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Abstract: There is consistent evidence of vegetation greening in Central Asia over the past four
decades. However, in the early 1990s, the greening temporarily stagnated and even for a time reversed.
In this study, we evaluate changes in the normalized difference vegetation index (NDVI) based on
the long-term satellite-derived remote sensing data systems of the Global Inventory Modelling and
Mapping Studies (GIMMS) NDVI from 1981 to 2013 and MODIS NDVI from 2000 to 2020 to determine
whether the vegetation in Central Asia has browned. Our findings indicate that the seasonal sequence
of NDVI is summer > spring > autumn > winter, and the spatial distribution pattern is a semicircular
distribution, with the Aral Sea Basin as its core and an upward tendency from inside to outside.
Around the mid-1990s, the region’s vegetation experienced two climatic environments with opposing
trends (cold and wet; dry and hot). Prior to 1994, NDVI increased substantially throughout the
growth phase (April–October), but this trend reversed after 1994, when vegetation began to brown.
Our findings suggest that changes in vegetation NDVI are linked to climate change induced by
increased CO2. The state of water deficit caused by temperature changes is a major cause of the
browning turning point across the study area. At the same time, changes in vegetation NDVI were
consistent with changes in drought degree (PDSI). This research is relevant for monitoring vegetation
NDVI and carbon neutralization in Central Asian ecosystems.

Keywords: Central Asia; drought; temperature; vegetation browning; vapor pressure deficit

1. Introduction

Vegetation is an important part of ecosystems, so exploring changes in vegetation
health is vital to monitoring vegetation growth within a region [1]. Central Asia is home to
an arid and highly seasonal steppe-desert biome [2] whose ecosystem makes up a relatively
large part of the land cover area. Due to the limitations of ground-based observation
techniques, most studies have been conducted in conjunction with remote sensing tech-
niques [3]. Of the various spectral indicators extracted from the satellite data, a commonly
used and well-understood vegetation index is the normalized difference vegetation index
(NDVI) [4–6]. The index is a parameter for describing the quantity and quality of vegetation
growth and biomass [7]. The results of related studies show that NDVI combined with
remote sensing data can effectively reflect the growth status of vegetation, the degree
of cover, and its change pattern [8,9]. Previous studies have shown that areas with a
multiyear (1982–2020) average NDVI < 0.1 are not included and are generally considered
barren [10,11].

Several studies have recently been conducted using remote sensing monitoring of
vegetation in some typical regions, such as the arid zones of Central Asia, the Tibetan
Plateau, and the East African Plateau, and even on a global scale. The three main ones are:
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(1) a comparative study on the differences and science of the products themselves [4,12];
(2) analysis of vegetation dynamics and evolution studies [13,14]; and (3) simulation and
mechanistic analysis of climate change, water resource change, and ecosystem assessment
using vegetation indices as parameters [5,14,15]. Even though some of these studies focus
on the arid zones of Central Asia, they do not fully exploit remote sensing data to examine
the long-term evolution of the area’s vegetation and the factors that influence it. Therefore,
the current research is more thorough in the context of NDVI across the Central Asian
landscape.

Temperature, precipitation, humidity, air pressure, CO2, and light all influence vegeta-
tion growth, with temperature and precipitation playing the most critical roles [16]. From
1982 to 2012, Liu Y. [17] found that global vegetation NDVI was gradually reduced by
warmth and steadily raised by precipitation. In a study on increased greening of vegetation
in the Hay River Basin, CO2 was found to be the most significant contributor to the NDVI
trend (45%), followed by human activities (mean contribution of 27%) [6]. Studies on
factors influencing vegetation change in the Central Asian Tien Shan show that vegetation
in this region is extremely sensitive to moisture deficit, and that soil moisture deficit has a
greater impact on vegetation change than does high water vapor pressure deficit [1].

The effects of drought can be expressed in vegetation as a range of physiological
responses and time scales, with drought’s impact on vegetation being a more integrated
indicator [18,19]. When compared with surface temperature and water layer thickness,
NDVI has the strongest correlation with drought for most vegetation types [19,20]. Three
satellite series’ NDVI (MODIS, Landsat, and Sentinel-2) were calculated and found to be
closely connected to drought [21]. Using sensors in tandem offers the greatest possible
representation of canopy health during acute drought occurrences [21].

In a research study conducted by Myneni et al. (1997) [22], who used NDVI data from
1981 to 1991, a large-scale growth trend in vegetation greenness was revealed throughout
the Northern Hemisphere. In the same study area, in studies investigating the seasonal
response of Northern Hemisphere vegetation to climate change (1982–2013), the authors
found that the increasing tendency of greenness was stalled and even shifted to vegetation
browning after 1994–1997, particularly in Central Europe, Northern North America, and
Central Siberia [23]. In Pan’s research, the results unanimously show the expansion and
acceleration of a browning trend since 1994 [24]. After the late 1990s, the browning trend
increased across all latitudes of the Northern Hemisphere. This growth is particularly
evident in the northern middle and low latitudes, where the greening trend stagnated or
even reversed [24]. In the Belt and Road area, the temporal trend of vegetation in 1981–2016
indicated an obvious trend change that mainly occurred in 2000. After the turning point
(i.e., 1994), the browning trend was extended and enhanced to a large extent in Eastern
Europe and Central Asia, occurring primarily around the turn of the millennium [25].

The existing research results show that there are differences in the influencing factors
of vegetation NDVI change across different regions, and that the main influencing factors
also differ across time periods. Furthermore, NDVI data sources are relatively singular,
and there is no comparison of possible temporal and spatial differences of multiple data
sources. This study, on the other hand, uses multiple data sources to analyze and couple the
synergistic impact of multiple factors on NDVI changes. Investigating the change pattern of
vegetation NDVI and its influencing factors based on long time series and high-resolution
remote sensing data is critically important in light of the accelerated climate change.

Central Asia lies at the junction of Asia and Europe [26]. It is also located in a world-
class arid zone with sparse surface vegetation and severe water scarcity [27]. It comprises
a typical temperate desert and steppe arid zone, with a relatively fragile ecological en-
vironment [28–30]. In the context of global warming, climate change is dramatic and
ecosystems are fragile [31]. In the post-Soviet era, ecological degradation, such as grassland
degradation and lake shrinkage, such as the Aral Sea crisis, occurred in parts of Central
Asia, mainly due to the chaotic ecological management systems of the five Central Asian
countries [32,33]. In particular, in the context of climate change, the increase in temperature



Remote Sens. 2022, 14, 2574 3 of 18

and drought will directly change the growth state of mountain–oasis–desert vegetation in
Central Asia, which in turn will affect the spatial and temporal distribution of vegetation
NDVI [34,35]. The ecological and environmental problems in Central Asia have increased
significantly in the course of the ongoing disturbance of global climate change and the
intensification of human activities. In addition, due to its special geographic conditions,
the area has become an important channel for the construction of China’s “One Belt, One
Road” [36].

The significance of Central Asia’s political and economic standing, as well as the
reality of its environmental challenges, necessitates that we pay attention to its ecological
features, the quality of which is mostly reflected in changes in vegetation NDVI [37].
Because of this, the present study uses remote sensing image data to analyze vegetation
changes in Central Asia from the 1980s onwards and discusses the influencing factors in
terms of environmental factors to understand the impact of drought and climate change
on vegetation dynamics. The study is important for providing a reference for ecological
conservation and future development planning in Central Asia.

2. Study Area

The study area covers Central Asia, which is positioned deep in the hinterland of the
Eurasian continent. It spans 46◦29′–87◦18′E from east to west and 35◦07′–55◦26′N from
north to south, covering a total area of about 4 × 106 km2. The administrative regions
within this boundary include Kazakhstan (Kaz), Turkmenistan (TKM), Uzbekistan (UZB),
Kyrgyzstan (KGZ), and Tajikistan (TJK) (Figure 1).

Figure 1. Study area. No. GS (2016) 2966.

Across Central Asia, there is a gradual rise in altitude from the plains in the west to
the mountains in the east, with the highest altitude being the Communist Peak at 7495 m.
The high mountainous areas of the Pamir region of Tajikistan and the Tien Shan region
in western Kyrgyzstan have on average an elevation of 4000–5000 m. Central Asia is
dominated by plains, hills, rolling hills, and extensive desert areas. The climatic types
include temperate desert climate, temperate steppe climate, and highland mountain climate,
with a transition from semiarid to arid zones from north to south. Annual precipitation
is about 200 mm in northern Central Asia and up to 1000 mm in the southern mountain
ranges, with the highest precipitation in June and July in the high-altitude mountains.
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In general, the average annual precipitation is sparse in Central Asia, but there is a high
temporal and spatial variability in precipitation. In terms of temperature, it is lower in the
north than in the south and lower in the east than in the west, with the average temperature
in July ranging from 32 ◦C in the south to 25 ◦C in the north, with a large daily difference in
temperature and cold air moving south in winter, with the average temperature in January
being 3 ◦C in the south and −15 ◦C in the north. Most of the region is grassland, which
accounts for up to 85.73% of the study area.

3. Data
3.1. Satellite Data
3.1.1. GIMMS NDVI

We selected NDVI product data from Global Inventory Modelling and Mapping
Studies (GIMMS) remote sensing products [38]. The GIMMS NDVI dataset was generated
by several AVHRR sensors from NOAA for a global 1/12th degree (~8 km) latitude/grid.
The latest version of the dataset is NDVI3g (third-generation GIMMS NDVI from AVHRR
sensors). It covers half-month intervals from July 1981 to December 2013. The GIMMS
NDVI3g dataset has been corrected for calibration, volcanic aerosols, orbital drift effects,
and view geometry. Its data processing objectives are aimed at improving data quality at
high latitudes to facilitate studies of vegetation activity changes in Northern Hemisphere
ecosystems (Table 1).

Table 1. GIMMS and MODIS data products.

Product Type Time Series (Yearly) Temporal Resolution Spatial Resolution

GIMMS Normalized difference
vegetation index (NDVI)

1981–2013 15 day ~8 km
MOD13A2 2000–2020 16 day 1 km

3.1.2. MODIS NDVI

The global MODIS vegetation index is designed to provide consistent spatial and
temporal comparisons of vegetation status. The MODIS MOD13A2 V6.1 product [39] com-
plements NOAA’s Advanced Very High Resolution Radiometer (AVHRR) NDVI product
by providing time series continuity for the application of vegetation index products. As
a grid level 3 product used in sinusoidal projections to show land cover and its changes,
in addition to being used for global vegetation condition monitoring, these data can be
employed as input to global biogeochemical and hydrological processes as well as global
and regional climate modelling. They can also be used as a simulation of global biogeo-
chemical, meteorological, and hydrological processes, including land surface biophysical
properties, primary production, and land cover conversion.

MODIS NDVI (MOD13A2) provides global-scale data every 16 days at a spatial
resolution of 1 km, with accuracy assessed over a wide range of locations and periods.
Currently updated from February 2000 to December 2021, the data are already available for
use in scientific publications, although improved versions may be available later (Table 1).

3.2. Climate Data

The actual water vapor pressure (VAP), water vapor pressure difference (VPD), poten-
tial evapotranspiration (PET), precipitation (PRE), soil moisture (SM), and Palmer Drought
Severity Index (PDSI) are from the TerraClimate reanalysis data from 1981 to 2020. The
VAP and VPD were further calculated to obtain saturated water vapor pressure (VSP)
and selected air temperature (TEM) data from the fifth-generation European Centre for
Medium-Range Weather Forecasts reanalysis of the global climate (ERA5) [40]. ERA5 TEM
data are derived from a combination of models and observations as they overcome the
limitations of existing station records in terms of length and spatial coverage [41]. Since the
spatial resolution of the TerraClimate reanalysis data is 4638.3 m, the ERA5 TEM data with
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a spatial resolution of 0.1◦ were kriged to a raster of 4638.3 m, thus unifying the spatial
resolution (Table 2).

Table 2. TerraClimate and ERA5 data products.

Product Type Time Series
(Yearly)

Temporal
Resolution

Spatial
Resolution

Terra-Climate

Precipitation (PRE)
Vapor pressure difference (VPD)

Actual vapor pressure (VAP)
Soil moisture (SM)

Potential evapotranspiration (PET)
Palmer Drought Severity Index (PDSI)

1981–2020 Monthly ~4 km

ERA5 Temperature (TEM) 1981–2020 Monthly ~11 km

4. Methodology
4.1. VSP Calculation

Saturated water vapor pressure (VSP) [42] is calculated based on VAP and VPD
reanalysis data products of TerraClimate [43], as follows:

VSP = VAP + VPD (1)

4.2. Piecewise Regression Analysis

The abnormal turning point of NDVI in the growth period based on GIMMS in Central
Asia is identified by the piecewise regression model, which has been widely used in NDVI
and climate analysis [1,24,44].

4.3. Trend Algorithm

In this paper, variables from the past several years are simulated and analyzed year
by year and month by month based on the unary linear regression method. The dynamic
changes over the years are then analyzed. For example, to study the spatiotemporal
variation trend of the variables grid by grid, the linear regression coefficient trend of the
variable was calculated as:

Trend =
n ∑n

j=1 j·Pj −∑n
j=1 j·∑n

j=1 Pj

n·∑n
j=1 j2 −

(
∑n

j=1 j
)2 (2)

where n and j are the lengths of the time series and the j year of the time series, respectively,
and Pj is the mean value of the variable in the j year. Trend > 0 indicates that the variable is
increasing over time, and Trend < 0 indicates that the variable is decreasing over time. The
present study classifies the variable trend to indicate the degree of trend on the variable
time scale. For all analyses, a significance level of 0.05 was used (i.e., if one of the analyses
yields a p-value < 0.05, the null hypothesis is rejected). Here, the calculation of p-value is
obtained by F-test using this formula:

F =
γ2

1
n−2 (1− γ2)

(3)

where r is the correlation coefficient and n are the number of samples.
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4.4. Correlation Analysis

At the same time, the Pearson correlation coefficient [45,46] was used to further analyze
the correlation between x and y. The formula is:

R =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(4)

where n is the length of time series, Xi and Yi represent variable value, and X and Y
represent the multiyear mean of variable value. When R ∈ [0, 1], a positive correlation
is indicated, but when R ∈ [–1, 0], a negative correlation is represented. Further, when R
= 1, X and Y are completely positively correlated; when R = −1, X and Y are completely
negatively correlated; and when R = 0, X and Y are unrelated. For correlation, we employed
the p-value to test using a threshold of p < 0.05. Here, the calculation of the p-value is
obtained by t-test using this formula:

t =
r
√

n− 2√
1− γ2

(5)

where r is the correlation coefficient and n denotes the number of samples.

5. Results
5.1. Spatial and Temporal Variation Trends of NDVI in Central Asia

In this study, the high-value areas of NDVI spatial distribution are concentrated in the
northern hilly areas and the eastern and southern mountain areas, while the low-value areas
(NDVI < 0.1) are concentrated in the southwest, which has the Karakum and Kyzylkum
Deserts. The overall spatial law is a semicircular distribution pattern, with the Aral Sea
Basin at the center and an upward trend from inside to outside. Meanwhile, the spatial
distribution pattern of NDVI and its mean value of GIMMS and MODIS is calculated for
different seasons. As well, the spatial changes of different NDVI products in different
seasons are compared. We found that the spatial range of NDVI for various products shows
the temporal change of summer > spring > autumn > winter. Overall, MODIS NDVI is
lower than GIMMS NDVI, but the spatial variation law of NDVI for various products is
essentially the same in seasons within the year, resulting in a semicircular distribution
pattern, with the Aral Sea Basin at its core and an upward tendency from inside to outside
(Figure 2).

The NDVI in the growing season was calculated by using the monthly average NDVI
from April to October. From 1981 to 1994, GIMMS NDVI showed a greening trend, with
an annual increase rate of 0.0026. However, from 1994 to 2013, the greening trend lagged,
with an annual increase rate of only 0.0001. During intersection time period, the value of
GIMMS/MODIS NDVI (2000–2013) showed a browning trend. Furthermore, our results
indicate that MODIS NDVI and GIMMS3g NDVI showed a significant positive correlation
from 2000 to 2013 (correlation coefficient of 0.75, p < 0.01). The two sets of data have the
same pattern of fluctuations and are found to have a slope of 0.983, R2 = 0.55 by the scatter
plot. However, if we consider that the browning rate of MODIS NDVI is lower than that of
the combined NDVI from 2000 to 2021, the reduction rate is only 0.00006 (Figure 3a).
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Figure 2. Spatial distribution patterns of GIMMS NDVI (e–h), MODIS NDVI (i–l), and their mean
values (a–d) in different seasons.

Figure 3. Annual trends in GIMMS NDVI and MODIS NDVI, including their mean values and
distribution of monthly (seasonal) NDVI within the year. (a) Annual NDVI trends, (b) annual and
seasonal NDVI variations, (c) scatterplot of GIMMS NDVI and MODIS NDVI from 2000 to 2013. Note
that ** indicates extreme significance (p < 0.01).

From the early 1980s to the mid-1990s, vegetation NDVI generally showed a greening
trend. A relatively stable browning trend then emerged in the mid-1990s, with the decline
from a high greening trend to a browning trend being relatively large. Meanwhile, when
the annual changes of GIMMS NDVI and MODIS NDVI are examined further, both appear
to be essentially the same, with a single peak change (from March), high values appearing
in summer (June, July, and August), low values appearing in winter (December, January,
and February), and a transition period appearing in spring and autumn (Figure 3b).

Additionally, GIMMS NDVI was higher in spring (0.225) than in autumn (0.206), and
MODIS was higher in autumn than spring (0.215). Due to the inconsistency of the products,
GIMMS NDVI is higher than MODIS NDVI in spring and summer (March–September)
but lower in autumn and winter (October–February). In other words, the annual variation
range of GIMMS NDVI is higher than that of MODIS NDVI, as shown in Figure 4b. The
figure also shows that GIMMS NDVI is more sensitive to monthly (seasonal) changes in
the year than MODIS NDVI, which may be reflected in the difference in the sensor’s band
calculation (Figure 3b).
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Figure 4. Spatial variation trends for NDVI: (a,b) the GIMMS NDVI trends before and after 1994,
respectively; (c) the MODIS NDVI trends from 2000 to 2020.

The results presented in Figure 4 show a spatially significant greening trend in GIMMS
NDVI for the period 1981–1994, with an area share of 82.28%. The spatially highly sig-
nificant (p < 0.01) greening trend of 0–0.022 was mainly pronounced in the northwest,
northeast, and east–central mountain regions of Central Asia, with an area share of 10.35%.
The spatially significant (0.01 < p < 0.05) greening trend of 0–0.009 was mostly concentrated
around the highly significant rising area, with an area share of 14.98%. The spatially in-
significant (p > 0.05) greening trend NDVI variation of 0–0.0012 was concentrated across
the entire study region with an area share of 56.95%.

During 1981–1994, the spatial browning trend of NDVI was not obvious. It had an
area share of only 17.72% and was mainly concentrated in the desert-steppe zone in the
west–central region and the dry hot valley-basin zone in the southeastern mountains,
such as the Ferghana Basin. The spatially significant (p < 0.01) browning trend NDVI
variation was 0–0.026, accounting for only 0.31% of the area; the spatially significant
(0.01 < p < 0.05) browning trend NDVI variation was 0–0.011, accounting for only 0.47% of
the area; and the spatially significant (p < 0.05) browning area in total accounted for less
than the spatially significant (p < 0.01) browning area (less than 0.8% of the total area) and
was mainly concentrated around the Aral Sea Basin. The nonsignificant browning trend
NDVI variation was 0–0.006, with 16.93% of the area covered (Figure 4a).

From 1994 to 2013, the GIMMS NDVI spatial browning trend was obvious, with an
area share of 66.35%. Specifically, the spatially highly significant (p < 0.01) browning trend
NDVI variation was 0–0.0002 and was mainly concentrated around the Aral Sea Basin,
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Lake Balkhash Basin, desert areas, and northern Kazakhstan, with an area share of 18.09%.
Meanwhile, the spatially insignificant (p > 0.05) browning trend NDVI variation of 0–0.006
was mostly concentrated around the Central Asia, with an area of 34.48%. During this
period, NDVI showed an insignificant spatial greening trend, with an area share of only
27.11%. The greening primarily occurred in the southwestern desert-steppe zone, Aral Sea
Basin, Lake Balkhash Basin, and northeastern mountains. In this region, the spatially highly
significant (p < 0.01) greening trend of NDVI varied from 0 to 0.047, with an area share of
2.79%, and the spatially significant (0.01 < p < 0.05) greening trend of NDVI varied from 0
to 0.007, with an area share of only 3.75%. Of note, spatially significant (p < 0.05) total area
greening accounted for 6.54%, and the nonsignificant greening trend NDVI change was
0–0.007, covering 27.11% of the area (Figure 4b).

From 2000 to 2020, the MODIS NDVI spatial browning trend was obvious, with an area
share of 47.84%. Specifically, the spatially highly significant (p < 0.01) browning trend NDVI
variation was 0–0.020 and was mainly concentrated in Northwest Central Asia, with an
area share of 4.50%. Meanwhile, the spatially insignificant (p > 0.05) browning trend NDVI
variation of 0–0.015 was mostly concentrated around the northern region of 45◦ N in Central
Asia, with an area of 37.85%. During this period, NDVI showed an insignificant spatial
greening trend, with an area share of only 40.35%. The greening primarily occurred in the
southwestern desert-steppe zone, Aral Sea Basin, Lake Balkhash Basin, and northeastern
mountains. In this region, the spatially highly significant (p < 0.01) greening trend of
NDVI varied from 0 to 0.027, with an area share of 6.05%, and the spatially significant
(0.01 < p < 0.05) greening trend of NDVI varied from 0 to 0.016, with an area share of only
5.76%. Of note, spatially significant (p < 0.05) total area greening accounted for 11.81%, and
the nonsignificant greening trend NDVI change was 0–0.016, covering 40.35% of the area
(Figure 4c).

5.2. Factors Influencing NDVI Changes in Central Asia

To explore the influencing factors of NDVI changes in the study area, we first obtained
the temporal and spatial distribution trends for VSP, VPD, and VAP. We found that the
temporal and spatial variation trends for VSP and VPD were consistent from 1981 to 1994,
and that both were negative. Furthermore, the spatial trend variation range for VSP was
−0.12–0.08 hPa/year, the grid mean value was −0.05 hPa/year, and the average annual
trend variation rate was −0.048 hPa/year. The spatial trend variation range for VPD was
−0.29–0 hPa/year, the grid mean value was −0.06 hPa/year, and the average annual
trend variation rate was −0.0060 hPa/year. Even though VAP displayed a positive trend,
the spatial trend range was −0.05–0.24 hPa/year, the grid mean value was 0.01, and the
average annual trend change rate was 0.012 hPa/year.

With regard to water vapor pressure, the climate environment from 1981 to 1994
exhibited a trend of wet and cold (Figure 5a,d,g). From 1994 to 2020, the temporal and
spatial variation trends for VSP and VPD were consistent and positive. The spatial trend
variation range of VSP was −0.07–0.11 hPa/year, the grid mean value was 0.03 hPa/year,
and the average annual trend variation rate was 0.0030 hPa/year. Moreover, the spatial
trend variation range for VPD was −0.01–0.12 hPa/year, the grid mean value was 0.03
hPa/year, and the average annual trend variation rate was 0.0034 hPa/year. VAP displayed
a negative change trend, with the spatial trend range at −0.08–0.02 hPa/year, the grid
mean value at 0, and the average annual trend change rate at−0.004 hPa/year. With regard
to water vapor pressure, the climate environment from 1994 to 2020 indicated a trend of
dry and hot. In general, the climate and environment of 1981–1994 (wet and cold) and
1994–2020 (dry and hot) showed an obvious opposite trend (Figure 5c,f,i).

Second, the temporal and spatial variation trends for PET, PRE, and SM were obtained.
As can be seen, the temporal and spatial variation trends for PRE and SM were consistent
and positive from 1981 to 1994. The spatial trend variation range for PRE was −10.85–23.31
mm/year, the grid mean value was 1.67 mm/year, and the average annual trend variation
rate was −0.6667 mm/year. Meanwhile, the spatial trend variation range for SM was
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−24.47–38.89 mm/year, the grid mean value was 0.27 mm/year, and the average annual
trend variation rate was 0.0224 mm/year. However, PET showed a negative change trend,
with a spatial trend range of −12.45–2.96 mm/year, a grid mean value of −2.77, and an
average annual trend change rate of −2.7663 mm/year.

Figure 5. Temporal and spatial variation trends for VSP, VPD, and VAP. For 1981–1994: (a) VSP, (d)
VPD, and (g) VAP; for 1994–2020: (c) VSP, (f) VPD, and (i) VAP; for 1981–2020: Segmentation time
trends in (b) VSP, (e) VPD, and (h) VAP before and after 1994, respectively.

Regarding water content, the climate environment from 1981 to 1994 indicated a clear
trend of wet and cold (Figure 6a,d,g). From 1994 to 2020, the temporal and spatial variation
trends of PRE and SM were consistent. Although they were positive (relatively negative),
the degree trend was significantly lower than that of the previous stage. The spatial trend
variation range of PRE was −3.44–4.94 mm/year, the grid mean value was 0.33 mm/year,
and the average annual trend variation rate was 0.3256 mm/year, which is more than
half lower than that in the previous stage. The spatial trend variation range of SM was
−22.18–5.60 mm/year, the grid mean value was 0.08 mm/year, and the average annual
trend variation rate was 0.0070 HPA/year. PET exhibited a positive trend, with a spatial
trend range of −2.43–6.34 mm/year, a grid mean value of 2.09, and an average annual
trend rate of 2.0855 mm/yr. In terms of water content, the climate environment from 1994
to 2020 charted a trend of dry and hot conditions. Overall, the climate environment showed
a clear contradiction between 1981–1994 (wet and chilly) and 1994–2020 (dry and hot)
(Figure 6c,f,i).
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Figure 6. Temporal and spatial trends of PET, PRE, and SM: 1981–1994: (a) PET, (d) PRE, and (g) SM;
1994–2020: (c) PET, (f) PRE, and (i) SM; for 1981–2020: Segmentation time trends in (b) PET, (e) PRE,
and (h) SM before and after 1994, respectively.

By further exploring the correlation coefficient between environmental factors and
NDVI, we found that NDVI was positively correlated with SM, PRE, and VAP, and nega-
tively correlated with PET, VPD, and VSP. In terms of positive correlation, from 1981 to
1994 (GIMMS NDVI), NDVI had the highest positive correlation with PRE and the lowest
positive correlation with SM (Figure 7a). However, from 1994 to 2013 (GIMMS NDVI) and
2000 to 2020 (MODIS NDVI), the positive correlation between NDVI and VAP was the
highest, whereas the positive correlation with SM remained the lowest (Figure 7b,c). In
terms of negative correlation, from 1981 to 1994, from 1994 to 2013, and from 2000 to 2020,
NDVI had the highest negative correlation with VPD and the lowest negative correlation
with VSP. To sum up, VPD with the highest negative correlation with NDVI and SM with
the lowest positive correlation were selected for further investigations (Figure 7a–c).

Calculations of temperatures for the periods 1981–1994 and 1994–2020 show a de-
creasing trend with temperatures falling by approximately 0.05 ◦C per year in the former
period and increasing by approximately 0.03 ◦C per year in the latter period (Figure 8a,b).
Analysis of the temporal correlation with NDVI revealed a negative correlation between
TEM and GIMMS NDVI in 1981–1994 (−0.148). From 1994–2013, the correlation between
TEM and GIMMS NDVI was positive (0.218). In 2000–2020, the correlation between TEM
and MODIS NDVI was positive (0.569). This further indicates that NDVI is browning with
increasing temperature. The correlations between the above environmental factors and
NDVI were all influenced by changes in temperature, and there is a pattern of consistency
(correlations between TEM and the factors: SM: +; PRE: +; PET: −; VAP: −; VPD: +; VSP: +).
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Figure 7. Average annual correlation between environmental factors (SM, PRE, PET, VAP, VPD,
and VSP) and NDVI: (a,b) average annual correlations about GIMMS NDVI before and after 1994,
respectively; (c) average annual correlations about MODIS NDVI from 2000 to 2020. Note that *
indicates significance (p < 0.05) and ** indicates extreme significance (p < 0.01).

Figure 8. (a,b) Temporal and spatial trends of temperature before and after 1994, respectively.

5.3. Dynamic Response of NDVI Changes to Drought in Central Asia

This paper further explores the impact of drought on NDVI and selects the Palmer
Drought Severity Index (PDSI). The Palmer formula takes into account reference evapotran-
spiration, precipitation, surface moisture, and other indices, resulting in a more thorough
response to meteorological drought. The PDSI possible values are as follows: 4.0 or higher
(extremely wet), 3.0 to 3.99 (very wet), 2.0 to 2.99 (moderately wet), 1.0 to 1.99 (slightly
wet), 0.5 to 0.99 (incipient wet spell), 0.49 to −0.49 (near normal), −0.5 to −0.99 (incipient
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dry spell), −1.0 to −1.99 (mild drought), −2.0 to −2.99 (moderate drought), −3.0 to −3.99
(severe drought), or −4.0 or lower (extreme drought) (Figure 9a).

Figure 9. Dynamic characteristics and temporal and spatial trends of PDSI in Central Asia: (a)
monthly average dry and wet shade anomalies of PDSI from 1981 to 2020; (b,c) PDSI trends before
and after 1994, respectively.

From 1981 to 1994, the monthly average rising trend of PDSI was 0.00725. The months
above 0 (wet direction) accounted for 64.29%, and the months below 0 (dry direction)
accounted for 35.71%. On the whole, Central Asia was developing a humid trend, with a
grid average of 0.09. The humid trend (trend < 0) was concentrated in the peripheral areas
of the region, accounting for 76.24% (Figure 9b).

From 1994 to 2020, the average monthly rising trend of PDSI was 0.0006, and the grid
average was −0.01. The months above 0 (wet direction) accounted for 32.05%, and the
months below 0 (dry direction) accounted for 67.95%, presenting the opposite time pattern
to the previous stage. From these data, we can see that Central Asia was developing a
drought trend.

The regions with a drought trend are distributed in the west and east of the study area,
accounting for 51.42%, which is in the opposite spatial pattern from the previous stage. In
general, the distribution of the wetting and drying trends in Central Asia in 1981–1994 and
1994–2020, respectively, indicates the objective law of the temporal and spatial consistency
of humidity and drought, as well as the oppositional complementary trend in the order of
magnitude of 1981–1994 (wet) and 1994–2020 (dry) (Figure 9c).

The study further explored the positive temporal and spatial correlation between
GIMMS NDVI and PDSI. From 1981 to 1994, GIMMS NDVI and PDSI were positively
correlated, with a grid mean of 0.38, of which 90.94% was in the positive correlation area
and 9.06% in the negative correlation area (Figure 10a). From 1994 to 2013, GIMMS NDVI
was positively correlated with PDSI. The grid mean was 0.29, with positive correlation areas
accounting for 86.87% and negative correlation areas accounting for 13.13% (Figure 10b).
During the period from 2000 to 2020, MODIS NDVI was positively correlated with PDSI.
The grid mean was 0.33, with positive correlation areas accounting for 87.33% and negative
correlation areas accounting for 12.67%. These results further explain the consistent rise
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and fall of NDVI with changes in drought degree under different products; that is, the
lower the PDSI value (drought), the lower the NDVI value (Figure 10c).

Figure 10. Correlation between NDVI and PDSI in Central Asia: (a,b) correlations between GIMMS
NDVI (1981–2013) and PDSI before and after 1994, respectively; (c) correlation between MODIS NDVI
and PDSI from 2000 to 2020.

6. Discussion

According to the mechanism analysis of NDVI spatiotemporal changes in Figure 11,
VPD and SM play a key role in vegetation growth. The transformation of vegetation
from greening to browning is affected by many factors, such as changes in regional CO2
concentration, climate change (TEM, PRE, VPD, SM, PET, etc.), nitrogen deposition, and
land-use change. If analyzed from a natural perspective, climate change is considered the
main driving factor to explain vegetation greening [47–49]. The change in vegetation NDVI
in Central Asia is greatly affected by climate factors. In this study, 1994 was the turning
point of vegetation from greening to browning in Central Asia. We found, through the
analysis of TEM, PRE, VPD, VAP, VSP, SM, and PDSI, that climate change before and after
the turning point showed the opposite trend. Prior to the turning point, it was cold and
wet, whereas after the turning point, it was hot and dry. Most studies show that low SM
effectiveness and high VPD are considered the two main drivers of vegetation drought
stress, which may pose a major threat to agricultural production and lead to extensive
vegetation browning [50,51].

Figure 11. Analytical diagram of NDVI spatiotemporal variation mechanism. The graph showing
CO2 emissions presents the monthly mean carbon dioxide measured at the Mauna Loa Observatory,
Hawaii, USA, from the Scripps Institution of Oceanography NOAA Global Monitoring Laboratory
(https://gml.noaa.gov/ccgg/trends/mlo.html, accessed on 20 April 2022).

On the one hand, the change in vegetation NDVI is greatly affected by soil moisture
conditions [51,52]. Studies have shown that the changes in NDVI from 1982 to 2015 are

https://gml.noaa.gov/ccgg/trends/mlo.html
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closely related to the changes in soil nutrient concentration and the availability of soil
moisture [53,54] and that the temporal and spatial correlation between vegetation NDVI
and soil moisture is significant. Moisture is the leading factor in vegetation change in
East Africa [55]. In most study areas, especially in Central Asia, vegetation experiencing
nonsignificant changes is limited by water [25].

On the other hand, the increase in CO2 concentration significantly promotes rises
in temperature and leads to global warming [54]. Although climate warming will con-
tribute to greening through photosynthesis, sustained warming will indirectly promote
the failure of soil moisture use efficiency regulation by controlling the process of surface
evapotranspiration and water consumption [56]. Finally, NDVI is reversed from greening
to browning, which further indicates that the water shortage caused by drought will hinder
the sustainable greening of vegetation, highlighting the negative ecological effect of climate
warming [24,52,57].

Research clearly shows that since the early 1990s, the average temperature in Central
Asia has increased substantially, potential and actual evapotranspiration has risen, average
precipitation has decreased, and the frequency and intensity of extreme precipitation events
have surged [58]. Additionally, since the early 1990s, soil water in Central Asia has shown
a decreasing trend, and the climate water deficit has charted a steady upward trend [48].
These developments further aggravate the degree of drought. However, during the same
time period (1994–2015), the actual water vapor pressure has shown a downward trend
due to the reduction in ocean evaporation [59]. These factors have led to an increase in
VPD just after the turning point mentioned in this study.

In a climate environment characterized by high VPD, vegetation stomata are closed,
resulting in the deceleration or even failure of CO2 utilization efficiency. The outcome
is vegetation carbon starvation [60]. At the same time, high VPD can lead to serious SM
deficiency, which further worsens the health status of vegetation towards browning. In
our research, we discovered that the increase in browning led to a slowdown in global
average NDVI growth. Moreover, as drought may be the main reason for the increase in
the browning trend, global vegetation growth may reverse from long-term greening to
long-term browning if the future is warmer than average [31]. Overall, the combination
of temperature rise and drought may be the main reasons for the transformation from
greening to browning in Central Asia [37]. Although the browning trend has slowed
down due to the influence of rising temperature and westerly precipitation, the browning
continues as of 2020.

This paper conducted a comprehensive study on the independence and simultaneous
establishment of two sets of NDVI products, which showed that the vegetation in Central
Asia was greening before the turning point of 1994. After the turning point, the vegetation
started to brown. The results of this study are notably important for the future health
monitoring and management of vegetation ecosystems in Central Asia, which is of practical
significance for regional ecological security assessment and sustainable development. In the
future, more sets of products and site-measured data will be adopted to study vegetation
NDVI changes, and more environmental factors will be added to conduct an in-depth study
on vegetation NDVI changes, with the aim of making the driving mechanism of browning
clearer.

7. Conclusions

From 1981 to 2020, the NDVI of different products in Central Asia showed a semicir-
cular distribution pattern, with the Aral Sea Basin at the center and an upward trend from
inside to outside. In terms of seasons, temporal changes clearly indicated that summer >
spring > autumn > winter, and that GIMMS was more sensitive to yearly temporal changes
than MODIS. During the study period, vegetation greening and browning initially coex-
isted until reaching a turning point in 1994, after which browning dominated. Vegetation in
arid areas was shown to be more sensitive to water deficit caused by temperature changes
in high VPD and low SM climate environments. At the same time, changes in vegetation
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NDVI were consistent with changes in drought degree, with lower PDSI values (the aggra-
vation of drought degree) corresponding to vegetation browning. This study is of immense
scientific value in its contribution to understanding the response of vegetation growth and
carbon cycling to environmental changes and in its predictions of future developments in
Central Asia.
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