was used for multiple
comparisons (α = 5%). The phenotypic (rp) (5) and genotypic correlation (rg) (4) coeffi-
cients between spectral indices and the grain yield were calculated using the following
formulas [62]:

rgxy =
Covgxy√(
σ2

gx

)(
σ2

gy

) (4)

rpxy =
Covpxy√(
σ2

px

)(
σ2

py

) (5)

where σ2g/σ2p and Covg/Covp refer to the components of genetic and phenotypic variance
and covariance, respectively, and X and Y are the two variables.

Broad-sense heritability (H2) was calculated on a line mean basis for each environ-
ment (cropping years, NP, LP) according to Holland [63]. Broad-sense heritability is the
proportion of the phenotypic variance, which is explained by the genetic variance, and was
estimated as follows (6):

H2 =
σ2

g

σ2
g + σ2

e/n
(6)

where σ2g and σ2e are the genotypic and residual variance components, respectively,
and n is the number of replicated blocks. Relative efficiency of indirect selection (Er) in
SRIs vs. direct selection in yield expressed in percentage, was estimated by the following
equation [64] (7):

Er = [(HSRI/HY)rgSRI Y] × 100 (7)

where HSRI and HY are the square root of the broad-sense heritability on a line mean basis
(H2) for the SRIs and Yield, respectively, and rgSRI Y is the genetic correlation between
the two criteria. Restricted maximum likelihood with best linear unbiased prediction
(REML/BLUP) is a well-known linear mixed model for the estimation of random effects
that was used to analyze the SRIs data from every environment (cropping years, NP,
LP). The output was p-values from Likelihood Ratio Test (LRT) of the analyzed SRIs
for genotype (GEN) and genotype-vs-environment (GE) as random effects. Broad-sense
heritability

(
H2

x

)
(8) on a plot basis over the environments (cropping years, NP, LP) and

broad-sense heritability
(

H2
y

)
(9) on an entry mean basis over the environments were

also estimated.

H2
x =

σ2
g

σ2
g + σ2

ge + σ2
e

(8)

H2
y =

σ2
g

σ2
g +

σ2
ge
e + σ2

e
en

(9)

where σ2
ge refer to the variance component relative to GE interaction and e and n are the

number of environments and blocks, respectively.
Hierarchical cluster analysis was performed also to compute the Euclidean distances

between the genotypes based on the SRIs with the unweighted pair group with arithmetic
mean agglomeration method (UPGMA). Mantel’s test was used to check the relationships
between the distance matrices when the clustering was performed for separate growing
conditions (NP and LP) and cropping years.
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3. Results
3.1. Climate Data

Air temperature during the growing season was similar for both growing conditions
(NP and LP) and cropping years (2020, 2021), with daily averages being >15.9 ◦C (Tb) almost
for the entire season (Figure 3). The harvest for all plots was completed on 15 September
(127 DAP) for normal planting and 19 October (132 DAP) for late planting in 2020 and on
22 September (132 DAP) and 19 October (130 DAP) in 2021.
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Figure 3. Climate data across growing conditions and years (NP20, LP20, NP21, LP21). Daily
Precipitation (RAIN), daily average air temperature (T-AVG), base temperature for sesame (Tb).

Accumulated GDDs over the growing period were the same for both planting dates
(8.8 and 8.6 GDD day−1 for 2020 and 2021, respectively); however, the accumulation rate in
LP was lower in comparison with NP (9.2 and 9.5 GDD day−1 for 2020 and 2021) (Figure 3).
Only two important rainfall events occurred (18 September 2020, 59.2 mm and 8 October
2021, 43.2 mm). The amount of solar radiation received was 2% and 11% higher in NP than
LP for 2020 and 2021, respectively. As expected for the late planting, in both years lower
temperature and solar radiation with higher RH% and rainfall during the ripening stage
resulted in more days for plant maturity and delayed harvest especially in 2021 (Table 2).

Table 2. Accumulated growing degree days (GDDs) over the sesame growing season (from planting
to harvest), accumulated rainfall and irrigation (mm) and accumulated solar radiation (W m−2) for
both planting dates and years.

Cummulative Total NP 2020 NP 2021 LP 2020 LP 2021

GDD 1196 1265 1191 1133
Rainfall (mm) 89.6 63.2 147.6 168.4

Irrigation (mm) 275 295 200 240
Solar radiation (Wm−2) 65,158 67,332 63,634 60,109

3.2. Sesame Phenotyping

Continuous measurements from the beginning of the reproductive stage and almost once a
week until the end of the ripening stage enabled genotype comparisons (Table 3, Figures 4 and 5).
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The examined sesame genotypes (lines and parental landraces) can be divided into two large
groups, the early and very early maturing (1, 8, 9, 10, 17, 18, 19, 20, 22, 23, 24) and intermediate
to late maturing (2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16, 21) with different rates of development.

Table 3. Temporal distribution of the proximal sensing data during the sesame growing period.

Scan Date DAP GDD GS Scan Date DAP GDD GS

SCAN 1

NP
2020

1 July 2020 51 359 RES

LP 2020

3 August 2020 55 591 RES
SCAN 2 13 July 2020 63 488 RES 10 August 2020 62 661 RES
SCAN 3 24 July 2020 74 601 RES 25 August 2020 77 829 RES
SCAN 4 3 August 2020 84 727 RES 2 September 2020 85 917 RES
SCAN 5 10 August 2020 91 797 RES 11 September 2020 94 1007 RES
SCAN 6 25 August 2020 106 965 RIS 22 September 2020 105 1083 RES
SCAN 7 2 September 2020 114 1053 RIS 9 October 2020 122 1169 RIS

SCAN 1

NP 2021

2 July 202 50 373 RES

LP 2021

28 July 2021 47 514 RES
SCAN 2 13 July 202 61 508 RES 9 August 2021 59 698 RES
SCAN 3 21 July 2021 69 607 RES 20 August 202 70 825 RES
SCAN 4 28 July 202 76 684 RES 27 August 2021 77 904 RES
SCAN 5 9 August 2021 88 868 RES 3 September 2021 84 962 RES
SCAN 6 20 August 2021 99 995 RES 10 September 2021 91 997 RES
SCAN 7 27 August 2021 106 1063 RIS 17 September 2021 98 1047 RES
SCAN 8 3 September 2021 113 1132 RIS 27 September 2021 108 1113 RIS
SCAN 9 5 October 202 116 1128 RIS

DAP = days after planting, GDD = growth degree days, GS = growth stage, RES = reproductive stage,
RIS = ripening stage.
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(GEN) for both growing conditions and cropping years monitored by Crop Circle ACS-430 active
canopy sensor. (x axis = number of scans, y axis = SRI values for each genotype).
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NDVI values ranged from 0.424 to 0.902 with an all-genotypes average of 0.782. A
common pattern of NDVI evolution was observed for almost all of the genotypes. NDVI
had the lowest value at the first scan (51 DAP) in the beginning of the reproductive
stage, reaching the maximum values at 2, 3, 4 scans followed by a progressive decline in
accordance with the maturity of the crop. From scan 1 to 2 when also the in-season N
fertilization occurred, the NDVI average values for all genotypes increased from 0.75 to
0.85 (approximately by 13%). NDVI values remained almost in variable for scans 2 to 5
until the crop entered ripening stage. For NP21, the NDVI raise from scan 1 to 2 was from
0.65 to 0.85.

Similar patterns were observed for the NDRE. Its values ranged from 0.130 to 0.360
with an all-genotypes average of 0.267. From scan 1 to 2 NDRE average values for all
genotypes increased from 0.28 to 0.31 (approximately by 10%) except NP21 when as in
the case of NDVI average values showed a steep raise. The decline was rapid for both
indices, but for NDRE, it started earlier when the crop was still in the reproductive stage.
(Figure 4). Variation between sesame lines was greater for both indices in LP20 and NP21.
NDVI varied significantly between genotypes for every monitoring date in both growing
conditions and cropping years and almost the same was observed for NDRE, except
scans 1 and 6 on NP20 and scan 9 on LP20. Both NDVI and NDRE enabled distinction
between genotypes but in most cases NDVI provided better separation, as shown at four
monitoring dates during crop growth (Tables 4–6). Even in the middle of the reproductive
growth stage when crop canopy is closed (NDVI3, LP21 and NDRE3, LP21) SRI values
produced a clear genotype separation (Figure 6, genotypes with different letter and color
are significant different). Line 2 gave the higher NDRE and NDVI values (mean values
from both planting dates and years) 0.282 and 0.822, respectively, lines 1 and 9 had the
lowest values (0.250 and 0.750), respectively. Early maturing lines and landraces always
had low NDVI, but NDRE produced mixed results and even late maturing lines exhibited
low values.
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Table 4. Average NDVI index value by genotype at four monitoring dates. The specific monitoring covers the period from the middle of the reproductive stage till
the beginning of the ripening stage. Means and ANOVA F values to verify the occurrence of genetic variation among lines for each SRI.

NP20 NP21 LP20 LP21

GEN NDVI3 NDVI4 NDVI5 NDVI6 NDVI3 NDVI4 NDVI5 NDVI6 NDVI3 NDVI4 NDVI5 NDVI6 NDVI3 NDVI4 NDVI5 NDVI6

1 0.833 cd 0.825 ab 0.847 ab 0.748 abc 0.859 ab 0.840 e 0.834 de 0.743 bc 0.875 a 0.842 abc 0.780 defg 0.712 efghij 0.813 bcdef 0.822 bcde 0.805 a 0.824 c
2 0.886 a 0.849 ab 0.868 a 0.819 ab 0.881 a 0.873 abcde 0.875 abc 0.836 a 0.883 a 0.859 a 0.848 ab 0.824 a 0.864 abc 0.842 abcd 0.844 a 0.867 a
3 0.821 d 0.839 ab 0.855 a 0.784 abc 0.875 a 0.866 abcde 0.866 abcd 0.798 abc 0.836 b 0.826 abc 0.808 abcdef 0.723 defghi 0.823 abcdef 0.836 abcd 0.832 a 0.862 ab
4 0.861 abcd 0.837 ab 0.854 a 0.769 abc 0.876 a 0.869 abcde 0.863 abcd 0.770 abc 0.869 ab 0.845 abc 0.836 abcd 0.762 abcdefg 0.837 abcde 0.820 bcde 0.819 a 0.865 ab
5 0.886 ab 0.850 ab 0.854 a 0.747 abc 0.888 a 0.886 ab 0.878 abc 0.825 abc 0.878 a 0.847 ab 0.856 a 0.795 abcd 0.855 abcd 0.846 abc 0.833 a 0.868 a
6 0.868 abcd 0.825 ab 0.865 a 0.788 abc 0.883 a 0.885 ab 0.878 abc 0.794 abc 0.878 a 0.858 a 0.834 abcd 0.782 abcde 0.852 abcd 0.866 a 0.850 a 0.868 a
7 0.844 abcd 0.829 ab 0.844 ab 0.792 abc 0.879 a 0.860 abcde 0.862 abcd 0.777 abc 0.865 ab 0.847 ab 0.801 abcdef 0.731 cdefghi 0.812 cdef 0.834 abcd 0.811 a 0.846 abc
8 0.841 abcd 0.807 ab 0.863 a 0.769 abc 0.877 a 0.857 abcde 0.860 abcd 0.798 abc 0.856 ab 0.822 abc 0.826 abcd 0.755 abcdefgh 0.811 cdef 0.854 ab 0.809 a 0.854 abc
9 0.830 cd 0.802 ab 0.849 a 0.746 abc 0.871 ab 0.844 e 0.846 bcde 0.745 abc 0.837 b 0.805 c 0.749 fgh 0.641 j 0.809 cdef 0.857 ab 0.815 a 0.850 abc
10 0.851 abcd 0.821 ab 0.847 ab 0.776 abc 0.874 a 0.858 abcde 0.862 abcd 0.798 abc 0.856 ab 0.809 bc 0.821 abcde 0.741 bcdefghi 0.772 f 0.841 abcd 0.787 a 0.844 abc
11 0.841 abcd 0.834 ab 0.857 a 0.815 ab 0.879 a 0.864 abcde 0.864 abcd 0.793 abc 0.867 ab 0.853 a 0.844 abc 0.792 abcde 0.821 abcdef 0.857 ab 0.820 a 0.873 a
12 0.856 abcd 0.841 ab 0.856 a 0.825 a 0.873 a 0.865 abcde 0.852 abcde 0.814 abc 0.873 a 0.855 a 0.832 abcd 0.774 abcdef 0.820 abcdef 0.845 abc 0.806 a 0.847 abc
13 0.863 abcd 0.840 ab 0.866 a 0.752 abc 0.889 a 0.884 abc 0.875 abc 0.835 ab 0.881 a 0.855 a 0.848 ab 0.794 abcd 0.867 abc 0.836 abcd 0.860 a 0.864 ab
14 0.864 abcd 0.840 ab 0.852 a 0.826 a 0.885 a 0.891 a 0.883 a 0.817 abc 0.877 a 0.845 abc 0.853 a 0.808 abc 0.879 a 0.825 abcde 0.844 a 0.863 ab
15 0.877 abc 0.844 ab 0.852 a 0.756 abc 0.889 a 0.889 a 0.873 abc 0.812 abc 0.868 ab 0.844 abc 0.849 ab 0.812 ab 0.837 abcde 0.857 ab 0.823 a 0.861 ab
16 0.862 abcd 0.818 ab 0.848 a 0.799 abc 0.884 a 0.880 abcd 0.870 abc 0.797 abc 0.860 ab 0.841 abc 0.808 abcdef 0.755 abcdefg 0.837 abcde 0.789 e 0.812 a 0.834 bc
17 0.854 abcd 0.828 ab 0.831 ab 0.708 bc 0.871 ab 0.861 abcde 0.850 abcde 0.741 c 0.864 ab 0.808 bc 0.721 gh 0.642 j 0.841 abcde 0.812 cde 0.816 a 0.840 abc
18 0.837 bcd 0.800 b 0.835 ab 0.781 abc 0.862 ab 0.846 de 0.852 abcde 0.785 abc 0.867 ab 0.842 abc 0.784 cdef 0.718 defghij 0.823 abcdef 0.821 bcde 0.812 a 0.853 abc
19 0.846 abcd 0.824 ab 0.858 a 0.771 abc 0.858 ab 0.852 bcde 0.857 abcd 0.783 abc 0.858 ab 0.829 abc 0.790 bcdef 0.696 fghij 0.816 bcdef 0.843 abc 0.825 a 0.852 abc
20 0.842 abcd 0.831 ab 0.855 a 0.729 abc 0.865 ab 0.861 abcde 0.860 abcd 0.767 abc 0.860 ab 0.827 abc 0.714 h 0.692 ghij 0.816 bcdef 0.800 de 0.806 a 0.841 abc
21 0.862 abcd 0.860 a 0.862 a 0.781 abc 0.889 a 0.891 a 0.880 ab 0.824 abc 0.870 ab 0.849 ab 0.836 abcd 0.772 abcdefg 0.874 ab 0.833 abcd 0.843 a 0.870 a
22 0.848 abcd 0.821 ab 0.853 a 0.765 abc 0.871 ab 0.849 de 0.851 abcde 0.778 abc 0.858 ab 0.829 abc 0.778 defg 0.670 ij 0.800 def 0.846 abc 0.796 a 0.849 abc
23 0.848 abcd 0.792 b 0.833 ab 0.781 abc 0.839 b 0.850 cde 0.844 cde 0.758 abc 0.869 ab 0.834 abc 0.763 efgh 0.674 hij 0.811 cdef 0.806 cde 0.787 a 0.823 c
24 0.847 abcd 0.804 ab 0.801 b 0.703 c 0.857 ab 0.847 de 0.817 e 0.767 abc 0.875 a 0.836 abc 0.786 cdef 0.729 cdefghi 0.789 ef 0.834 abcd 0.785 a 0.823 c

MEAN0.853 0.828 0.850 0.772 0.874 0.865 0.861 0.790 0.866 0.838 0.807 0.741 0.828 0.834 0.818 0.852

Fvalue3.42 *** 2.93 *** 3.33 *** 2.45 NS 4.74 *** 6.48 *** 6.19 *** 2.99 *** 3.71 *** 4.46 *** 14 *** 12.4 *** 5.02 *** 3.94 *** 3.05 *** 1.95 **

Within column and year, means followed by the same letter are not significantly different using Tukey HSD separation procedure. ** = p < 0.05, *** = p < 0.01.
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Table 5. Average NDRE index value by genotype at four monitoring dates. The specific monitoring covers the period from the middle of the reproductive stage till
the beginning of the ripening stage. Means and ANOVA F values to verify the occurrence of genetic variation among lines for each SRI.

NP20 NP21 LP20 LP21

GEN NDRE3 NDRE4 NDRE5 NDRE6 NDRE3 NDRE4 NDRE5 NDRE6 NDRE3 NDRE4 NDRE5 NDRE6 NDRE3 NDRE4 NDRE5 NDRE6

1 0.315 abc 0.315 abc 0.310 abc 0.266 a 0.302 ab 0.318 bcd 0.284 bcd 0.248 abc 0.324 abc 0.293 ab 0.251 bcd 0.188 abcde 0.313 abcdef0.303 abcd 0.294 abc 0.275 ab
2 0.327 ab 0.327 ab 0.319 abc 0.307 a 0.308 ab 0.335 abc 0.317 ab 0.291 ab 0.330 abc 0.307 a 0.289 ab 0.251 a 0.325 abcde 0.293 bcd 0.309 abc 0.281 ab
3 0.317 abc 0.317 abc 0.323 ab 0.272 a 0.300 ab 0.330 abc 0.306 abcd 0.269 abc 0.316 abc 0.291 ab 0.262 abcd 0.186 bcde 0.320 abcdef0.311 abc 0.306 abc 0.293 ab
4 0.316 abc 0.316 abc 0.311 abc 0.264 a 0.299 ab 0.320 abcd 0.309 abc 0.245 abc 0.308 bc 0.285 ab 0.263 abcd 0.222 abcde 0.310 abcdef0.277 d 0.301 abc 0.281 ab
5 0.325 ab 0.325 ab 0.313 abc 0.257 a 0.316 a 0.338 ab 0.323 a 0.286 ab 0.318 abc 0.286 ab 0.289 ab 0.228 abcd 0.328 abcd 0.301 abcd 0.306 abc 0.282 ab
6 0.330 a 0.330 a 0.313 abc 0.269 a 0.314 ab 0.348 a 0.318 ab 0.272 abc 0.326 abc 0.300 ab 0.285 ab 0.220 abcde 0.334 abc 0.318 ab 0.327 a 0.296 ab
7 0.319 abc 0.319 abc 0.302 abc 0.266 a 0.309 ab 0.325 abcd 0.302 abcd 0.257 abc 0.330 abc 0.295 ab 0.265 abc 0.211 abcde 0.303 cdef 0.292 bcd 0.282 c 0.260 b
8 0.328 a 0.328 a 0.330 a 0.273 a 0.313 ab 0.339 ab 0.310 abc 0.264 abc 0.337 ab 0.304 a 0.275 abc 0.216 abcde 0.311 abcdef0.313 ab 0.299 abc 0.280 ab
9 0.298 c 0.298 c 0.308 abc 0.247 a 0.290 b 0.298 d 0.274 cd 0.223 c 0.315 abc 0.266 b 0.229 cd 0.173 de 0.298 def 0.298 abcd 0.280 c 0.268 ab

10 0.323 ab 0.323 ab 0.306 abc 0.265 a 0.304 ab 0.324 abcd 0.313 ab 0.261 abc 0.324 abc 0.289 ab 0.274 abc 0.230 abcd 0.287 f 0.302 abcd 0.289 abc 0.283 ab
11 0.326 ab 0.326 ab 0.329 a 0.301 a 0.314 ab 0.333 abc 0.314 ab 0.264 abc 0.338 a 0.311 a 0.291 ab 0.231 abcd 0.338 ab 0.325 a 0.313 abc 0.304 a
12 0.326 ab 0.326 ab 0.320 abc 0.283 a 0.305 ab 0.328 abcd 0.305 abcd 0.279 abc 0.325 abc 0.300 ab 0.263 abcd 0.196 abcde 0.308 bcdef 0.295 abcd 0.286 bc 0.272 ab
13 0.325 ab 0.325 ab 0.335 a 0.253 a 0.316 a 0.339 ab 0.328 a 0.303 a 0.337 ab 0.309 a 0.300 a 0.248 ab 0.334 abc 0.303 abcd 0.322 ab 0.290 ab
14 0.306 abc 0.306 abc 0.322 ab 0.282 a 0.300 ab 0.338 abc 0.331 a 0.291 ab 0.326 abc 0.288 ab 0.293 ab 0.236 abcd 0.342 a 0.279 cd 0.313 abc 0.284 ab
15 0.321 abc 0.321 abc 0.322 ab 0.264 a 0.301 ab 0.338 abc 0.304 abcd 0.261 abc 0.327 abc 0.299 ab 0.287 ab 0.241 abc 0.315 abcdef0.298 abcd 0.298 abc 0.276 ab
16 0.310 abc 0.310 abc 0.303 abc 0.290 a 0.307 ab 0.335 abc 0.314 ab 0.266 abc 0.328 abc 0.290 ab 0.259 abcd 0.193 abcde 0.329 abcd 0.276 d 0.288 abc 0.274 ab
17 0.320 abc 0.320 abc 0.277 bc 0.233 a 0.310 ab 0.330 abc 0.304 abcd 0.242 bc 0.330 abc 0.265 b 0.227 cd 0.161 e 0.327 abcde 0.287 bcd 0.297 abc 0.281 ab
18 0.303 bc 0.303 bc 0.291 abc 0.276 a 0.297 ab 0.320 abcd 0.304 abcd 0.254 abc 0.323 abc 0.288 ab 0.246 bcd 0.182 cde 0.319 abcdef0.297 abcd 0.306 abc 0.302 a
19 0.325 ab 0.325 ab 0.325 a 0.264 a 0.308 ab 0.326 abcd 0.294 abcd 0.261 abc 0.333 abc 0.291 ab 0.250 bcd 0.194 abcde 0.293 ef 0.296 abcd 0.285 bc 0.272 ab
20 0.318 abc 0.318 abc 0.292 abc 0.267 a 0.301 ab 0.333 abc 0.313 ab 0.266 abc 0.328 abc 0.278 ab 0.216 d 0.185 bcde 0.322 abcde 0.290 bcd 0.299 abc 0.295 ab
21 0.326 ab 0.326 ab 0.318 abc 0.282 a 0.313 ab 0.345 ab 0.322 ab 0.297 ab 0.307 c 0.300 ab 0.281 ab 0.226 abcd 0.330 abcd 0.291 bcd 0.315 abc 0.294 ab
22 0.315 abc 0.315 abc 0.308 abc 0.265 a 0.297 ab 0.308 cd 0.284 bcd 0.242 bc 0.323 abc 0.279 ab 0.231 cd 0.184 cde 0.307 bcdef 0.304 abcd 0.289 abc 0.281 ab
23 0.309 abc 0.309 abc 0.289 abc 0.249 a 0.290 b 0.324 abcd 0.293 abcd 0.244 abc 0.325 abc 0.286 ab 0.230 cd 0.188 abcde 0.314 abcdef0.288 bcd 0.289 abc 0.279 ab
24 0.310 abc 0.310 abc 0.274 c 0.251 a 0.303 ab 0.318 abcd 0.269 d 0.238 bc 0.330 abc 0.301 ab 0.260 abcd 0.209 abcde 0.305 bcdef 0.300 abcd 0.290 abc 0.276 ab

MEAN0.318 0.318 0.310 0.269 0.305 0.329 0.306 0.263 0.325 0.292 0.263 0.208 0.317 0.297 0.299 0.282

Fvalue 3.76 *** 3.24 *** 3.78 *** 1.41 NS 2.55 *** 4.48 *** 5.03 *** 3.5 *** 2.68 *** 3.21 *** 8.29 *** 4.48 *** 5.02 *** 3.94 *** 3.05 *** 1.95 **

Within column and year, means followed by the same letter are not significantly different using Tukey HSD separation procedure. ** = p < 0.05, *** = p < 0.01.
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Table 6. ANOVA F values to verify genetic variation among lines for each SRI, phenotypic correlation(rp) and genotypic correlation(rg) between sesame yield and
SRIs, broad-sense heritability on a line mean basis (H2) all on different monitoring dates across growing conditions and cropping years (NP20, NP21, LP20, LP21).
Relative efficiency of indirect selection (Er) in SRIs vs. direct selection in yield expressed in percentage.

NP 2020 NP2021 LP2020 LP2021

SRI Fvalue rp rg H2 Er
(%) Fvalue rp rg H2 Er

(%) Fvalue rp rg H2 Er
(%) Fvalue rp rg H2 Er

(%)

1.47 NS −0.063 NS −0.038 NS 0.322 −2 2.16 ** −0.363 NS −0.564 ** 0.538 −45 2.59 ** 0.291 * 0.369 NS 0.614 31 2.69 ** −0.067 NS −0.084 NS 0.628 −7
NDRE2 2.43 ** 0.214 NS 0.312 NS 0.589 25 2.59 ** 0.076 NS 0.108 NS 0.613 9 2.42 ** −0.105 NS −0.175 NS 0.586 −15 2.30 ** −0.053 NS −0.088 NS 0.565 −7
NDRE3 3.76 ** 0.354 * 0.442 * 0.734 39 2.55 ** 0.285 * 0.322 NS 0.608 27 2.68 ** 0.134 NS 0.196 NS 0.627 17 5.02 ** −0.015 NS −0.027 NS 0.801 −3
NDRE4 3.25 ** 0.593 ** 0.703 ** 0.692 60 4.48 ** 0.116 NS 0.111 NS 0.777 11 3.21 ** 0.235 ** 0.218 NS 0.689 20 3.94 ** 0.379 ** 0.450 * 0.746 40
NDRE5 3.78 ** 0.591 ** 0.686 ** 0.735 61 5.03 ** 0.240 * 0.264 NS 0.801 26 8.29 ** 0.368 ** 0.381 NS 0.879 39 3.05 ** 0.002 NS −0.011 NS 0.672 −1
NDRE6 1.41 NS 0.398 * 0.748 ** 0.292 42 3.50 ** 0.195 NS 0.276 NS 0.715 25 4.48 ** 0.353 * 0.415 * 0.777 40 1.95 * −0.051 NS −0.112 NS 0.487 −8
NDRE7 2.22 ** 0.197 NS 0.274 NS 0.550 21 2.19 ** 0.175 NS 0.335 NS 0.544 27 1.81 * −0.046 NS −0.037 NS 0.447 −3 2.55 ** −0.069 NS −0.084 NS 0.607 −7
NDRE8 2.86 ** −0.058 NS 0.028 NS 0.651 2 3.56 ** −0.379 ** −0.448 * 0.719 −39
NDRE9 1.68 NS −0.354 NS −0.569 ** 0.405 −37

NDVI1 3.34 ** 0.104 NS 0.158 NS 0.701 14 2.28 ** −0.276 NS −0.420 * 0.562 −34 1.80 * 0.444 ** 0.660 ** 0.446 48 2.04 * 0.084 NS 0.124 NS 0.509 9
NDVI2 4.98 ** 0.193 NS 0.227 NS 0.799 21 4.46 ** 0.359 ** 0.389 NS 0.776 37 2.14 ** 0.456 ** 0.591 ** 0.533 47 3.44 ** 0.067 NS 0.053 NS 0.709 5
NDVI3 3.42 ** 0.115 NS 0.165 NS 0.708 14 4.74 ** 0.434 ** 0.470 * 0.789 45 3.71 ** 0.090 NS 0.074 NS 0.731 7 5.60 ** −0.033 NS −0.045 NS 0.821 −4
NDVI4 2.93 ** 0.186 NS 0.195 NS 0.658 16 6.48 ** 0.181 NS 0.172 NS 0.846 17 4.46 ** 0.225 * 0.209 NS 0.776 20 6.15 ** 0.428 ** 0.468 * 0.837 44
NDVI5 3.33 ** 0.538 ** 0.654 ** 0.700 57 6.19 ** 0.391 ** 0.415 * 0.838 41 14.00 ** 0.334 ** 0.359 NS 0.928 38 2.56 ** 0.092 NS 0.092 NS 0.609 7
NDVI6 2.45 ** 0.273 NS 0.386 NS 0.593 31 2.99 ** 0.291 NS 0.379 NS 0.666 33 12.40 ** 0.343 * 0.392 NS 0.919 41 5.83 ** 0.208 * 0.202 NS 0.829 19
NDVI7 2.81 ** 0.258 NS 0.320 NS 0.645 27 3.01 ** 0.290 NS 0.399 NS 0.668 35 3.52 ** 0.429 * 0.561 ** 0.716 52 4.61 ** 0.165 NS 0.157 NS 0.783 14
NDVI8 3.26 ** 0.025 NS 0.080 NS 0.694 7 4.24 ** −0.127 NS −0.168 NS 0.764 −15
NDVI9 3.27 ** −0.089 NS −0.137 NS 0.694 −12
SPAD 3.31 ** −0.500 ** −0.623 ** 0.698 −54 1.68 NS −0.324 NS −0.508 * 0.405 −35 3.31 ** −0.261 NS −0.323 NS 0.698 −29 1.10 NS −0.277 NS −0.914 ** 0.095 −29

YIELD 15.80 ** 1 ** 1 ** 0.937 6.98 ** 1 ** 1 ** 0.857 6.55 ** 1 ** 1 ** 0.847 13.60 ** 1 ** 1 ** 0.963

NS = non-significant * = p < 0.05, ** = p < 0.01.
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3.3. Phenotypic and Genetic Correlations, SRIs with Sesame Yield

NDRE showed strong and significant phenotypic correlations with sesame yield when
phenotyping occurred at late reproductive growing stages (scans 3, 4, 5, 6) for both planting
dates in 2020 (scan 3/LP for 2020 excluded) but in 2021 only at scan 3/NP, scan 5/NP
and scan 4/LP. Genetic correlations between NDRE and yield were similar to phenotypic
correlations; however, the coefficients of genetic correlation were generally higher than
those of the phenotypic correlations. NDRE genetic correlation values ranged from −0.379
to 0.593 and from −0.564 to 0.748 for rp and rg, respectively.

NDVI at scan 5 showed strong and significant phenotypic correlations with sesame yield
on every environment except LP21. On LP20 and NP21, scans 1 and 2 displayed significant
phenotypic correlations despite low NDVI values. Genetic correlations between NDVI and
the yield were always higher than those of the phenotypic correlations as in the case of NDRE.
NDVI correlation values ranged from −0.276 to 0.538 and from −0.420 to 0.660 for rp and rg,
respectively. Negative correlations observed for both SRIs at the beginning of both planting
dates and years (first and last scans) (Table 6). SPAD significantly varied between genotypes
only on NP20 and LP20 and exhibited negative, and in some cases significant, phenotypic and
genotypic correlations with sesame yield for both planting dates and years (Table 6).

3.4. Heritability and Efficiency of Indirect Selection

A moderate to high level of broad-sense heritability was observed for most vegetation
indices as values ranged from 0.292 to 0.879 and from 0.446 to 0.928 for NDRE and NDVI,
respectively. The heritability of spectral reflectance indices generally increased with the
growth stage for a given planting date and year and started to reduce entering the ripening
stage of sesame. The highest heritability was found for NDVI at LP20, where it began at
0.446 on the first monitoring date (NDVI1), peaked at 0.928 at NDVI5 and at NDVI7 fell to
0.716. NDVI showed higher heritability than NDRE in every case except NP20 (Table 6).
For SPAD, heritability ranged from 0.095 to 0.698. Sesame yield showed significant variance
between genotypes across all growing conditions and cropping years and high level of
heritability with a range from 0.847 to 0.963 (Table 6). The predicted efficiency (Er) of an
indirect SRI-based selection relative to direct selection for sesame yield was in the range of
−45 to 61% and −34 to 57% for NDRE and NDVI, respectively. The SRIs from scans 4, 5
and 6 gave the greatest possible interest for indirect selection in relation to direct selection
for yield. A total of 61% of the direct selection was the maximum value for NDRE5.

3.5. Adaptive Response of SRIs

The exploitation of adaptive traits as selection criteria requires high broad-sense
heritability over environments as a result of high genetic variation and low genotype with
environment (GE) interaction and experiment error [65]. All the SRIs displayed significant
genotypic effect and GE interaction. Possible interest in breeding for wide adaptation
was given by the indices that had moderate to high heritability as indicated by at least
20% of the variation among plots due to genetic effects and at least 70% among lines
(H2

x > 0.20, H2
y > 0.70, Table 4). NDRE4, NDRE6, NDVI1, NDVI3, NDVI5 and NDVI7 gave

high heritability values and among them only NDRE6, NDVI1 and NDVI7 combined with
relatively low GE interaction. Yield had the highest heritability values but the largest GE
interaction, while SPAD also displayed low adaptive response (Table 7).

3.6. Cluster Analysis

For the agglomerative hierarchical clustering, the Euclidean distance was used as met-
ric and the unweighted average as linkage criterion (UPGMA), to group the genotypes into
clusters of increasing dissimilarity based on selected vegetation indices (NDRE5, NDVI4,
NDVI5, NDVI6). The dendrogram of Figure 7 shows the 24 sesame lines and landraces
split into three groups. Group 1 (displayed in the blue color) contained 7 genotypes, group
2 (displayed in the orange color) had 8 genotypes and group 3 (displayed in the grey color)
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included 9 genotypes. Cluster 1 includes mostly the original landraces and the very early
maturing lines, clusters 2 and 3 include the mid and late maturing lines, respectively.

Table 7. p-Values for Likelihood Ratio Test of the analyzed SRIs for genotype and genotype-vs-
environment random effects, broad-sense heritability on a plot basis over environments (H2x), and
broad-sense heritability on an entry mean basis over the test environments (H2y).

SRI GEN GEN:ENV H2
x H2

y SRI GEN GEN:ENV H2
x H2

y

NDRE1 0.00335 *** 0.00947 *** 0.119 0.608 NDVI1 0.02254 ** 0.00116 *** 0.093 0.521
NDRE2 0.015 ** 0.00039 *** 0.103 0.543 NDVI2 1.31 × 10−9 ** 1.31 × 10−2 ** 0.323 0.847
NDRE3 2.80 × 10−3 *** 1.83 × 10−8 *** 0.158 0.614 NDVI3 1.17 × 10−6 *** 3.50 × 10−7 *** 0.285 0.780
NDRE4 8.16 × 10−5 *** 6.31 × 10−6 *** 0.207 0.711 NDVI4 4.72 × 10−4 *** 1.44 × 10−10 *** 0.203 0.669
NDRE5 1.29 × 10−8 *** 1.35 × 10−6 *** 0.347 0.829 NDVI5 2.71 × 10−6 *** 4.13 × 10−14 *** 0.313 0.769
NDRE6 3.32 × 10−5 *** 5.13 × 10−3 *** 0.193 0.728 NDVI6 3.48 × 10−7 *** 6.31 × 10−8 *** 0.310 0.795
NDRE7 0.29578 *** 0.00012 *** 0.040 0.293 NDVI7 2.93 × 10−6 *** 2.30 × 10−3 *** 0.233 0.768
NDRE8 1.64 × 10−5 *** 5.96 × 10−4 *** 0.215 0.741 NDVI8 2.87 × 10−10 *** 3.12 × 10−2 ** 0.333 0.858
SPAD 1.16 × 10−6 *** 1.00 NS 0.168 0.764 YIELD 6.16 × 10−8 *** 4.38 × 10−22 *** 0.407 0.814

GEN—Effect of the genotype to the SRIs, SPAD and Yield variance over the test environments. GEN:ENV—Effect
of the genotype with environment interaction to the SRIs, SPAD and Yield variance over the test environments.
** = p < 0.05, *** = p < 0.01.
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To check the relationships between the distance matrices when the clustering is per-
formed separately for each growing condition and cropping year (NP20, LP20, NP21, LP21)
a Mantel’s test was performed. The values of correlation between the distance matrices
(0.12 to 0.41) suggest that clustering genotypes based on SRI indices, should not vary
significantly among planting dates and years (Figure 7).

4. Discussion

The SRI values of 24 sesame lines and landraces were estimated in this study for the
first time using active canopy sensors over the entire growing period and in two different
planting dates. Previously, only Dong et al. 2020, in experiments in Texas (USA) [51],
demonstrated ground-based sensing tool usefulness of vegetation indices for characterizing
the dry down process of sesame.

The active canopy sensor used in this study distinguished the different genotypes in
almost every reflectance monitoring date suggesting that canopy sensors can be used in
sesame breeding programs. All the scans produced SRIs with significant variation among
genotypes and significant GE interaction.

Both NDVI and NDRE reached about the same accuracy in genotype phenotyping,
even under dense biomass conditions (2–5 scans) where “saturation” problems were ex-
pected especially for NDVI as has been reported by many researchers for other crops [65–67].
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At those dense biomass conditions, NDVI demonstrated efficient separation between geno-
types probably due to the Crop Circle canopy sensors high properties [42,68]. NDRE
however acted more precisely in depicting variations among different scan days in regard
to NDVI. NDRE produced values (mean from every genotype) at the closed canopy period
with differences between consecutive scans up to 13% in regard to 3% differences with
NDVI. Therefore, in this study the combination of both indices produced the most accurate
sesame phenotyping as suggested by Boiarski et al. [69].

Generally, genotypic and phenotypic correlations among traits of crop plants are useful
in planning, evaluating and setting selection criteria for the desired traits for selection
in a breeding program. The genetic correlation between traits describes the intrinsic
consistency of genotype response across growing conditions and contributes crucially
to assess the predicted efficiency of different phenotypic selection strategies [70]. The
precise estimation of this inherent association requires a genetically diverse population that
accounts for sampling error bias in gene frequency [71]. In our experiment, the 5 landraces
and 18 sesame lines derived by them, met the above criterion. Both SRIs significantly
correlated with the yield at different monitoring dates throughout growing conditions and
cropping years. The highest correlation demonstrated by scans at the end of the sesame
reproductive stage and at the beginning of the ripening stage, suggesting the possibility
of using these proxy measurements to understand the genetic and physiological basis of
yield formation. Overall, these results agree with the findings presented by Dong et al. [51]
where working with 60 sesame genotypes reported that NDVI values during the initial nine
days after the end of the ripening stage had a significant relationship with the measured
seed yields. However, more research is needed to understand the correlation with yield in
the beginning of the ripening stage, when chlorophyll degradation occurs.

At both planting dates and years, genetic correlation coefficients were found to be
higher in magnitude than that of phenotypic correlation coefficients in most of the traits,
which clearly indicated the presence of inherent association among SRIs and yield. The
moderate to strong genetic correlation of SRIs to sesame yield in the late planting conditions
indicates the potential use of an indirect selection approach to identify high yielding and
stress tolerant genotypes.

The results of this study showed that higher H2 values of vegetation indices were
obtained at the end of the reproductive stage and the beginning of the ripening stage.
Particularly NDRE5, NDVI5, NDVI6 in 2020 late planting (LP20) displayed values even
higher than the yield’s heritability.

Broad sense heritability (H2) is a parameter that expresses the proportion of the
phenotypic variance that can be attributed to variance of all genotypic effects, additivity,
dominance and epistasis [72,73]. Despite continuous misunderstandings and controversies
over its use and application, heritability remains a key issue to the response to selection.
Recent reports of substantial heritability for gene expression and new estimation methods
using marker data highlight the relevance of heritability in the genomics era [74]. High
heritability and strong phenotypic and genetic correlations between indirect traits and the
grain yield are desirable. For the accurate estimation of the relative efficiency (Er) of an
alternative indirect selection trait versus direct selection for yield as Falconer proposed
and many researchers have followed before [31,65,74–76], both the genetic correlation
between the trait and yield and their heritability values are needed. NDVI5 in LP20 had
H2 0.928, higher than the H2 value of yield that was 0.847, but the low rg (0.359) between
them resulted to 60% less Er for indirect selection. A similar Er value is given by NDRE6
in NP20 with a very low heritability (0.292) and a high rg (0.748). The highest Er value
for indirect SRI-based selection, reached 60% in comparison to direct selection for yield.
Indirect SRI-based selection produced better results in normal planting for both years when
phenotyping was applied at the end of the sesame reproductive stage.

Heritability over the test environments both on a plot basis and on a line mean basis
was moderate to high almost for all the phenotyping dates (H2

x > 0.20, H2
y > 0.70, respec-

tively) for both SRIs, NDVI though demonstrated higher values than NDRE. Nevertheless,
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SRIs adaptive response was moderate due to their significantly high effect of the genotype
with environment interaction. Research in more environments is needed to identify SRIs
value for wide adaptation breeding programs.

Cluster analysis highlighted the importance of identifying the monitoring dates for
accurate and functional phenotyping. NDVI and NDRE values at the end of growing and
the beginning of ripening stages separated the examined genotypes and produced clusters
according to their crop growing cycle length. The analysis produced 3 clusters from which
the first consists of the short growth cycle genotypes and furthermore it contains the four
lowest yielding genotypes. Clusters 2 and 3 contain the medium and late growth cycle
genotypes, respectively, clearly suggesting that the spectral reflectance indices could be a
functional, economical and easy to use tool for classifying cultivars into groups.

SPAD showed a non-significant distinguishing ability between sesame genotypes in some
environments, negative weak or significant correlations with yield and low to moderate heri-
tability. SPAD was the only trait with non-significant GE interaction. The findings of the present
study confirmed the superiority of SRIs compared to SPAD measurements as predictors of yield,
which is in accordance with similar studies in wheat [77], but more measures in different stages
of the growing period are needed to clarify its contribution to a sesame breeding program.

5. Conclusions

Designing an efficient breeding strategy for improving traits of interest, requires knowledge
of quantitative genetic parameters (i.e., variances, heritability, correlated response of traits) and
the stability of these parameters across target environments and different genetic backgrounds.

This field study demonstrated the significance of using a ground-based remote sensing
tool, such as the simple backpack sensing frame equipped with a Crop Circle sensor, for
sesame phenotyping. Both NDVI and NDRE can be used to depict sesame development
accurately over the growing season. It was elucidated that in order to use them for accurate
genotype differentiation, it is required firstly to identify the monitoring dates with the best
phenotyping precision.

Integrating the easily and economically measured spectral reflectance indices in a sesame
breeding program can alleviate the costs entailed by a direct selection for yield, a multi-
environment selection and the difficulty of applying both of them to early selection stages.

For future research, spectral reflectance in sesame breeding should be studied, not just
as a standalone indirect selection criterion, but also as a component in an integrated selec-
tion approach. More frequent monitoring of the vegetation indices during the important
time window that encompasses the late flowering and the beginning of the ripening stage
is recommended to capture detailed changes in sesame canopy features. In addition, com-
bining data from different monitoring days to create a complex SRI index could improve
genotype classification and genetic correlation with yield.
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