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Abstract: In inverse synthetic-aperture radar (ISAR) imaging, it is essential to deal with the Doppler
ambiguity of group targets with complex maneuvers in order to avoid the bias of target position
towards the actual value. Simultaneously, migration through resolution cell (MTRC) under the
Doppler ambiguity is unable to be compensated for as a preprocessing. Traditional ISAR imaging
methods for maneuvering targets, however, are undesirable to handle the severe deformation and
defocusing in the imaging results induced by the Doppler ambiguity and MTRC. In this paper, we
propose a novel and effective ISAR imaging method to improve the imaging quality by removing
the Doppler ambiguity and compensating for the MTRC. Specifically, we first model the echo as a
multi-component cubic phase signal (m-CPS) and design a high-order instantaneous autocorrelation
function–generalized scaled Fourier transform (HIAF–GSCFT) to process the echo. This is to estimate
the rotational parameters without MTRC compensation. Then, a maximum weighted contrast
algorithm is used to remove the Doppler ambiguity, followed by reconstructing the echo. Compared
with the existing method, the proposed method can accurately estimate the rotational parameters
under the existing MTRCs and achieves a high-quality ISAR image for group targets, with complex
maneuvers without Doppler ambiguity. Experiments of simulated and measured datasets validate its
effectiveness and robustness for single target and group targets.

Keywords: ISAR; complex maneuvers; Doppler ambiguity; group targets; m-CPS

1. Introduction

In traditional ISAR imaging algorithms for maneuvering targets, the difficulty of
achieving high-quality imaging results for complex maneuvering group targets is mainly
caused by Doppler ambiguity because the Doppler frequency of partial scattering cen-
ters exceeds the limit of radar pulse repetition frequency (PRF). For group targets, the
Doppler ambiguity generally exists among marginal subtargets, thus yielding the following
two problems:

1. It results in the difficulty of correcting migration through resolution cell (MTRC) [1]
for accurate target rotation parameters estimation. Without the Doppler ambiguity,
MTRC can be compensated for by methods such as Keystone [1], and only the Doppler
diffusion caused by the higher-order phase is considered. In general, the echo of
maneuvering targets can be seen as multi-component linear frequency modulation
(LFM) signals in the slow-time domain [2]. ISAR imaging methods for LFM signals can
be categorized into two types: time–frequency analysis methods, such as Wigner–Ville
distribution [2–4], Radon–Wigner transform [5,6], and LV’s distribution (LVD) [7,8],
and parameter estimation methods, such as matched Fourier transform (MFT) [9,10]
and Chirp–Fourier transform [11,12]. With improvement in the maneuverability of
the air targets, the echo can be further modeled as m-CPS [13,14]. Most ISAR imaging
methods for m-CPS are based on parameter estimation, including cubic phase function
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(CPF) [15–18], high-order ambiguity function (HAF) [19–23], and discrete polynomial
phase transformation (DPT) [24]. In recent years, some scholars proposed novel
methods based on other well-performing time–frequency distributions [25–27]. With
the Doppler ambiguity, however, MTRCs can no longer be effectively compensated
for by the aforementioned methods. This will further cause difficulty in estimating the
echo parameters to compensate rotational motion of targets. Therefore, it is of critical
value to design an effective parameter estimation algorithm without corrected MTRC.

2. Scattering centers with Doppler ambiguity will appear in an incorrect position [28,29],
which highlights the necessity of removing the Doppler ambiguity. To our best
knowledge, however, few studies focus on dealing with this issue. Dr. Huang and Dr.
Zhang [30] presented a hypothesis that Doppler ambiguity removal can be carried out
by sparse reconstruction. However, their proposed method has limited effectiveness
for the m-CPS model.

In this study, we propose a novel ISAR imaging method to obtain an unambiguous
ISAR imaging result of complex maneuvering group targets. In this method, the echo
parameters are estimated to compensate for the rotational motion of targets by high-
order instantaneous autocorrelation function–generalized scaled Fourier transform (HIAF–
GSCFT), and a maximum weighted contrast (MWC) based algorithm is used to remove
the Doppler ambiguity. The echo is then reconstructed to achieve unambiguous ISAR
imaging. Experimental results prove that our method has better performance for complex
maneuvering targets with MTRCs and Doppler ambiguity than traditional methods and is
robust with different SNRs.

2. Materials and Methods
2.1. Signal Model

Generally, the movement of a target consists of translation and rotation. Since in this
research, we mainly discuss rotational motion compensation, in this section, we directly
analyze the echo after translational motion compensation. In this case, the turntable model
of ISAR imaging is shown in Figure 1.
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Figure 1. Turntable model of ISAR imaging.

We set the transmitted signal as a linear frequency modulation signal

sT(t̂, tm) = rect(t̂/Tp)ej2π fctejπµt̂2
(1)

where Tp is the pulse width, t̂ is the fast time, fc is the carrier frequency, µ is the chirp rate,
t = t̂ + tm is the total time, and tm is the slow time, with an integer multiplying the pulse
repetition period.
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After the stretch processing [31], the echo of the scattering center p is

sp( fr, tm) = Aprect
(

fr

B

)
e−j 4π

c ( fc+ fr)∆Rp (2)

where B is the bandwidth, and fr is the fast time–frequency defined by

fr = µ
(

t̂− 2Rre f /c
)

(3)

where Rre f is the reference range, and c is the light speed.
Given that the target performs complex maneuvers, the rotation angle of the scattering

center p is

θ(tm) = ωtm +
1
2

atm
2 +

1
6

btm
3 (4)

where ω is the angular velocity of rotation, a is the angular acceleration, and b is the
second-order angular acceleration.

Based on planar wavefront approximation that is reasonable for ISAR imaging, ∆Rp
in Equation (2) can be expressed as

∆Rp(tm) = xp cos
(

ωtm + 1
2 atm

2 + 1
6 btm

3
)

+yp sin
(

ωtm + 1
2 atm

2 + 1
6 btm

3
) (5)

where yp and xp represent the Y–X coordinates of p, respectively, in the coordinate system
in Figure 1.

Here, Equation (5) can be approximated by Taylor series expansion as

∆Rp(tm) = xp + ypωtm + 1
2
(
ypa− xpω2)tm

2

+ 1
6
(
ypb− 3xpaω−ω3)tm

3 (6)

For the simplicity of notation, Equation (6) is written as

∆Rp(tm) = φ1,p + φ2,ptm +
1
2

φ3,ptm
2 +

1
6

φ4,ptm
3 (7)

where φ1,p = xp, φ2,p = ypω, φ3,p = ypa− xpω2, and φ4,p = ypb− 3xpaω−ω3.
Considering the influence of Doppler ambiguity, the echo signal of complex maneu-

vering group targets containing N scattering centers is

SR( fr, tm) =
N
∑

p=1
sp( fr, tm) =

N
∑

p=1
Aprect

(
fr
B

)
·

e−j 4π
c ( fc+ fr)(φ1,p+(φ2,p+danp · λ2 PRF)tm+ 1

2 φ3,ptm
2+ 1

6 φ4,ptm
3)

(8)

where danp ∈ [. . .− 2,−1, 0, 1, 2...] is the number of Doppler ambiguity [30], and λ is the
wavelength.

It is worth noting that the Doppler ambiguity shifts the unique correspondence be-
tween the azimuth information of the scattering centers and its Doppler frequency. In other
words, scattering centers with the same Doppler frequency may also have different MTRC
slopes, as shown in Figure 2.
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Figure 2. Comparison of range profiles: (a) range profile of unambiguous scattering centers; (b) range
profile of ambiguous scattering centers.

In Figure 2a, the position of the scattering center with MTRC is x = 18 m and
y = −40 m. In contrast, the position of the scattering center in Figure 2b is x = 18 m
and y = 60 m. Although with the same Doppler frequency, the MTRC slopes of these two
scattering centers are completely different, making the traditional MTRC correction method
fail to achieve an ideal result.

2.2. Parameters Estimation Based on HIAF–GSCFT

Due to Doppler ambiguity, the echo parameters estimation needs to be carried out
when the MTRC cannot be compensated for. Thus, HIAF–GSCFT is designed to estimate
the echo parameters. Inspired by the autocorrelation function [32], we define HIAF as

R( fr, tm) = SR( fr, tm + ς1 + ς2) · SR
∗( fr, tm − ς1 + ς2)·

SR
∗( fr, tm + ς1 − ς2) · SR( fr, tm − ς1 − ς2)

(9)

where ς1 and ς2 are two delay constants. It is worth noting that fr and tm should be inter-
polated for the sake of the same number of sampling points. Combined with Equation (8),
Equation (9) can be written as

R( fr, tm) =
N
∑

p=1
A4

pe−j 4π
c ( fc+ fr)(4φ3,pς1ς2+4φ4,pς1ς2tm)+

Rcross( fr, tm)

(10)

where Rcross( fr, tm) represents the cross-terms created by HIAF. In Equation (10), we ignore
rect( fr/B) because in HIAF and phase separation, rect( fr/B) is invariant.

To ensure that GSCFT can effectively estimate the parameters, the phases only related
to tm need to be eliminated. We define this process as phase separation (PS), which can be
expressed as

PS[R( fr, tm)] = FTtr

[∣∣∣IFT fr [R( fr, tm)]
∣∣∣] (11)

where tr is the corresponding time variable of fr after inverse Fourier transform, FTtr

represents the Fourier transform in tr, IFT fr represents the inverse Fourier transform in fr,
and ∗ represents the conjugate operation of the result after IFT.

After PS, the echo phase is

PS[R( fr, tm)] =
N
∑

p=1
A4

pe−j 4π fr
c (4φ3,pς1ς2+4φ4,pς1ς2tm)

+RPS−cross( fr, tm)

(12)

where RPS−cross( fr, tm) is the cross-terms processed by PS.
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According to [15] and [33], GSCFT is defined as

T
(

f
[ξ∆e

mΥ
f
m ]

, ∆m

)
=
∫
Υ

f
m

[
g(∆m)ej2πψ∆e

mΥ
f
m
]
·

e
−j2π(ξ∆e

mΥ
f
m f

[ξ∆e
mΥ

f
m ]
)
d
(

∆e
mΥ

f
m

)
= g(∆m)δ

(
f
[ξ∆e

mΥ
f
m ]
− ψ

ξ

) (13)

where ξ represents the zoom factor to avoid spectrum aliasing, f
[ξ∆e

mΥ
f
m ]

is the scaled

frequency domain with respect to Υ
f
m, e and f are constant power, g(∆m) is a function of

∆m, and ψ is an empirical parameter.
According to Equation (12), the symbol in Equation (13) can be replaced by

∆m = fr,Υm = tm, e = f = 1 (14)

g(∆m)ej2πψ∆e
mΥ

f
m = PS[R( fr, tm)] (15)

To this end, the result of GSCFT is

T
(

fr, f[ξ frtm ]

)
=

N
∑

p=1
A4

pδ
(

f[ξ frtm ] +
8φ4,pς1ς2

cξ

)
e−j 16π

c φ3,pς1ς2 fr+

Tcross

(
fr, f[ξ frtm ]

) (16)

where Tcross

(
fr, f[ξ frtm ]

)
is the cross-terms processed by GSCFT.

Clearly, the first term of Equation (16) on the right side achieves energy focusing in
f[ξ frtm ] domain, and the positions of the peaks are only related to φ4,p. After inverse Fourier

transform in fr domain, T
(

fr, f[ξ frtm ]

)
can be expressed as

IFT fr

[
T
(

fr, f[ξtrtm ]

)]
=

N
∑

p=1
A4

pδ
(

f[ξ frtm ] +
8φ4,pς1ς2

cξ

)
·

δ
(

tr −
8φ3,pς1ς2

c

)
+

TFT−cross

(
tr, f[ξ frtm ]

) (17)

In Equation (17), the echo of each individual scattering center has formed a peak on the
tr − f[ξ frtm ] domain. Simultaneously, the cross-terms cannot achieve energy accumulation
through HIAF–GSCFT (see a detailed analysis of the cross-term in Appendix A). Therefore,
the peak detection to estimate φ3,p and φ4,p is defined by{

trm, f[ξ frtm ]m

}
= argmax

∣∣∣IFT fr

[
T
(

tr, f[ξ frtm ]

)]∣∣∣ (18)

φ̂3,pm =
ctrm

8ς1ς2
, φ̂4,pm = −

cξ f[ξ frtm ]m

8ς1ς2
(19)

where trm and f[ξ frtm ]m
represent the coordinates of the maximum value, respectively.

Moreover, GSCFT, φ̂3,pm, and φ̂4,pm can also be used to estimate φ1,pm and φ2,pm. We
first compensate for the higher-order phase of the dominant scattering center and perform
PS by

Φ( fr, tm) = e−j 4π
c ( fr+ fc)(

1
2 φ̂3,pmtm

2+ 1
6 φ̂4,pmtm

3) (20)

S′R−PS( fr, tm) = PS[SR( fr, tm) ·Φ( fr, tm)]

= Apme−
4π
c (φ1,pm fr+φ2,pm frtm) + S′others( fr, tm)

(21)

where S′others( fr, tm) represents the echo components of nondominant scattering centers.



Remote Sens. 2022, 14, 2554 6 of 16

After GSCFT and Fourier transform, S′R−PS( fr, tm) becomes

T′R
(

tr, f[ξ frtm ]

)
= IFT fr [GSCFT[S′R( fr, tm)]]

= Apmδ
(

tr −
2φ1,pm

c

)
δ
(

f[ξ frtm ] +
2φ2,pm

cξ

)
+

T′others

(
tr, f[ξ frtm ]

) (22)

where T′others

(
tr, f[ξ frtm ]

)
is S′others( fr, tm) processed by GSCFT and Fourier transform

(detailed analysis is provided in Appendix A).
Similarly, peak detection is used to obtain φ̂1,pm and φ̂2,pm by{

trm′ , f[ξ frtm ]m′

}
= argmax

∣∣∣T′R(tr, f[ξ frtm ]

)∣∣∣ (23)

φ̂1,pm =
ctrm′

2
, φ̂2,pm = −

cξ f[ξ frtm ]m′

2
(24)

In order to ensure the accuracy of parameter estimation, we use a grid-searching
manner for f[ξ frtm ] in [−PRF/2, PRF/2].

2.3. Doppler Ambiguity Removal Based on MWC

Given the Doppler ambiguity, the relationship between φ̂2,pm and the actual value is

φ′2,pm = φ̂2,pm + danpm ·
λ

2
PRF (25)

where danpm is the Doppler ambiguity number of the dominant scattering center.
MWC is thus proposed to determine danpm. We first construct Equation (26) to

multiply with the echo and transform the result into the tr − fd domain

f4( fr, tm, dan) = ej 4π
c fr((φ̂2,pm+dan· λ2 PRF)tm+ 1

2 φ̂3,pmtm
2+ 1

6 φ̂4,pmtm
3) (26)

Ida(tr, fd, dan) = |FFT2D[SR( fr, tm) · f4( fr, tm, dan)]| (27)

where dan ∈ [. . .− 2,−1, 0, 1, 2...] is used to determine danpm.
In Equation (27), when dan = danpm, the MTRC will be completely compensated for.

In this case, the image quality of Ida(tr, fd, dan) is better than dan 6= danpm.
To prevent the interference caused by the nondominant scattering centers, we define

the weighted contrast as

WC(dan) =

√s
(k(tr, fd)I′da(tr, fd, dan)− µ)dtrd fd

Nr Ndµ2 (28)

I′da(tr, fd, dan) = Ida

(
tr +

2φ̂1,pm

c
, fd +

2φ̂2,pm

λ
, dan

)
(29)

µ =
1

Nr Nd

x
k(tr, fd)I

′
da(tr, fd, dan)dtrd fd (30)

where k(tr, fd) is the weighting coefficient defined by

k(tr, fd) =
1√

2πσ(tr)
e

fd
2

2σ(tr)2 (31)

where σ(tr) is proportional to the standard deviation of the data in each range cell.
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Now, the dominant scattering center is moved to the middle of Ida(tr, fd, dan) and has
a larger weight than the other scattering centers. Thus, danpm can be determined by the
maximum of WC(dan) by {

dânpm
}
= max{WC(dan)} (32)

and the estimated Doppler frequency is

φ̂′2,pm = φ̂2,pm + dânpm ·
λ

2
PRF (33)

2.4. ISAR Imaging Method Based on HIAF–GSCFT and Doppler Ambiguity Removal

In this section, a HIAF–GSCFT- and MWC-based ISAR imaging method is introduced
for complex maneuvering group targets with the following procedure:

Step 1 Obtain SR( fr, tm) by processing the original echo signal using stretch processing;
Step 2 Estimate φ3,pm and φ4,pm using HIAF–GSCFT;
Step 3 Estimate φ1,pm and φ2,pm with PS, GSCFT, inverse Fourier transform, and the compen-

sation function constructed by the estimated echo parameters;
Step 4 Remove the Doppler ambiguity by using the MWC and determine the actual Doppler

frequency of the dominant scattering center;
Step 5 Estimate the amplitude of the dominant scattering center by the least-squares method as

Âpm =
SR( fr, tm) ·Θ∗( fr, tm)

|Θ( fr, tm)|2
(34)

Θ( fr, tm) = e−j 4π
c ( fc+ fr)(φ̂1,pm+φ̂′2,pmtm+ 1

2 φ̂3,pmtm
2+ 1

6 φ̂4,pmtm
3) (35)

Step 6 Delete the echo of the dominant scattering center from SR( fr, tm) as

Srm( fr, tm) = Âpe−j 4π
c ( fc+ fr)(φ̂1,pm+φ̂′2,pmtm+ 1

2 φ̂3,pmtm
2+ 1

6 φ̂4,pmtm
3) (36)

SR( fr, tm) = SR( fr, tm)− Srm( fr, tm) (37)

Step 7 Repeat steps (2)–(6) till the residual energy of the echo reach the energy threshold;
Step 8 Reconstruct the echo by

Srec( fr, tm) =
N

∑
p=1

Âpme−j 4π
c φ̂1,pm fr e−j 4π

λ φ̂′2,pmtm (38)

Eventually, we interpolate the slow time grid and perform a 2D Fourier transform on
Srec( fr, tm) to obtain an ISAR imaging result as

Srec(tr, fd) =
N

∑
p=1

Âpmδ

(
tr +

2φ̂1,pm

c

)
δ

(
fd +

2φ̂′2,pm

λ

)
(39)

The flowchart of the proposed method is shown in Figure 3.
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Figure 3. Flowchart of the proposed method.

3. Results

In this section, we verify the proposed method from three aspects: the performance
of parameter estimation, the capability of single target imaging, and the effectiveness of
imaging for complex maneuvering group targets.

3.1. Validation of the Parameters Estimation Method Based on HIAF–GSCFT

As an m-CPS has two components, its signal model is similar to (8), and the rotational
parameters are set as

Component 1: φ1,1 = 20, φ2,1 = 30, φ3,1 = 15, φ4,1 = 25;
Component 2: φ1,2 = −25, φ2,2 = −15, φ3,2 = −20, φ4,2 = −25.
After HIAF–GSCFT for the m-CPS, the result is shown in Figure 4.
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Figure 4. Result of HIAF–GSCFT.

In Figure 4, CR and QCR represent the chirp rate and the quadratic chirp rate, respectively.
The two components achieve two individual energy accumulation. According to

Figure 4, we estimate the parameters as φ̂3,1 = 14.91, φ̂4,1 = 24.94, φ̂3,2 = −19.88, and
φ̂4,2 = −24.94, corresponding to relative estimation errors as 0.6%, 0.24%, 0.6%, and 0.24%,
respectively. This is caused by discrete sampling intervals. Considering the small scale,
however, these errors can be ignored.

Using the estimated parameters to compensate for the high-order phases of component
1 and component 2, respectively, and perform GSCFT, the results under two compensation
cases are shown in Figure 5.
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Figure 5. Results of GSCFT: (a) using the estimated parameters of component 1 to compensate for the
echo; (b) using the estimated parameters of component 2 to compensate for the echo.

In Figure 5a, only component 1 achieves effective energy focusing because its high-
order phases are compensated for correctly. Thus, we have φ̂1,1 = 19.88 and φ̂2,1 = 29.96.
Similarly, the frequency and the initial phase of component 2 can be estimated from
Figure 5b as φ̂1,2 = −14.91 and φ̂2,2 = −24.94 respectively. The relative errors of these
estimated parameters are 0.6%, 0.24%, 0.6%, and 0.24%, respectively.

From these results, it is fundamental that our proposed HIAF–GSCFT-based parameter
estimation method has a strong capability of achieving accurate parameter estimation of
m-CPS, with high-order coupling between fr and tm.

3.2. Validation of the Capability of Single Target Imaging

We adopted Yak-42 measured data to validate the imaging ability for a single target of
the proposed method. The outline of Yak-42 is shown in Figure 6.
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Figure 6. The outline of Yak-42.

Parameters of the radar are 5.52 GHz carrier frequency, 100 Hz pulse repetition
frequency, and 400 MHz bandwidth. We added white Gaussian noise (SNR = 5 dB and
0 dB) and MTRC to the data and compared our proposed method with range-Doppler
(RD) [1], HAF–ICPF [21], and integrated parametric cubic phase function-reversing Wigner–
Ville distribution (IPCPF–RWVD) [15], where RD is a classical ISAR imaging algorithm,
HAF–ICPF is an effective imaging method for complex maneuvering target, and IPCPF–
RWVD is a robust imaging method for a complex maneuvering target. The results of the
above four methods are in Figures 7 and 8.
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of the proposed method.
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Specifically, the RD method was severely defocused, especially on the body and wings
of the aircraft. The HAF–ICPF method slightly improved the imaging quality, but the
scattering centers of the body were still defocused. The IPCPF–RWVD method had better
performance than HAF–ICPF because the IPCPF–RWVD method had a lower degree of
nonlinearity. However, the result of the IPCPF–RWVD method was still defocused because
MTRC affects the accuracy of parameter estimation. In contrast, our method effectively
overcame the negative influence of MTRC in parameter estimation and obtained clear
imaging results, as shown in Figures 7d and 8d. In summary, this experiment proved the
strong ability for high-quality ISAR imaging for a single target when MTRC is uncalibrated.

3.3. Validation of Imaging for Complex Maneuvering Group Targets

Next, we used synthetic data to validate the effectiveness of the proposed method for
complex maneuvering group targets. As shown in Figure 9a, the simulated aircraft consists
of 330 scattering centers, with a length of 18.67 m and a wingspan of 24 m. The amplitude
of the scattering centers obeys the Rayleigh distribution, with σ = 0.5. The group targets
were composed of five simulated aircraft, and the spatial distribution is given in Figure 9b.
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Parameters of radar and group targets are shown in Tables 1 and 2, respectively.

Table 1. Parameters of radar.

Frequency 9.6 GHz
Bandwidth 2 GHz

PRF 200 Hz
Pulse width 60 µs

Sampling rate 13 MHz
Sampling number 512
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Table 2. Parameters of group targets.

Target Code Target 1, 5 Target 2, 3, 4

Velocity/m/s 453.78 471.24
A = Acceleration/m/s2 69.81 74.17

Jerk/ m/s3 43.63 47.99
Rotation angle/◦ 5.77 6.04

For SNR = 5 dB, the ISAR imaging result obtained with the proposed method is shown
in Figure 10f. In comparison, the results by RD, RD–Keystone, SPWVD, and HAF–ICPF, as
well as the results reported in [30], are provided in Figure 10a–e, respectively. SPWVD is an
effective imaging method for the LFM signal model, and the method in [30] is an imaging
method for group targets.
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Figure 10. ISAR imaging results obtained from different methods: (a) RD; (b) RD–Keystone; (c) SP-
WVD; (d) HAF–ICPF; (e) the method of [30]; (f) proposed method.

When using the RD method, the Doppler ambiguity resulted in targets 1 and 5 ap-
pearing in the wrong positions, and the results were completely defocused. The result of
RD–Keystone was even worse than RD because Keystone is invalid with MTRC under the
Doppler ambiguity. SPWVD and HAF–ICPF methods improved the imaging results at
different but limited levels of target defocusing; however, they did not have any effects on
removing the Doppler ambiguity. The method in [30] was unable to remove the Doppler
ambiguity of every scattering center because [30] is not ideal when applied to the m-CPS
model. In contrast, our proposed method completely eliminated the Doppler ambiguity
and defocus, as shown in Figure 10f. In summary, the proposed method effectively achieved
the best quality imaging result for complex maneuvering group targets among all of the
compared methods.

Finally, we validated the imaging quality of the proposed method under different
SNRs. We adopted entropy and contrast to measure the quality of imaging results. After 50
Monte Carlo experiments, the SNR versus entropy curves and SNR versus contrast curves
of the above six methods were drawn, which are shown in Figure 11.
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versus entropy curves; (b) SNR versus contrast curves [30].

We found that the imaging quality of RD and RD–Keystone were invalid. This is
because the two methods were unable to compensate for the influence caused by the
nonuniform rotation. SPWVD and HAF had better performance than the above two meth-
ods but were still not ideal because of the existence of Doppler ambiguity and MTRC. The
performance of the method in [30] was the closest to that of the proposed method. How-
ever, the method was unable to correct the Doppler ambiguity of complex maneuvering
group targets. In comparison, the imaging quality of our proposed method is significantly
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superior to all the other methods with different SNRs. This experiment effectively revealed
the robustness of our method against different noise levels.

4. Conclusions

In this research, we presented a novel and effective ISAR imaging method for complex
maneuvering group targets. In this method, the echo parameters were estimated via HIAF–
GSCFT, and the MWC algorithm was used to remove the Doppler ambiguity. The proposed
method effectively estimated rotational parameters in the presence of MTRC and improved
the accuracy of Doppler ambiguity removal. Moreover, our method could be applied for
complex maneuvering group targets. Experimental results demonstrated the effectiveness
and robustness of this method with different SNRs. In future research, we plan to further
improve the proposed method, by reducing the nonlinearity of the algorithm to improve
the algorithm’s noise robustness and reduce the computational complexity.
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Appendix A

In this section, we conduct a detailed analysis of the changes in the cross-terms and
nondominant echo components during the HIAF–GSCFT process. In Equation (17), we
give three different forms of the components below.

Rcross1( fr, tm) = Ap Aq Ar As·

e−j 4π
c ( fr+ fc)((ϑ2,pq−ϑ2,rs)+ς2(ϑ3,pq+ϑ3,rs)+

ς2
2(ϑ4,pq−ϑ4,rs)

2 )tm ·

e−j 4π
c ( fr+ fc)(

(ϑ3,pq−ϑ3,rs)
2 +

ς2(ϑ4,pq+ϑ4,rs)
2 )tm

2
.

e−j 4π
c ( fr+ fc)(

(ϑ4,pq−ϑ4,rs)
6 )tm

3

(A1)

Rcross2( fr, tm) = A2
p Ar As·

e−j 4π
c ( fr+ fc)(ϑ2,rs+ς2ϑ3,rs+

ς2
2ϑ4,pq

2 +2ς1ς2φ4,p−2ς1φ3,p)tm .

e−j 4π
c ( fr+ fc)(

ϑ3,rs+ς2ϑ4,rs
2 −ς2φ4,p)tm

2 ·

e
−j 4π

c ( fr+ fc)(
ϑ4,rs

6 )tm3

(A2)

Rcross3( fr, tm) = A2
p A2

q·
e−j 4π

c ( fr+ fc)(2ς1(φ3,p−φ3,q)+2ς1ς2(φ4,p+φ4,q))tm ·
e−j 4π

c ( fr+ fc)ς1(φ4,p−φ4,q)tm
2

(A3)

where p, q, r, and s are four different scattering centers on the target. When they are used
as the subscripts of a parameter, it represents that the parameter belongs to the echo of
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the corresponding scattering center. ϑ2,pq, ϑ3,pq and ϑ4,pq are written in Equation (A4),
respectively. 

ϑ2,pq = φ2,p − φ2,q + ς1
(
φ3,p + φ3,q

)
+

ς2
1

2
(
φ4,p − φ4,q

)
ϑ3,pq =

φ3,p−φ3,q+ς1(φ4,p+φ4,q)
2

ϑ4,pq =
φ4,p−φ4,q

6

(A4)

In Equation (21), s′others( fr, tm) is given by

s′others( fr, tm) = Aqe−j 4π
c ( fr+ fc)(φ1,q+φ2,qtm)·

e−j 4π
c ( fr+ fc)(

1
2 (φ3,q−φ̂3,p)tm

2+ 1
6 (φ4,q−φ̂4,p)tm

3)
(A5)

For two different scattering centers p and q in the imaging scene, their position
relationship should at least satisfy xp − xq 6= 0 or yp − yq 6= 0. Combining Equation (6),
the parameters of p and q satisfy at least φ1,p − φ1,q 6= 0 or φ2,p − φ2,q 6= 0 and are subject
to φ3,p − φ3,q 6= 0 and φ4,p − φ4,q 6= 0. Furthermore, we can obtain ϑ2,pq 6= 0, ϑ3,pq 6= 0,
ϑ4,pq 6= 0 while ϑ2,pq 6= ϑ3,pq 6= ϑ4,pq. After PS processing, the signal models of the cross
terms and nondominant echo components can be summarized into by{

Ω1( fr, tm) = e−j 4π fr
c (η+κtm+ρtm

2+χtm
3)

Ω2( fr, tm) = e−j 4π fr
c (η+κtm+ρtm

2)
(A6)

According to Equation (13), the prerequisite for using GSCFT to achieve energy fo-
cusing is that g must be related to ∆m only. In Equation (A6), however, fr is coupled with
tm

2 and tm
3. Moreover, the high-order phase of tm prevents the signal from forming a

peak through inverse Fourier transform. In summary, the cross-term and the nondominant
echo components cannot achieve energy focusing through GSCFT and Fourier transform,
indicating that they have no effects on the parameter estimation.
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