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Abstract: In recent years, the multi-GNSS positioning application is becoming more and more
popular, same to the low Earth orbit (LEO) satellite precise orbit determination (POD) based on
the onboard multi-GNSS measurements. The third-generation Beidou navigation satellite system
(BDS-3) provides a new option to obtain the LEO satellite orbit solutions. However, the receiver
intersystem bias (ISB) of different GNSS is unavoidable in multi-GNSS data processing. This paper’s
main goal is absorption of the impact of the ISB between BDS-3 and BDS-2 on the LEO satellite POD.
Taking GPS-based POD solutions for the reference orbit, this paper evaluates the orbit accuracy of
BDS-2-based POD, BDS-3-based POD, BDS-2 and BDS-3 combined PODs with/without ISB. The
BDS-3-based POD accuracy is 6.57 cm in the 3D direction, a 56% improvement over BDS-2-based
POD. When the ISB between BDS-3 and BDS-2 is estimated, the BDS-2/3 combined POD accuracy
of 5.37 cm in the 3D direction is better than that without ISB, which is a 64% improvement over
BDS-2-based POD and 18% improvement over BDS-3-based POD. For GPS and BDS-2/3 combined
POD, the GPS and BDS-3 joint POD solutions have the smallest RMS differences in overlapping
consistency and smallest RMS differences compared to GPS-based POD. This study indicates that
estimating the BDS-2/3 receiver ISB in BDS-2/3 joint POD could improve the orbit accuracy, and the
GPS and BDS-3 joint POD solution is better than another combined POD. This paper will provide
meaningful references for the LEO satellite multi-GNSS-based POD.

Keywords: low Earth orbit; precise orbit determination; intersystem bias; BDS-2/3-based POD; GPS
and BDS joint POD

1. Introduction

At present, it is mainstream to use the onboard Global Positioning System (GPS)
measurements to obtain precise orbit solutions for low Earth orbit (LEO) satellites and
other spacecrafts [1–8]. In 2012, the Beidou regional navigation satellite system (BDS-2)
was built to provide positioning, navigation and timing (PNT) services to Asia-Pacific
users, which accelerated the application and investigation of LEO satellite BDS-based
orbit determination. Fengyun-3 employed a Global navigation satellite system occultation
sounder (GNOS) to collect BDS-2/GPS measurements and opened the door to LEO orbit
determination based on BDS [9–13]. Li Min accomplished an 8.4-cm precision orbit solution
using the onboard BDS-2 measurements for the Fengyun-3C satellite [14]. The LING QIAO
satellite carried a space-borne BDS receiver, an experimental payload, to complete in-orbit
positioning experiment [15]. The Luojia-1A satellite is a navigation signal augmentation
experimental satellite obtained centimeter-level orbit overlap consistence [16] with onboard

Remote Sens. 2022, 14, 2514. https://doi.org/10.3390/rs14112514 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112514
https://doi.org/10.3390/rs14112514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-0323-100X
https://orcid.org/0000-0002-2251-1747
https://orcid.org/0000-0003-2224-0956
https://doi.org/10.3390/rs14112514
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112514?type=check_update&version=1


Remote Sens. 2022, 14, 2514 2 of 14

BDS observations. Some researchers studied the GPS/BDS-2 differential code bias estima-
tion based on Fengyun-3C/3D onboard measurements [17–19]. Lu Cuixian estimated the
phase center variation (PCV) of BDS-2/GPS satellites and used them to improve the orbit
precision of the Fengyun-3C satellite [20].

In August 2020, the third-generation Beidou navigation satellite system (BDS-3) was
accomplished to work for users worldwide, which promotes the investigation and applica-
tion of a Global navigation satellite system (GNSS). Yang Yuanxi explained in detail BDS-3,
including the architecture, time system, coordinate reference frame, signals and the planned
services [21]. Li Liu introduced the BDS-3 and presented the innovative designs and usage
of BDS-3 navigation messages broadcast [22]. Some researchers have assessed the SIS
(signals in space) accuracy and service performance of BDS-3 [23–25]. Zhao Xinglong first
assessed the quality of onboard B1I/B3I measurements from the Tianping-1B nanosatellite.
The study results showed that a 4.57-cm precision orbit was solved only using the onboard
BDS-3 B1I/B3I ionosphere-free combined measurements. It is noteworthy that the BDS-3
precise products of orbit and clock offset used in LEO POD (precise orbit determination)
are from the separate dedicated BDS POD result enhanced by BDS-3 intersatellite link
measurements [26].

Lu Mingquan elaborated the modulation techniques and the detailed signal structures
of BDS-3. In order to achieve compatibility and interoperability with other GNSSs, the BDS-
3 broadcast the B1C signal was applied to a new quadrature multiplexed binary offset car-
rier (QMBOC) (6, 1, 4/33) modulation in B1 band at the 1575.42 MHz carrier frequency [27].
Simultaneously, for the BDS-3 satellite, the B1I signal uploaded at 1561.098 MHz carrier
frequency was kept to combine the BDS-3 B1C signal into a multicarrier constant envelope
composite navigation signal in the B1 band, sharing one common transmitter chain. The
BDS-3 B1I signal strongly coherent with the B1C signal should be specially processed to
user receivers [28,29], not the same as the BDS-2 B1I signal.

More researchers have studied the ISBs (intersystem biases) of multi-GNSS [30–34].
Many researchers have indicated that the ISB is a receiver-type dependent [35,36]. Li Xingxing
studied the four-system positioning model, pointing out that the code hardware delay is set
to zero to eliminate the singularity between the receiver clock and code hardware delay; the
other GNSS would estimate the related code hardware delay bias with respect to the GPS [37],
and the corresponding phase ambiguity parameters would absorb the phase hardware delay
bias for the phase measurement. Wang Ningbo assessed the quality of the GPS, Galileo and
BDS-2/3 satellite broadcast group delay and found a systematic B1I-B3I TGD (time group
delay) offset between BDS-2 and BDS-3 [38]. Zhang Yize and Jiao Guoqiang found a clock
offset and TGD bias between BDS-2 and -3 [39–41]. The clock bias was similar to each receiver,
while the B1I-B3I TGD bias depended on the receiver type. Jiao Guoqiang held the point of
view that the clock offset and TGD bias should be regarded as the ISB (intersystem bias) of
BDS-2/3 while solving the combined BDS-2/3 position solution. Some investigators studied
the joint BDS-2/3 precise point positioning (PPP), whose precision would be approved by
estimating the intersystem bias of BDS-2/3 [42–45]. And the joint BDS-2/3 precise time
transfer also benefits from the intersystem bias [46].

In the background above, it is meaningful and necessary to investigate the effect of the
signal difference of BDS-2/3 on LEO POD. This paper first analyses the reason for receiver
ISB between BDS-2 and BDS-3 and gives the measurement equation. Then, this paper
collects the Tianping-1B onboard GPS and BDS-2/3 measurements for the experiments of
BDS-3-based POD and the multi-GNSS-based POD.

2. GNSS ISB

The Tianping-1B receiver could receive the dual-frequency code and phase mea-
surements. This paper adopts the ionosphere-free (IF) measurements combined from
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dual-frequency measurements to correct the ionosphere delay. Therefore, for the onboard
GPS and BDS IF measurements, the observation equation is as follows:

PG
IF = ρG + c·

(
dtG

R − dtG
s
)
+ εG

PIF
PC

IF = ρC + c·
(
dtC

R − dtC
s
)
+ εC

PIF
LG

IF = ρG + c·
(
dtG

R − dtG
s
)
+ λG

IF NG
IF + εG

LIF
LC

IF = ρC + c·
(
dtC

R − dtC
s
)
+ λC

IF NC
IF + εC

LIF

(1)

The superscripts G and C denote, respectively, the GPS and BDS; PIF and LIF denote,
respectively, the IF code measurements and phase measurements; ρ is the true distance from
the receiver to the navigation satellite; dtR denotes the receiver clock errors of GPS and BDS;
dtS denotes the navigation satellite clock error; λIF and NIF denotes the dual-frequency IF
wavelength and ambiguity value and εPIF and εLIF denote the IF code and phase noise.

The different GNSS signals have different hardware delay biases of signal transmission
in the receiver. In the data processing, the hardware delay bias would be assimilated by the
receiver clock error. The receiver clock error estimated is expressed as follows:

dtR = dtr + dthd (2)

The superscript dtr denotes the clock’s true error, and dthd denotes the hardware
delay bias of the signal transmission in the receiver. The superscript dtR denotes the GNSS
receiver clock error, which contains the clock’s true error dtr and hardware delay bias
dthd.Therefore, the GPS and BDS receiver clock errors are expressed as follows:

dtG
R = dtr + dtG

hd, dtC
R = dtr + dtC

hd (3)

The difference of dtG
hd and dtC

hd could be considered as the receiver ISB (intersystem
bias) of GPS and BDS, recorded as BCG:

BCG = dtC
hd − dtG

hd = dtC
R − dtG

R (4)

Meanwhile, it is worth noting that the magnitude of the hardware delay of the car-
rier phase measurements is very small, and the carrier phase hardware delay could be
absorbed into the ambiguity value [37]. Therefore, the ISBs of multi-GNSS receiver code
measurements only are studied in this paper.

In a general way, the method to deal with ISB is to set the hardware delay bias to zero.
Equation (4) could be expressed as follows:

BCG = dtC
R − dtG

R (5)

The receiver clock error of BDS could be expressed as follows:

dtC
R = dtG

R + BCG (6)

Therefore, Equation (1) could be expressed as follow:
PG

IF = ρG + c·
(

dtG
R − dtG

s

)
+ εG

PIF

PC
IF = ρC + c·

(
dtC

R − dtC
s + BCG)+ εC

PIF
LG

IF = ρG + c·
(
dtG

R − dtG
s
)
+ λG

IF NG
IF + εG

LIF
LC

IF = ρC + c·
(
dtC

R − dtC
s + BCG)+ λC

IF NC
IF + εC

LIF

(7)

We find, both Equations (1) and (7) are equivalent to deal with ISB. Therefore, the
method to estimate the GPS receiver clock error as one parameter, and to estimate the
BDS receiver clock error is another parameter together, equivalent to the way to estimate
the GPS receiver clock error as one parameter and estimate the BDS-related ISB as one
parameter together. This paper would adopt the first method to deal with the ISBs.
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With respect to the receiver, different components and modulations of the BDS-2/3
signal in the B1 band [27] would lead to different B1I hardware delay biases of BDS-2/3.
Likewise, the B1I/B3I IF combination signals of BDS-2 and BDS-3 would have different
hardware delay biases, and the receiver clock errors estimated of BDS-2 and BDS-3 are
different, such as the next equation:

dtC2
HD 6= dtC3

HD , dtC2
R = dtr + dtC2

HD, dtC3
R = dtr + dtC3

HD=> dtC2
R 6= dtC3

R (8)

For the onboard BDS ionosphere-free (IF) measurements from the LEO satellite, the
observation equation would be expressed as follows:

PC2
IF = ρC2 + c·

(
dtC2

R − dtC2
s
)
+ εC2

PIF
PC3

IF = ρC3 + c·
(
dtC3

R − dtC3
s
)
+ εC3

PIF
LC2

IF = ρC2 + c·
(
dtC2

R − dtC2
s
)
+ λC2

IF NC2
IF + εC2

LIF
LC3

IF = ρC3 + c·
(
dtC3

R − dtC3
s
)
+ λC3

IF NC3
IF + εC3

LIF

(9)

3. POD Strategy

In this paper, a Tianping-1B satellite orbit solution is solved to use the GFZ rapid
products of GPS/BDS satellite orbit and clock corrections. The precision of GFZ rapid
products is very important due to the LEO orbit precision. We analyzed the BDS and GPS
satellite orbit precision provided by GFZ. Then, the dynamic model used and our POD
experiment designment were introduced.

3.1. BDS/GPS Onboard Data and Products

The multi-GNSS receiver employed by Tianping-1B continually collects L1/L2 of
GPS and B1I/B3I of the BDS-2/3 dual-frequency code and phase measurements [26]. The
GPS L1 and L2 signals are from G01~G32, and the BDS-2/3 B1I and B3I signals are from
C01~C32. Among BDS-2/3, C01~C05 are Geostationary Equatorial Orbit (GEO) satellites
of BDS-2; C06~C10, C13 and C16 are Inclined GeoSynchronous Orbit (IGSO) satellites of
BDS-2 and C11, C12 and C14 are Medium Earth Orbit (MEO) satellites of BDS-2. The rest
of the BDS satellites are MEO satellites of BDS-3.

Generally, the LEO satellite precise orbit is solved by fixing the GPS/BDS precise
products, both orbit and clock correction [7,14]. GPS/BDS precise products are obtained
by a precise post-process based on the raw dual-frequency measurements from abundant
global monitoring stations, such as L1/L2 for GPS [47]. The multi-GNSS rapid products
of GFZ (Geo Forschungs Zentrum) adopt the B1I/B3I dual-frequency code and phase
measurements from both BDS-3 and BDS-2, and the GFZ multi-GNSS rapid products treat
the BDS-2 B1I/B3I signal the same as that of BDS-3 (ftp.gfz-potsdam.de/GNSS/products/
mgex/READ-ME.txt, accessed on 18 February 2022). The orbit accuracy of GFZ rapid
products is expressed in the SP3 file header (ftp://igs.ign.fr/pub/igs/igscb/data/format/
SP3d.pdf, accessed on 18 February 2022). During the span of POD data processing, we
calculated the orbit accuracy average values per BDS and GPS satellite used in the period
of DOY 340-363 in 2019.

Figure 1 shows the BDS and each GPS satellite orbit accuracy means during DOY
340–363 in 2019. The orbit accuracy is from 35 cm to 100 cm for the BDS-2 satellites and less
than 50 cm for all the BDS-3 satellites. The main GPS satellite orbit accuracy is less than
15 cm, except G06, G17, G21, G25 and G32.

ftp.gfz-potsdam.de/GNSS/products/mgex/READ-ME.txt
ftp.gfz-potsdam.de/GNSS/products/mgex/READ-ME.txt
ftp://igs.ign.fr/pub/igs/igscb/data/format/SP3d.pdf
ftp://igs.ign.fr/pub/igs/igscb/data/format/SP3d.pdf
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Figure 1. BDS and GPS satellite orbit accuracy.

3.2. POD Model

Table 1 expresses the measurement models, dynamic models and estimated parameters
used in this study.

Table 1. Measurement model, dynamic model and estimated parameters.

Measurement Model Models/Parameters

Observations IF code measurements (1 m priori sigma),
IF phase measurements (1 cm priori sigma)

GNSS precise products GFZ multi-GNSS rapid products

Ionospheric delay first-order delay eliminated, high orders neglected

GNSS phase center offset (PCO) igs14_2086.atx

GNSS phase center variation (PCV) Neglected

Tianping-1B PCO Nominal value [26]

Tianping-1B PCV Neglected

LEO attitude Nominal model [26]

Smallest elevation angle 8◦

Time span/interval 30 h, 10 s

Dynamics Models/Parameters

Earth gravity model EIGEN_GL04C, 120 × 120 [48]

N-body disturbance DE421 [49]

Relativistic effect IERS 2010 [50]

Earth orientation parameter IERS 2010 [50]

Ocean tide FES 2004, 10 × 10 [51]

Solid earth and pole tide IERS 2010 [50]

Solar radiation pressure Cannonball model [52]

Atmospheric drag JB2008 [53]

Empirical force Piecewise periodic estimation of sin and cos coefficients in along and cross directions and not
in radial direction

Estimated parameters Parameters

Tianping-1B initial state Position and velocity at initial state

Receiver clock error One value estimated per GNSS and per epoch

Ambiguities One value per GNSS satellite per arc

Solar radiation pressure coefficients One value per POD arc

Atmospheric drag coefficients 1 per 1.5 h

Empirical force coefficients 1 per 3.0 h
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In this paper, the IF code and phase measurements are processed to solve the Tianping-
1B orbit solutions with GFZ multi-GNSS rapid products. The a priori noise errors are 1 m for
the IF code measurements and 1 cm for the IF phase measurements. The IF measurements
eliminate the first-order ionospheric delay and neglect the higher-order delay. The GNSS
antenna PCO (phase center offset) is from the igs14_2086.atx, and the Tianping-1B receiver
antenna PCO is set to the nominal value (−0.087, 0.018, −0.23211) m [26]. The antenna
PCVs of GNSS and receiver are neglected. The nominal attitude of Tianping-1B is a stable
zero-yaw attitude mode (refer to [26]). The smallest elevation angle is set to 8◦. The time
span of POD arc is set to 30 h, and the interval of measurements is 10 s.

The dynamic models are adopted in the POD experiments, such as earth gravity of
the 120 × 120 EIGEN_GL04C, N-body disturbance of DE421, relativistic effect, ocean tide
of 10 × 10 FES 2004, solid earth and pole tide, solar radiation pressure of the Cannonball
model, atmospheric drag of JB2008 and empirical forces.

The least squares algorithm is adopted to solve the unknown variable, such as the
satellite initial state, the clock errors, ambiguity parameters and dynamic parameters.
The clock errors are estimated per GNSS per epoch. The ambiguity parameter is set to
one estimated value per arc per GNSS satellite without cycle slip. The coefficient of the
Cannonball model is estimated by one parameter per POD arc. The coefficients of the
JB2008 atmospheric drag model are estimated as one parameter per 1.5, and the sin and cos
coefficients of the empirical force are estimated as one parameter per 3h in the along and
cross directions.

In particular, the receiver ISB is the difference of the receiver clocks of the GPS and
the other GNSS. In this paper, the receiver clock error is estimated as one value for GPS
per epoch and another value for BDS-2, BDS-3 or BDS-2/3 per epoch, which is the same to
estimate the receiver ISB [54].

3.3. Experiment Design

To study the POD potential of the onboard BDS measurements for the LEO satellite, we
first solved the LEO satellite high-precision orbit based on the onboard GPS dual-frequency
code and phase measurements. Taking the GPS-based POD results as the reference orbit,
we evaluated the BDS-based POD results. The BDS-based POD experiments were divided
into four parts. The first part was BDS-2-based POD, the second part was BDS-3 POD
and the third part was denoted as BDS-2/3 POD, which treated BDS-2 and BDS-3 as one
navigation system to solve the LEO satellite orbit. The final part denoted as BDS-2/3-B
treated the BDS-2 and BDS-3 signals with different hardware delay biases in the onboard
receivers, and BDS-2 and BDS-3 were treated as two navigation systems.

In addition, in order to analyze the performance of multi-GNSS-based POD, this
paper preliminarily tried to obtain the orbit solutions of the different combined strategies
from GPS, BDS-2 and BDS-3. GPS, BDS-2 and BDS-3 could be viewed as three separate
systems for the onboard GNSS receiver. There are three combined POD solutions, the
GPS+BDS-2-based POD solution, the GPS+BDS-3-based POD solution and the GPS+BDS-
based POD solution. GPS and BDS-2 are treated as two system to solve the receiver ISB
in the GPS+BDS-2-based POD solution, and the same thing was used with the GPS+BDS-
3-based POD solution. In the GPS+BDS-based POD solution, GPS, BDS-2 and BDS-3 are
treated as three systems to solve two ISBs.

4. Results and Analysis

For GPS-based POD orbit, the orbit overlapping consistency is adopted to evaluate
the orbit accuracy. The BDS-based POD orbits accuracy is evaluated by comparison with
GPS-based POD orbit, and the GPS/BDS-2/3 combined orbit solution is analyzed by the
overlapping consistency and comparison with the GPS-based POD orbit.
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4.1. GPS-Based Orbit

Figure 2 shows the GPS-based POD residuals of code pseudo-orange and the carrier
phase measurements. The residual RMS value of the code pseudo-orange measurements is
about 0.76 m, and the residual RMS value of the carrier phase measurement is about 0.96 cm.
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Figure 2. The GPS-based POD residuals.

Figure 3 shows the RMS differences in overlapping consistency of the GPS-based
orbits, and Table 2 shows the relevant statistical results. The overlap consistency 3D-RMS
average is 1.28 cm, and the standard deviation is less than 0.3 cm. The 3D-RMS maximum
value of the overlap consistency is 1.9 cm, and the minimum value of that is 0.8 cm. The
radial overlap consistency average is 0.56 cm, and the standard deviation is less than 0.2 cm.
The maximum and minimum values of that are, respectively, 0.9 cm and 0.3 cm. The
average values of the along-track RMS and cross-track RMS are, respectively, 0.86 cm and
0.71 cm.
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Table 2. The statistics of overlapping consistency of the GPS-based orbits (unit: cm).

Statistics 3D Radial Along Cross

Max 1.9 0.9 1.2 1.4

Min 0.8 0.3 0.4 0.3

Mean 1.28 0.56 0.86 0.71

STD 0.27 0.16 0.22 0.26
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It can be seen that the 3D orbital overlap consistency of GPS-based POD is less than
2 cm, and the radial overlap consistency is less than 1 cm. Therefore, the GPS-based orbit
solutions could be as a precision product to evaluate BDS-based orbit solutions.

4.2. BDS-3-Based POD

Using the spaceborne BDS-2/3 measurements and GFZ multi-GNSS rapid products,
the Tianping1-B orbit is solved with different strategies, as described in Section 3.2.

Figure 4 shows the BDS-based POD residuals with different strategies. For BDS-2-
based POD, the IF code residual of BDS-2 is about 1.06 m, and the IF phase residual is
about 0.88 cm. For BDS-3-based POD, the IF code and phase residuals are 0.64 m and
0.82 cm, respectively. For BDS-2/3-based POD, the IF code and phase residuals of BDS-2
are 2.16 m and 1.1 cm and that of BDS-3 are 1.85 m and 1.0 cm, respectively. Compared
with BDS-2-based and BDS-2/3-based POD, the IF code and phase residuals of both BDS-2
and BDS-3 are larger. For BDS-2/3-B-based POD, the IF code and phase residuals of BDS-2
are 1.07 m and 0.99 cm and that of BDS-3 are 0.64 m and 0.89 cm, respectively. The IF
code residual is equivalent to that of BDS-2-based and BDS-3-based POD compared with
BDS-2/3-based POD.
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Figure 5 shows the BDS-based orbit RMS difference results compared with the GPS-
based orbits, and the RMS difference statistics results are listed in Table 3. As illustrated
in Table 3 and Figure 5, the BDS-3-based POD orbit 3D RMS difference is 6.57 cm and is
reduced by 56% compared to BDS-2-based POD. This result indicates that the orbit accuracy
of LEO POD based on BDS-3 has been greatly improved, compared with BDS-2-based POD.

For BDS-2 and BDS-3 combined POD, the BDS-2/3-B-based orbit 3D RMS difference
of 5.37 cm is the lowest. It reduces 64% to be compared to the BDS-2-based orbit and 18% to
be compared to the BDS-3-based orbit, which are significant compared to BDS-2/3-based
POD. The orbit RMS difference between BDS-2/3-B-based POD and GPS-based POD is
1.96 cm in the radial direction, less than that of BDS-3-based POD and BDS-2/3-based POD.
These results show that the receiver ISB estimated in the BDS-2 and BDS-3 combined POD
could improve accuracy for the LEO satellite.
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Table 3. BDS-based orbit RMS difference statistics results compared with GPS-based orbits (unit: cm).

Test
Reduced Ratio

3D Radial Along Cross
BDS-2 BDS-3

BDS-2-based POD / / 15.10 5.11 10.56 8.69
BDS-3-based POD 56% / 6.57 2.29 5.36 2.74

BDS-2/3-based POD 61% 10% 5.92 2.35 5.02 2.02
BDS-2/3-B-based POD 64% 18% 5.37 1.96 4.28 2.48

4.3. GPS+BDS-2/3 Combined Orbit Solution

Table 4 presents the IF code and phase residual statistics results of the GPS and BDS
joint different strategies, as described in Section 3.2. The BDS-2 IF code and phase residuals
are, respectively, about 115 cm and 1 cm for GPS+BDS-2-based POD solution and GPS+BDS-
based POD solution. The BDS-3 IF code and phase residuals are, respectively, about 69 cm
and 0.92 cm for GPS+BDS-3-based POD solution and GPS+BDS-based POD solution. The
GPS IF code and phase residuals are, respectively, about 80 cm and 0.97 cm for each POD
solution. These residuals results show that each system IF code residual from the three
combined strategies is closed to the IF code residuals of the GPS-based, BDS-2-based and
BDS-3-based POD.

Figure 6 shows the results of both the orbit overlapping consistency and the combined
orbit RMS errors compared with GPS-based POD, and Table 5 presents, respectively, the
orbit RMS difference statistics. The 3D RMS differences for the orbit overlapping consistency
are, respectively, 3.15 cm, 2.91 cm and 3.03 cm from the GPS+BDS-based POD solution,
GPS+BDS-2-based POD solution and GPS+BDS-3-based POD solution, and the differences
between them are less than 3 mm. The radial RMS differences for the orbit overlapping
consistency of the three different strategies are, respectively, 0.91 cm, 0.88 cm and 0.91 cm,
and the differences between them are less than 1 mm. The along and cross RMS differences
for the orbit overlapping consistency of the three different strategies are, respectively, about
2.6 cm and 1.07 cm. It is important to note that the STD values of the GPS+BDS-3-based
orbit overlapping consistency from all the POD arcs are smallest in the 3D, radial, along
and cross directions.
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Table 4. The IF code and phase residual statistics results of the GPS and BDS joint different strategies
(unit: cm).

TEST GPS+BDS-Based POD GPS+BDS-3-Based POD GPS+BDS-2-Based POD

BDS-2
IF code 114.96 \ 115.02

IF phase 1.00 \ 1.00

BDS-3
IF code 68.14 69.03 \

IF phase 0.91 0.93 \

GPS
IF code 79.68 80.42 79.30

IF phase 0.97 0.98 0.96

Entirety IF code 85.58 77.59 89.35
IF phase 0.96 0.97 0.97
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Figure 6. The orbit RMS of the GPS and BDS combined different strategies. (A) The orbit RMS
in overlapping consistency from GPS+BDS-based POD, GPS+BDS-2-based POD and GPS+BDS-3-
based POD. (B)The orbit RMS between GPS-based POD and the three GPS and BDS combined POD
strategies.
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Table 5. The orbit RMS difference statistics of the GPS and BDS combined different strategies (unit: cm).

Test Statistic
Overlapping Compared with GPS-Based Orbit

3D Radial Along Cross 3D Radial Along Cross

GPS+BDS-based POD
MEAN 3.15 0.91 2.77 1.09 3.20 0.99 2.41 1.59

STD 1.25 0.27 1.09 0.70 1.13 0.47 1.19 0.81

GPS+BDS-2-based POD
MEAN 2.91 0.88 2.51 1.07 3.07 0.95 2.06 1.85

STD 1.17 0.30 1.04 0.66 1.21 0.34 1.01 1.12

GPS+BDS-3-based POD
MEAN 3.03 0.91 2.66 1.05 2.57 0.92 1.98 1.24

STD 0.68 0.22 0.69 0.34 0.95 0.34 0.84 0.63

The orbit RMS differences between the GPS+BDS-based POD solutions and GPS-based
POD solutions are, respectively, 3.20 cm, 0.99 cm, 2.41 cm and 1.59 cm in the 3D, radial,
along and cross directions. The GPS+BDS-2-based POD orbit RMS differences compared
with the GPS-based orbit are, respectively, 3.07 cm, 0.95 cm, 2.06 cm and 1.85 cm in the
3D, radial, along and cross directions. The orbit RMS differences of the GPS and BDS-3
combined POD solutions and GPS-based POD are smaller than that of GPS+BDS-based
and GPS+BDS-2-based POD and are, respectively, 2.57 cm, 0.92 cm, 1.98 cm and 1.24 cm in
the 3D, radial, along and cross directions. It is also important to note that the STD values of
all the POD orbit RMS differences between the GPS+BDS-3-based orbits and GPS-based
orbits are the smallest in the 3D, radial, along and cross directions.

5. Conclusions

BDS-3 provides a new option for LEO POD and promotes the application of the multi-
GNSS. It is unavoidable to estimate the GNSS receiver ISB in multi-GNSS applications. This
paper preliminarily researched the impacts of GNSS receiver ISB for LEO POD in detail
through the POD test with Tianping-1B onboard GPS and BDS data.

This paper discussed the reason for the ISB between BDS-2 and BDS-3 and gave the
measurement equations. Using GFZ multi-GNSS rapid products, the ISBs were estimated
in the Tianping-1B POD based on the BDS-2, BDS-3 and GPS measurements. Using only
onboard BDS-3 measurements, the orbit accuracy was 6.57 cm in the 3D direction, improved
by 56% from the BDS-2-based POD. When the ISBs of BDS-2 and BDS-3 were estimated
in the combined POD, the orbit accuracy of 5.37 cm was 18% better than the BDS-3-based
POD, which was nearly two times larger than the improvement ratio of the BDS-2/3-based
POD with no ISB.

For the GPS and BDS combined POD, the orbit accuracy of GPS+BDS-3-based POD
was higher. The 3D orbit RMS difference between the GPS+BDS-3-based POD solution and
GPS-based POD solution was less than 3 cm, and its STD value was the smallest. These
results illustrated that BDS-3 is more appropriate to join the GPS to determinate the LEO
satellite orbit.

In conclusion, the ISB estimated between BDS-2 and BDS-3 could improve the Tianping-
1B orbit accuracy using the onboard BDS-2/3 measurements. GPS and BDS-3 combined
POD could obtain a more consistent orbit with a GPS-based orbit. It is meaningful to
estimate the ISB to improve the Tianping-1B satellite orbit accuracy when using BDS-2 and
BDS-3 measurements together. At the same time, the POD experiments with GPS and BDS
provide an important reference for LEO POD with onboard multi-GNSS measurements.
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