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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification has achieved great
progress, but there still exist some obstacles. On the one hand, a large amount of PolSAR data is
captured. Nevertheless, most of them are not labeled with land cover categories, which cannot be
fully utilized. On the other hand, annotating PolSAR images relies more on domain knowledge
and manpower, which makes pixel-level annotation harder. To alleviate the above problems, by
integrating contrastive learning and transformer, we propose a novel patch-level PolSAR image clas-
sification, i.e., two-staged contrastive learning and sub-patch attention based network (TCSPANet).
Firstly, the two-staged contrastive learning based network (TCNet) is designed for learning the
representation information of PolSAR images without supervision, and obtaining the discrimina-
tion and comparability for actual land covers. Then, resorting to transformer, we construct the
sub-patch attention encoder (SPAE) for modelling the context within patch samples. For training
the TCSPANet, two patch-level datasets are built up based on unsupervised and semi-supervised
methods. When predicting, the classification algorithm, classifying or splitting, is put forward to
realise non-overlapping and coarse-to-fine patch-level classification. The classification results of
multi-PolSAR images with one trained model suggests that our proposed model is superior to the
compared methods.

Keywords: classification; patch-level; polrimetric synthetic apeture radar (PolSAR); sub-patch
attention encoder (SPAE); transformer; two-staged contrastive learning based network (TCNet)

1. Introduction

With the rapid development of the spaceborne and air borne polarimetric synthetic
aperture radar (PolSAR) systems, a large amount of PolSAR data is available [1,2].
Due to the high-speed development of deep learning [3], a growing number of deep
learning based methods have been introduced to PolSAR image classification [4–8]. Al-
though these supervised deep learning methods have improved the recognition accuracy
to a large extent, they are based on a certain amount of data with human annotations [9].
Compared with the hard-to-obtain labeled PolSAR samples, unlabeled PolSAR data has a
huge advantage in quantity, but it is rarely used effectively, which is somewhat wasteful.

As a subset of unsupervised learning methods, self-supervised learning methods
avoid the extensive cost of collecting and annotating large-scale datasets [10], which
leverages input data itself as supervision and benefits almost all types of downstream
tasks [2]. Self-supervised learning approaches mainly fall into one of two classes: genera-
tive or discriminative. Discriminative approaches based on contrastive learning in the latent
space have recently shown great promise. In [11], Chen et al. proposed a simple framework
for contrastive learning of visual representations (simCLR). Through instance discrimination,
simCLR can mine information hidden behind unlabeled data, so as to obtain better sample
representation and further improve the performance of downstream classification tasks.
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The task of PolSAR image classification is to assign a category to each pixel of a
PolSAR image. Cui et al. [12] argued that pixel-based [13,14] and patch-based [15–18] are
the two main sampling modes in remote sensing image classification. The two sampling
modes are both used to extract the land cover information of a single sampled site and
achieve pixel-level classification. However, for pixel-wise classification methods, precise
pixel-level annotation requires a lot of manpower, material resources, and specific domain
knowledge, which restricts the gathering of supervised data. Therefore, Qian et al. [19]
proposed a patch-level classification method, which is trained on patch samples with fixed
size randomly collected from candidate windows containing only one land cover category.
In order to avoid the blocking effect, it is a common choice to overlap the prediction results
to a certain extent.

Motivations and Contributions

Three motivations are considered in this paper.
The first motivation is that using contrastive learning can improve data utiliza-

tion efficiency. Unlike natural images, two image blocks from PolSAR images may not
have enough discriminant difference, since they follow the same scattering mechanism.
Thus, it is necessary to construct a patch-level dataset containing unlabeled patches suitable
for self-supervised contrastive learning for PolSAR images.

The second motivation is that using patch-level image annotation helps to reduce
the difficulty of obtaining training samples, and patch-level classification can reduce the
computational cost. In order to maximize computational efficiency and reduce the blocking
effect as much as possible, this paper intends to carry out non-overlapping coarse-to-fine
patch-level classification for PolSAR images. In detail, homogeneous areas are classified
with larger patch samples, whereas for the regions contained complicated land covers,
smaller patches are utilized.

The third motivation is that modeling the context within a patch sample is helps
analyze the complexity of land cover types. For the patches (impure patches we defined)
involving more than one sort of terrain, the context information differs from that within
the patches (pure patches we defined) containing only one category of land cover, which
cannot be directly learned as another kind of land cover.

In view of the above motivations, we propose a novel PolSAR image classification
model, which integrated uses contrastive learning and attention mechanism in transformer,
and is trained on our proposed two patch-level datasets. The main contributions of this
paper can be summarized as follows:

(1) The two-staged contrastive learning based network (TCNet) is built. It is trained in two
contrastive learning stages. Firstly, self-supervised contrastive learning is conducted,
when the unlabeled PolSAR data is fully utilized for extracting the representation
information; next, in the second contrastive learning stages, supervised information
is adopted to guide the optimizing of the TCNet, so that the network can not only
extract the categorical features, but also encode the contrastive information between
supervised patch samples.

(2) Referring to the self-attention mechanism of transformer, we put forward the sub-patch
attention encoder (SPAE) to measure the purity of patches by modeling the context within
patch samples. Integrating the SPAE into the trained TCNet, we get the final model,
two-staged contrastive learning and sub-patch attention based network (TCSPANet).

(3) In the prediction phase, the classification algorithm, classifying or splitting, is designed.
In this way, the trained TCSPANet can realise non-overlapping coarse-to-fine patch-
level classification. Larger patches bring about better regional consistency; with
the reduction of the scale of patches, the blocking effect is effectively suppressed.
Additionally, that there is no overlap significantly reduces repetitive calculations.

(4) Moreover, for training the TCSPANet, we construct two patch-level datasets from
multiple PolSAR images, an unsupervised multi-scaled patch-level dataset (UsMsPD)
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and a semi-supervised multi-scaled patch-level dataset (SsMsPD). The TCSPANet
trained once can classify multi-PolSAR images.

The rest of this paper is organized as follows. Section 2 reviews some related works
on contrastive learning and self-attention. In Section 3, we describe our proposed method,
including the patch-level datasets UsMsPD and SsMsPD, and the model TCSPANet.
Section 4 reports the experimental results and the ablation study. Finally, in Section 5,
we conclude our model and discuss the future work.

2. Related Work
2.1. Constrastive Learning

Since self-supervised learning can learn effective visual representations without man-
ual labels, it has become a promising candidate for improving deep learning models. The
main self-supervised learning approaches can be divided into two classes: generative
and discriminative. Discriminative approaches based on contrastive learning in the latent
space have shown great promise. Hadsell et al. [20] employed a contrastive loss function
to pull close the distance of similar samples and push apart that of dissimilar samples.
Oord et al. [21] proposed a framework Contrastive Predictive Coding (CPC) which com-
bines autoregressive modeling and noise-contrastive estimation, to extract compact latent
representations and encode predictions over future observations. Wu et al. [22] stored
the features for each instance in a discrete memory bank, and adapted noise-contrastive
estimation to simplify simply the procedure of computing the similarity for all the instances
in the training set. Chen et al. [11] presented a simple framework for contrastive learning
of visual representations (SimCLR), which is simpler and does not require specialized
architectures or a memory bank. Khosla et al. [23] extended the self-supervised contrastive
loss function to supervised version, so that an anchor sample can have more than one
positive sample in a batch.

In this paper, referring to SimCLR, we build a two-staged contrastive learning based
network (TCNet), which can not only make full use of the unlabeled PolSAR data, but
also extract the classification features of supervised patch samples, and even encode the
categorical contrastive information between two PolSAR image patches.

2.2. Self-Attention

Attention mechanism was first used in [24] to allow the proposed neural machine
translation model to pay more attention to the interesting part of input. Self-attention is a
variant of attention. It focuses on the correlation within the input, and reduces the depen-
dence on external information. Vaswani et al. [25] proposed a simple machine translation
model—transformer, the first transduction model that relies entirely on self-attention for
computing representations of its input.

The transformer based on self-attention has the advantages of capturing long-term
dependencies, parallelization, and easy expansion. Many models for computer vision have
adopted the self-attention mechanism of transformers, and achieved good improvement.
Dosovitskiy et al. [26] found that a pure transformer applied directly to sequences of image
patches can perform very well on image classification tasks. To overcome the limitations of
training data, Touvron et al. [27] proposed Data-efficient image Transformer (DeiT) which
includes a new distillation procedure based on a distillation token. To effectively model the
structure information of images and enhance feature richness, Yuan et al. [28] proposed
a new Tokens-To-Token Vision Transformer (T2T-ViT). Han et al. [29] proposed a novel
Transformer-iN-Tran- sformer (TNT) model to abstract both patch-level and pixel-level
representation. By just replacing the spatial convolutions with global self-attention in the
final three bottleneck blocks of a ResNet, Srinivas et al. [30] presented a conceptually simple
yet powerful backbone architecture, Bottleneck Transformer network (BoTNet) for multiple
computer vision tasks.

In consideration of the fine interpretability of transformer, this paper proposes the sub-
patch attention encoder (SPAE) for modeling the context relation among the sub-patches
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inside a patch sample to measure whose purity, i.e., whether the patch contains more than
one land cover category.

3. Proposed Method

In this section, we detail the proposed PolSAR image classification model, TCSPANet.
Figure 1 shows the process of the overall framework. Firstly, two patch-level datasets
UsMsPD and SsMsPD are built from multi-PolSAR images in unsupervised and semi-
supervised manners, respectively. Secondly, the TCSPANet is gradually constructed and
trained on the two datasets. Concretely, we structure the TCNet, which is trained with
two contrastive learning stages on the UsMsPD and SsMsPD successively. Then, the SPAE,
which is utilized to measure the purity of patches by modeling the context within them, is
plugged into the TCNet to obtain the final model TCSPANet, and optimized through the
SsMsPD. Finally, the trained TCSPANet is tested on multi-PolSAR images. It is easy to find
from Figure 1 that in each stage of training, different parts are frozen. In other words, the
functions of the TCSPANet are acquired in different training stages, and through frozen
some network parameters, the model just focuses on the capability needed to obtain in the
current training stage.

SsMsPD

Inputting 

for training

Inputting 

for training

PolEncoder

Classification 

head (frozen)

Projection head

UsMsPD

Classification 

head

Projection head

PolEncoder (frozen 

the top few layers)

The 1st contrastive 

learning stage

Inputting 

for training
Classification 

head (frozen)

Projection head 
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PolEncoder (frozen)
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o

n
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The 2nd contrastive 

learning stage

Transferring network 

parameters

TCNet
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Inputting 

for testing

Outputting

Multi-PolSAR images

Multi-Classification results

Unsupervised 

sampling

Semi-supervised 

sampling

Figure 1. Overall framework. Before training, two patch-level datasets UsMsPD and SsMsPD
are built from multi-PolSAR images. The proposed TCSPANet is gradually constructed and
trained by using the two datasets. First of all, the TCNet is trained on the UsMsPD and SsMsPD.
Next, the SPAE is attached to the trained TCNet to get the final model TCSPANet, which is trained
using the samples of SsMsPD. When testing, one trained TCSPANet model can give the classification
results of multi-PolSAR images.

3.1. Datasets Collection

The main purpose of contrastive learning is to extract effective representation through
discriminant learning for individual instances. As shown in Figure 2, two different patches
may be hard to distinguish, no matter whether they are collected from the same land cover
region or not. Therefore, it is required to propose a new approach for collecting contrastive
learning samples from PolSAR images.
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Figure 2. In a PolSAR image, it may be hard to distinguish two patch samples whenever they come
from the same land cover type (the left two) or not (the right two).

3.1.1. Unsupervised Multi-Scaled Patch-Level Dataset

For the first contrastive learning stage of the TCNet, basing on multi-PolSAR im-
ages, we construct the dataset UsMsPD, consisting of patch samples of multi-scales, in
an unsupervised manner. Figure 3a overviews how to establish the UsMsPD. Given a
scale, firstly, patch samples are selected and clustered without supervision, conditioned on
different PolSAR images. Secondly, clusters of all the PolSAR images are fused, so that each
sample cluster contains multi-PolSAR images’ patches. Thirdly, we execute data cleaning
for attaining more consistent clusters. Fourthly, the corresponding positive samples are
picked from the multi-PolSAR images. Lastly, all these positive samples and their original
samples are stored together to constitute the UsMsPD.

Sample clusters of 

PolSAR image 1

Cleaned sample 

clusters
Sample clusters of 

PolSAR image 2

Sample clusters of 

PolSAR image 3

Unsupervised sampling 

and clustering

Data cleaning

Fused sample 

clusters

Cluster fusing

Positive samples

Positive sampling

UsMsPD

Storing

Multi-PolSAR 

images

(a)

Superpixel 
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Selecting patch 

samples

Clustering

(b)

Sample clusters of PolSAR image 1

Sample clusters of PolSAR image 2

Sample clusters of PolSAR image 1 and 2

Sample clusters of PolSAR image 3

Fusing

Fusing

Sample clusters of PolSAR image 1, 2 and 3

(c)

Figure 3. Cont.
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Figure 3. Dataset collection of the UsMsPD. (a) Overall generating process of the UsMsPD. It includes
four steps to form the UsMsPD: (b) unsupervised sampling and clustering; (c) cluster fusing; (d) data
cleaning, and (e) positive sampling.

(1) Unsupervised sampling and clustering: Figure 3b displays how to receive and
organize the qualified patch samples containing as few land cover categories as possible
in an unsupervised manner. Simple linear iterative clustering (SLIC) [31] is a classical
superpixel algorithm, which is fast, memory efficient and exhibits nice boundary ad-
herence. So we resort to SLIC to segment a PolSAR image into individual superpixels.
The Pauli scatter vector kp = 1√

2

[
Shh + Svv Shh − Svv 2Shv

]> is used to represent
every pixel in conducting SLIC, where Shv means the scattering matrix element with the
h− v polarization of a receiving-transmitting wave (h and v are the notations of the horizon
and vertical linear polarizations, respectively). After running SLIC in the PolSAR image ρ,
we look at all the superpixels, and get the set Xscal

ρ of path samples with the specific scale
scal, as follows:

Xscal
ρ =

{
T|T ⊂ ST,

size(ST)
size(T)

> 4
}

(1)

where ρ refers to the PolSAR image segmented by SLIC; scal means the scale of the se-
lected patches; T ∈ Cscal×scal×9 is the sampled complex-valued patch contained in the
superpixel ST where every pixel is a coherency matrix, i.e., T ⊂ ST; size(·) is to calculate
the number of pixels of a superpixel or a patch, so the second condition of (1) stipulates
a superpixel must have above 4 times more pixels than the sampled patch it contains.
As an unsupervised image segmentation algorithm, SLIC may produce a few under-
segmented superpixels , where most heterogeneous pixels are far from central positions.
To reduce the impact of under-segmented superpixels on the purity of the sampled patches,
each patch is located in the center of whose corresponding superpixel which should possess
more pixels than the sampled patch. The pixel multiple of a superpixel to its corresponding
patch sample is consistent with the selection range (4 fold neighborhood) of a positive
sample, so that both patches of a positive sample pair are covered by one superpixel as
much as possible.

As mentioned before, it is not that arbitrary two patches can be negative samples of
each other. Therefore, the popular Spetral Cluster [32] is leveraged to divide all the patches
of the same size from the same PolSAR image into several clusters, where any two patches
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belonging to different clusters are regarded as negative samples of each other. Spectral
Clustering uses a similarity matrix of all samples as the input. At first, we compute the
Wishart distribution based distance [14]

dw(i, j) = ln(|T̄i|) + Tr
(

T̄−1
i T̄j

)
(2)

for each two patch samples i and j, where T̄i and T̄j are the mean coherency matrixes
of patch i and j, respectively. And then, the reciprocal of dw(i, j) is utilized to form the
similarity matrix A, as follows:

A =
(

1
dw(i,j)

)
,

A = A+A>
2

(3)

It can be found from (2) that dw(i, j) 6= dw(j, i), so the matrixA is asymmetric. In order
to botain a symmetric similarity matrix and avoid the measurement inaccuracy caused
by the asymmetry of dw(·, ·), we carry out a simple and efficient average operation of A
and its transpose. Finally, using A, spectral clustering segments Xscal

ρ into Nscal clusters.
Performing the above operations on all the PolSAR images to be classified, several groups
of sample clusters Gscal

ρ =
{

Cscal,n
ρ

}
are achieved, where Cscal,n

ρ is the patch set of cluster n
for PolSAR image ρ.

(2) Cluster fusing: After the previous operations, all the I PolSAR images to be
classified are processed into Nscal patch clusters separately. It is necessary to fuse these
clusters into Nscal larger clusters, each composed of clusters stemming from different
PolSAR images, to use these samples in training the same model. It is clearly a stable
matching problem, which can be solved by the Gale–Shapley algorithm [33], as follows:

C̄scal
ρ =

 1∣∣∣Cscal,n
ρ

∣∣∣
∣∣∣Cscal,n

ρ

∣∣∣
∑

k=1
T̄scal,n

ρ,k

, ρ = 1, ..., I

FCscal
2 = GS

(
C̄scal

1 , C̄scal
2

)
...

FCscal
I = GS

(
FCscal

I−1, C̄scal
I

)
(4)

where, C̄scal
ρ is the set of vector representations of PolSAR image ρ at scale scal, whose every

element is the mean of all averaged coherency matrixes T̄scal,n
ρ,k for cluster n ; FCscal

I is the
final fused result, which is worked out by recursively executing Gale–Shapley algorithm
GS(·, ·) according to (4). In (4), the matching score of two clusters is computed through
1/dw(i, j) to generate the “ranking matrix” according to [33] and get the matching result.
Figure 3c is the diagram of cluster fusing. In the execution of cluster fusing, the ordering
of patch clusters also matters. We should first fuse the clusters of images containing more
samples. In the first few steps of fusion, the size of one cluster has a great influence on
its representation. Clusters with fewer samples may be more easily affected by some bad
samples, leading to inconsistent matching of clusters, and finally result in an unreasonable
fusion, and even hinder the network from learning the intrinsic representation of PolSAR
images. At the later stage of fusion, the fusion will be more robust to the small clusters
because larger clusters have been generated.

(3) Data cleaning: To keep the patch samples of the same cluster consistent, the “outlier
samples” that differ greatly from the others should be removed through data cleaning.
Figure 3d demonstrates the procedure of data cleaning for one fused cluster. Firstly,
we build a fully connected graph with all patch samples as the nodes by (3). Next, the
connectivity of each node is acquired by summing all the connection weights between it
and the other nodes. Then, we find the node of the highest connectivity, and compute the
ratio of each node’s connectivity to the highest value. Finally, by removing the nodes with
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a connectivity ratio below the predefined threshold, the ultimate “fairly clean” clusters are
acquired.

(4) Positive sampling: In order not to destroy the polarization characteristics of the
sampled PolSAR patches, we do not construct positive sample pairs by data augmentation.
It is also unreasonable to directly view a cluster’s image patches as positive samples of one
another because they still possibly belong to different land cover types. Our scheme is to
collect positive samples near the original ones. The two patches that make up a positive
sample pair should near to each other in polarization space and include as few duplicate
pixels. To this end, we put forward a mixed distance, as follows:

dm(i, j) = dw(i, j)− λ

√(
vci − vcj

)2
+
(
hci − hcj

)2 (5)

where the first term is the Wishart distribution based distance as (2), the second term
represents the spatial distance, vci (or vci) and hci (or hcj) are the vertical and horizontal
coordinates for the center of patch sample i (or j), respectively, and λ > 0 (we set λ = 0.1
in this article) is the hyper-parameter to control the contribution of spatial distance to the
mixed distance. For any patch T sampled before, in its four times area neighbourhood, a
certain number of new image patches T# are sampled as the set of its candidate positive
samples, in which the candidate sample has minimum mixed distance to T is chosen as the
positive sample T+, as follows:

T+ = arg min
T#

(
dm

(
T, T#

))
(6)

Figure 3e shows three relationships between an original sample and its candidate
samples. The left two patches are too close in spatial space and have lots of the same pixels.
The middle two patches are too far away in polarization characteristics and may belong
to different land covers. The right two patches are neither too close in spatial space nor
far away in polarization characteristics and have the minimum mixed distance, which can
be positive samples of each other. Besides, four times neighbourhood restricts every pair
of positive samples to one superpixel, reducing the risk that the two samples containing
different land covers due to the extremely large spatial distance.

The previous operations are under a single value of scale. For the UsMsPD, scal ∈
{32, 16, 8, 4, 2}. As stated at the beginning of this section, for learning the purity of a patch
sample, the context inside a patch can be modeled by extracting the dependence in the
sub-patches of this patch (the specific procedure will be described later). Although a 2× 2
patch can continue to be evenly split into four smaller sub-patch, i.e., four pixels, their
dependence is not enough to reflect the purity of the 2× 2 patch. Because individual pixels
are susceptible to noise. Therefore, we define 2× 2 as the smallest sample scale, that is, the
minimum of scal is 2.

Using all the optional scal, we get the entire unsupervised multi-scaled patch-level
dataset, UsMsPD.

3.1.2. Semi-Supervised Multi-Scale Patch-Level Dataset

It is essential to establish the dataset SsMsPD, including category labels, to make the
network gain discrimination capability for concrete land cover categories, which cannot
be learned from the UsMsPD. In realistic application, an entire PolSAR image cannot be
classified satisfactorily with only one scale of patches, so the dataset should contain multi-
scaled patches. In addition, when predicting, it cannot be ensured that all patches contain
only one land cover. The annotated patch-level dataset SsMsPD should include two kinds
of patch samples: the patches only contain one type of land cover, i.e., pure patches; the
patches contain two or more land cover categories, i.e., impure patches. As is shown in
Figure 4a, in the SsMsPD, the pure patches are collected by hand, while the impure patches are
automatically generated. Thus, the SsMsPD is obtained in a semi-supervised way.
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Supervised sampling

Multi-scaled pure patch 

samples of PolSAR image 1

Multi-scaled pure patch 

samples of PolSAR image 2

Multi-scaled pure patch 
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Multi-scaled impure patch 
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(b)

(c)

Figure 4. Dataset collection of the SsMsPD. (a) Overall process of generating the SsMsPD. (b) The
specific sampling (for pure patches) and generating (for impure patches) process for each PolSAR
image in the SsMsPD. (c) Some examples of impure patches with the size from 4× 4 (the top row) to
32× 32 (the bottom row).

Figure 4b is the specific sampling and generating process from one PolSAR image in
Figure 4a. Firstly, some big PolSAR blocks are selected manually, each corresponding to
a land cover category. And then, multi-scaled pure patches Tscal

ρ are randomly sampled
from these blocks. All the pure patches from the same big block share the same land cover
category, thus their labels y

(
Tscal

ρ

)
are given. Here, ρ and scal ∈ {32, 16, 8, 4, 2} are defined

before. Next, impure patches T̃scal
ρ are generated based on smaller pure patches Tscal/2

æ and
impures patches T̃scal/2

æ , as follows:



Remote Sens. 2022, 14, 2451 10 of 30

T̃scal
ρ = ST

(
T∗scal/2

ρ,1 , T∗scal/2
ρ,2 , T∗scal/2

ρ,3 , T∗scal/2
ρ,4

)
,

s.t.



scal ∈ {4, 8, 16, 32}
T∗scal/2

ρ = Tscal/2
ρ or T̃scal/2

ρ

¬
(

y
(

Tscal/2
ρ,1

)
= y

(
Tscal/2

ρ,2

)
= y

(
Tscal/2

ρ,3

)
= y

(
Tscal/2

ρ,4

))
(7)

where ST(·, ·, ·, ·) represents stitching four patches into a larger impure patch; the first
condition suggests that impure patches have only four scales to choose from, i.e., scal 6= 2;
the second condition means the smaller patch-level samples used in ST contain pure patches
and impure patches; the third condition avoids that an impure patch is stitched by four
pure patches that have the same land cover category. In the actual implementation, smaller
impure patches must be generated earlier in order that they can be used in generating
larger impure patches. Thus, see Figure 4c, the larger an impure patch is, the more complex
its land cover is.

3.2. Two-Staged Contrastive Learning and Sub-Patch Attention Based Network

In this subsection, we propose a novel PolSAR image classification model TCSPANet.
As is shown in Figure 1, the TCSPANet is constructed gradually by updating the TCNet
and the SPAE in turn with the datasets UsMsPD and SsMsPD presented before.

3.2.1. Two-Staged Contrastive Learning Based Network

(1) Structure of the TCNet: Inspired by the simplicity and scalability of simCLR, we
construct the TCNet, whose structure is shown in Figure 5a. Unlike the simCLR, in addition
to the base encoder (we call it PolEncoder) and the projection head, a classification head is
also introduced.

For extracting the representation vectors from PolSAR images, we establish a small neu-
ral network PolEncoder f (·). First of all, an input patch T is tiled to the size
of 32× 32, denoted by Tile(T), to meet the input requirement of f (·). Then, complex-
valued convolutions (CV-CNNs) [34], the operation is defined in (1) and (2) of [34], are
used to mine features in complex filed; max poolings are adopted to reduce the size of
feature maps and improve the translation and rotation invariance of CV-CNNs; a global
average pooling is to compress the final feature maps C4 into a vector; two full connection
layers further encode the features of CV-CNN to a representation vector. In the PolEncoder,
we utilize Relu [35] as the active function to enhance the approximation capability. So, the
output of the PolEncoder is hi = f (Tile(Ti)) where Ti ∈ Cscal×scal×9 is the complex-valued
input patch, hi ∈ R240 is the output of the PolEncoder f .

The projection head g(·) maps representations got by f (·) to a space where a new
contrastive loss is applied. Like the simCLR, the projection head is also a multilayer
perception (MLP) with one full connection layer to obtain the projection vector zi = g(hi).
The classification head b(·) is just a layer of full connection with a softmax function, which
converts the output of the PolEncoder to vector vi = b(hi) where vi ∈ RM corresponds to
the land cover category y(Ti).
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Figure 5. Illustration of the TCNet. (a) Structure of the TCNet. (b) The first contrastive learning stage
of the TCNet. (c) The second contrastive learning stage of the TCNet.

(2) Training the TCNet: As is shown in Figure 5b,c, the TCNet is trained with two
stages. Figure 5b shows that, in the first contrastive learning stage, the PolEncoder and the
projection head are trained on the UsMsPD. In light of the fact that there is no category
information in the UsMsPD, updating the classification head’s parameters does not make
sense. Hence, the classification head is frozen in this training stage. Given a scale scal for
the patch samples in the UsMsPD, 2Nscal samples are inputted into the network, where the
top Nscal samples are from different clusters and the next Nscal samples are their positive
samples. What is more, if scal > 2, one more patch T2N+1 is inputted into the TCNet.
T2Nscal+1 is not any sample of the UsMsPD. Instead, it is stitched by the central patches
of stochastic four in the top 2Nscal samples. In this way, T2Nscal+1 is the negative sample
of all the top 2Nscal patches. Then the loss function for a positive pair of examples (i, j),
the normalized temperature-scaled cross entropy loss (NT-Xent) in [11] is modified as the
extended NT-Xent (ENT-Xent) in this article:
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li,j,scal =


− log

exp(sim(zi ,zj)/τ)
2Nscal

∑
k=1

1[k 6=i] exp(sim(zi ,zk)/τ)

, scal = 2

− log
exp(sim(zi ,zj)/τ)

2Nscal+1
∑

k=1
1[k 6=i] exp(sim(zi ,zk)/τ)

, scal > 2
(8)

where all symbols are defined in the same way as NT-Xent in [11]. The only difference
is that our ENT-Xent has an extra exp

(
sim
(
zi, z2Nscal+1

)
/τ
)

in the denominator when
scal > 2, which guarantees that the extra input is pushed away from all the other samples.
Accordingly, the total contrastive loss for a batch of inputs is

LC =
1

2Nscal

2Nscal

∑
k=1

[l2k−1,2k + l2k,2k−1]. (9)

Figure 5b shows the second stage of training for the TCNet, when the TCNet is further
trained with our proposed SsMsPD to acquire the discriminant ability for actual land cover
categories During this stage, all the layers of the encoder except the last two are frozen.
Given a scale scal = 2, M pairs of pure patches, all pairs marked as different land cover
categories, are inputted into the TCNet. When scal > 2, an impure patch T̃2M+1 is also an
input data in one batch. All the representations T∗1 ∼ T∗2Mor2M+1 are then inputted into
g(·) to get the corresponding projection vectors z1 ∼ z2Mor2M+1. The loss function for g(·)
is defined in (8) and (9), where Nscal is replaced with M. The representations of pure patches
T∗1 ∼ T∗2M(scal = 2) are also inputted into b(·) to get classification vectors v1 ∼ v2M. The
loss function for the classification head is the classical categorical cross entropy:

LCE = − 1
2M

1
M

2M

∑
i=1

M

∑
k=1

yk
i ln
(

vk
i

)
. (10)

Finally, the total loss function for the second contrastive learning stage of the TCNet is
a weighted sum of LC and LCE:

L1 = γLC + (1− γ)LCE (11)

where γ and 1− γ are the weights for the two losses. In this article, γ = 0.5 to align
projection head and classification head the same significance.

It can be found that the emphases of the two stages of contrastive learning are distinct.
In the first contrastive learning stage, the TCNet focuses on extracting effective represen-
tations of PolSAR image patches with the unlabeled dataset. In the second contrastive
learning stage, the TCNet aims at learning categorical information and obtaining compara-
bility for actual land covers by inputting samples that are annotated with real land cover
classes. Moreover, both in the two training stages, one more patch sample is inputted into
the TCNet if scal is not the minimum, enabling the TCNet to push impure patches far away
from any pure patch.

3.2.2. Sub-Patch Attention Encoder

(1) Integrating the SPAE into the trained TCNet: Figure 4c suggests that impure patches
in the SsMsPD do not have any specific pattern, which cannot be directly considered a
new land cover category and classified by the TCNet. If a patch is evenly split into four
sub-patches and inputted into the trianed TCNet, one the following two situations will
occur: for a pure patch, the projection vectors of its four sub-patches will be similar; for an
impure patch, there must be some difference among the four sub-patches’ projection vectors.
The context within a patch can be modelled through capturing the dependence of the four
sub-patches in a patch samples, which can be utilized to judge whether a patch is pure
patch or impure patch. For this purpose, we put forward the SPAE. By plugging the SPAE
into the trained TCNet, we get the final model TCSPANet. Figure 6a shows how to optimize
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the SPAE to get the available TCSPANet. For a patch sample from the SsMdPD, it is divided
into two parts of input: the first part of input is the patch itself, T∗i ; the second part are
the four sub-patches sTi,1 ∼ sTi,4, the evently split result of T∗i . The complete patch T∗i is
inputed into the trained PolEncoder to get its representation vector hi = f

(
T∗i
)
, and then

is converted into the classification vector vi = b(hi) with the trained classification head
frozen and without Softmax. The four sub-patches are inputted into the same PolEncoder
to obtain their representations shi,1 ∼ shi,4, which are then mapped to four projection
vectors szi,1 ∼ szi,4 (we call them sub-patch tokens here). The sub-patch tokens are stacked
together to form a matrix sZi ∈ R4×240 = [szi,1; ...; szi,4] as the input of the SPAE u(·).
Next, the context within the completed patch is encoded to a scalar εi = u(sZi).
The outputs of the SPAE and the classification head are merged and normalized by a
softmax function to get the final output of the TCSPANet, as follows:

_yi =TCSPANet(T∗i , sT1, sT2, sT3, sT4)

=softmax([b( f (T∗i )),

µ([g( f (sT1)); g( f (sT2)); g( f (sT3)); g( f (sT4))])]

=softmax([b(hi), µ(sZi)])

=softmax([vi, εi])

(12)

where _yi ∈ RM+1 is the final output of the TCSPANet. In (12), only u(·) can be optimized,
while f (·), g(·), b(·) are fixed after training the TCNet.

The categorical cross entropy is used again as the loss function to update the SPAE.

L2 = − 1
B

1
M + 1

B

∑
i=1

M+1

∑
k=1

ẏk
i ln
(
_y

k
i

)
(13)

where B means the batch size, ẏ ∈ RM+1 is the new label for the patch sample T∗, defined
as follows:

ẏ(T∗) =
{

[y(T∗), 0], T∗ is a pure patch
[0, ..., 0, 1], T∗ is an impure patch

(14)

ẏ(T∗) tells that whether T∗ is an impure patch or which category the patch belongs to
when a pure patch.
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Figure 6. Cont.
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Figure 6. Illustration of the TCSPANet. (a) Integrating the SPAE into the trained TCNet, we get the
final model TCSPANet. When training, only the SPAE can be updated. (b) Structure of SPAE.

(2) Structure of the SPAE: The structure of the SPAE is shown in Figure 6b, which is
composed of two sub-structures, a transformer encoder and a sub-patch attention extractor
based on CNN. In our opinion, the context of sup-patches exists explicitly in attention
maps in every transformer layer. And then, these attention maps are stacked and further
processed to a scalar value εi by the sub-patch attention extractor as the final output of the
entire SPAE.

The transformer encoder consists of E layers of small networks that include multi-head
attention (MHA) and MLP blocks. L2 normalization is adopted before and after every
MHA block. The MLP contains two layers of full connection with a Relu non-linearity.
Different from the original transformer, we omit positional encoding which is not concerned
in our model.

In each layer l, MHA allows the SPAE to attend to the context within the input sZ(l−1)
i

in different projection subspaces.

MHA
(

Norm
(

sZ(l−1)
i

))
= Concat

(
head1, ..., headh

)
W(l)O

headj = Attention
(

Norm
(

sZ(l−1)
i

)
W(l)Q

j ,

Norm
(

sZ(l−1)
i

)
W(l)K

j , Norm
(

sZ(l−1)
i

)
W(l)V

j

)
= Attention

(
Q(l)

j , K(l)
j , V(l)

j

)
(15)

where W(l)Q
j , W(l)K

j , W(l)V
j ∈ R240×240/h, W(l)O

j ∈ R240×240 are the linear projection matri-

ces in the head j to obtain the triple (query Q(l)
j , key K(l)

j , value V(l)
j ) and the output of the

MHA. The attention for every head is formulated as follows:

Attention
(

Q(l)
j , K(l)

j , V(l)
j

)
= softmax

Q(l)
j K(l)

j

>

√
dk

V(l)
j (16)
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where dk is the length of each sequence in K(l)
j . Norm(·) is used to normalized every

sequence of a matrix.

Norm
(

sZ(0)
i

)
=

[
szi,1

‖szi,1‖
; ...;

szi,4

‖szi,4‖

]
(17)

Then the output of the current transformer is projected from the output of the
MHA block.

sZ′(l)i = MHA
(

Norm
(

sZ(l−1)
i

))
+ sZ(l−1)

i

sZ(l)
i = MLP

(
Norm

(
sZ′(l)i

))
+ sZ′(l)i

(18)

where sZ(l)
i is the output transformer layer l, which is the input of the layer l + 1.

Next, we take each sub-patch attention map SPAM(l)
j ∈ R4×4 = softmax

(
Q(l)

j K(l)
j√

dk

)
corresponding to every transformer layer l and head j, and stack them to form the sub-patch
attention maps SPAM ∈ R4×4×hE as the input of the sub-patch attention extractor C(·).
C(·) is a CNN based network composed of two convolution layers with Relu, a maxpooling
layer and full connection layer without non-linearity. Adoptting C(·), we compress the
matrix SPAM into a scalar value ε ∈ R = C(SPAM) as the representation of the overall
self-attention for all sub-patches.

3.2.3. Training the TCSPANet

Figure 1 demonstrates that not all components’ parameters in the TCSPANet can be
updated throughout the training process. When training the TCNet, all parameters of the
PolEncoder except the final two layers are fixed in the second contrastive learning stage
so that the PolEncoder can mine intrinsic PolSAR information effectively and also learn
the representation for real land cover categories. The classification head is trained in the
second contrastive learning stage of the TCNet to guide the optimization of the PolEncoder
with supervision. The projection head is trained in both two contrastive learning stages of
the TCNet. During training the TCSPANet, only the SPAE is refreshed for modeling the
context within patch samples. In summary, it is a kind of progressive learning [36,37] to
train the TCSPANet. See Appendix A for the algorithm of training the TCSPANet.

3.2.4. Classifying or Splitting

In this paper, a novel non-overlapping coarse-to-fine patch-level classification algo-
rithm, classifying or splitting, is proposed for completed PolSAR images. For a patch for
one PolSAR image to be classified, the trained TCSPANet first determines whether it is
a pure patch or an impure patch. If the TCSPANet regards the patch as a pure patch, its
terrain category will be provided immediately (i.e., classifying step). Conversely, if the
patch is viewed as an impure patch, it will be evenly split into four smaller patches and
reinputted into the TCSPANet for further recognizing (i.e., splitting step). The above steps
are repeated until the entire PolSAR image is classified. When running classifying and
splitting, larger patches are selected in homogeneous regions while smaller patches are
chosen in complicated areas. The blocking effect is effectively alleviated. Meanwhile, non-
overlapping of patches improves computation efficiency. The pseudocode of classifiying or
splitting is displayed in Appendix B.

4. Experimental Results
4.1. Description of Datasets

The experiments are performed on three different PolSAR images, which are from
different sites, received by different sensors, and have the same categories of land covers.
The first PolSAR image is in San Francisco, a city in the USA. It was received by AIRSAR
and has 935× 1369 pixels. The second PolSAR image is in Flevoland, Netherlands. It was
acquired by RADARSAT-2, and its size is 1379× 1093. The next PolSAR image is from
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Xi’an, the capital city of Shaanxi province in China. It is captured by SIA_C/X-SAR and
includes 512× 512 points. Figure 7a–f show the PauliRGB images and ground truths for
the three images. Each image has the same three land cover categories: water, vegetation,
and urban. Figure 7g gives the color code for the three categories.

Based on the three PolSAR images, two datasets, UsMsPD and SsMsPD, are built
up. For each category in every PolSAR image, a big block is selected, where multi-scaled
pure patches are sampled to construct the SsMsPD. Figure 8 marks these big blocks, whose
coordinates are shown in Table 1.
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Fig. 7. Three PauliRGB images and ground truths. (a) PauliRGB image of
San Francisco. (b) Ground truth of San Francisco. (c) PauliRGB image of
Flevoland. (d) Ground truth of Flevoland. (e) PauliRGB image of Xi’an. (f)
Ground truth of Xi’an.

a certain number of iterations, some samples which should not
be over-fitted anymore may have been well trained, while other
samples may need more attention.

On this account, we propose the stage-wise training algo-
rithm. Before each training stage, the training samples are
predicted by the model saved in the previous stage, and then
the corresponding training weights are given according to

λ =

{
1 , r = 1

max
{

0.2 , 1−Gr−1(X)>Y
}
, r > 1

(21)

where Gr−1 (·) represents the model trained in the r-1th,
whose output is an N-dimensional vector, and Y is the one-
hot label of X. According to (21), the λ for every training
sample is computed before each training stage. In the first
stage of training, we set the training weight of all training
samples to 1 to ensure that our model treats all training
samples equally. In later stages of training, the weights of
all training samples will be recounted. That is, if the training
sample has a higher prediction probability for its annotated
category, a lower training weight will be provided, and vice
versa. In this case, our network pays more attention to difficult
training samples.

IV. EXPERIMENTAL RESULTS

A. Description of Datasets
In this paper, the experiments are implemented on three

real PolSAR images, Flevoland, San Franciso, and Xi’an,

TABLE I
NUMBER OF SAMPLES FOR SAN FRANCISCO

Class Number of
pixels

Number of
training samples

(1%)

Number of
testing samples

(99%)

Ocean 781328 7813 773515
Vegetation 235905 2359 233546

Low density urban 343064 3430 339634
High density urban 282975 2829 280146

Developed 80616 806 79810

TABLE II
NUMBER OF SAMPLES FOR FLEVOLAND

Class Number of
pixels

Number of
training samples

(1%)

Number of
testing samples

(99%)

Stem beans 6338 63 6275
Rapeseed 13863 138 13725
Bare soil 5109 51 5058
Potatoes 16156 161 15995

Beet 10033 100 9933
Wheat2 11159 111 11048

Peas 9582 95 9487
Wheat3 22241 222 22019
Lucerne 10181 101 10080
Barley 7595 75 7520
Wheat 16386 163 16223

Grasses 7058 70 6988
Forest 18044 180 17864
Water 13232 132 13100

Buildings 735 20 728

Note: For the class of buildings, the number of training samples for 1%
is 7, which we set is 20 to avoid too few training samples.

TABLE III
NUMBER OF SAMPLES FOR XI’AN

Class Number of
pixels

Number of
training samples

(1%)

Number of
testing samples

(99%)

Grass 119584 1196 118388
City 81071 811 80260

Water 36761 368 36393

to verify the proposed method. Flevoland belongs to the
Netherlands, with 750×1024 pixels and 15 different land
covers, including 12 different plants, buildings, water, and bare
soil. It was collected by AIRSAR. San Francisco is a city in the
United States, and its size is 1800×1380. It was acquired by
RADARSAT-2 and possesses five types of land covers, ocean,
vegetation, developed, low density urban, and high density
urban. Xi’an is the capital city of Shaanxi province in China,
which is from SIA-C/X-SAR. Both its width and height are
512, and there exist three kinds of objects in this image, i.e.,
grass, city, and water. The PauliRGB images and ground truths
are shown in Fig. 7.

Many PolSAR image classification methods gave specific
sampling rates on different PolSAR images in experiments
to gain acceptable results, which is unrealistic in practical
application. Therefore, for all these three images, we select
1% of the data as training samples and the rest as test samples.
The number of training samples for each category are shown
in Tables I-III.
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Figure 7. PauliRGB images and ground truths for three PolSAR images and their color code.
(a) PauliRGB image of San Francisco. (b) Ground truth of San Francisco. (c) PauliRGB image
of Flevoland. (d) Ground truth of Flevoland. (e) PauliRGB image of Xi’an. (f) Ground truth of Xi’an.
(g) Color code for the three images.

Table 1. Big Blocks for Different Categories in Multi-PolSAR images.

PolSAR
Water Vegetation Urban

Coordinates Annotation
Proportion Coordinates Annotation

Proportion Coordinates Annotation
Proportion

San Francisco (1:100,1:100) 4.86% (117:167,429:529) 9.44% (256:356,567:667) 2.92%
Flevoland (245:345,390:490) 1.12% (342:442,1042:1092) 6.18% (826:876,785:885) 4.96%

Xi’an (353:403,42:92) 6.80% (8:108,429:479) 4.18% (177:227,60:110) 3.08%
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(a) (b) (c)

Figure 8. Big blocks in multi-PolSAR images, which are marked by red boxes and each only contains
one land cover in every PolSAR image. (a) Big blocks in San Francisco. (b) Big blocks in Flevoland.
(c) Big blocks in Xi’an.

4.2. Experimental Design

For verifying the proposed TCSPANet, several classical and state of the art methods are
compared with our method, including four machine learning-based approaches, including
support vector machine (SVM) [38] and Wishart [39], Random Forest (RF) [40] and EXtreme
Gradient Boosting (XGBoost) [41], and five deep learning-based methods, including stacked
sparse autoencoder (SAE) [42], deep belief network (DBN) [4] CV-CNN [34], densely
connected and depthwise separable convolutional neural network (DSNet) [43] and Spatial
feature-based convolutional neural network (SF-CNN) [44]. DSNet and SF-CNN are
the state of the art deep learning based models for PolSAR classification, where DSNet
retains features in shallow layers through dense connection, SF-CNN combines K-Nearest
Neighbor (KNN) with deep learning network to near samples with the same class yet
make samples of different classes far away. All these methods are trained once with the
dataset constructed based on multi-PolSAR images, and tested on the three images. In
our TCSPANet, we set τ = 0.1 which brings the best results in [11], γ = 0.5 to treat
projection head and classification head equally, and the number of both heads and layers
in the transformer encoder of the SPAE is three. For every method, we figure out the
accuracy (ACC) of each category, overall accuracy (OA) and Kappa coefficient (Kappa)
[45]. After ten experiments, the means and variances of the evaluation metrics are shown
in Tables 2–4 with four significant digits after decimal points, where the highest mean
and lowest variance for these methods are marked in bold. Before training, refine Lee
filtering [46] is performed to reduce the speckle noise in the PolSAR images. Additionally,
we also carry out an ablation study to analyze the influence of different hyperparameters
for our method and the effect of the training algorithm for our model.

SAE, DBN DSNet and SF-CNN in the comparison methods, and our model TCSPANet
are implemented with the deep learning framework, Keras. SVM, RF and XGBoost are
programmed through the sklearn package in Python. Wishart and CV-CNN are run in their
original codes. All experiments are run on a HP Z840 workstation with an Intel Xeon CPU
and 64 GB memory.

Table 2. Classification Results of San Francisco with Different Methods, where the highest mean and
lowest variance for each category are marked in bold.

Method Water Vegetation Urban OA Kappa

SVM 0.9996 ± 1.2744 × 10−11 0.7408 ± 4.3960 × 10−5 0.8622 ± 6.1643 × 10−6 0.9046 ± 1.3737 × 10−6 0.8140 ± 7.6377 × 10−6

Wishart 0.9382 ± 1.6538 × 10−11 0.8548 ± 4.3550 × 10−9 0.7102 ± 1.1253 × 10−8 0.8009 ± 2.8625 × 10−9 0.6835 ± 4.7917 × 10−9

RF 0.9425 ± 1.3935 × 10−5 0.5846 ± 3.0230 × 10−3 0.9703 ± 4.6518 × 10−5 0.9180 ± 9.9175 × 10−5 0.8549 ± 2.4030 × 10−4

XGBoost 0.9971 ± 8.3084 × 10−8 0.6991 ± 3.1952 × 10−5 0.9360 ± 1.8346 × 10−6 0.9381 ± 1.9231 × 10−7 0.8864 ± 7.1646 × 10−7

SAE 0.9975 ± 6.1816 × 10−7 0.5208 ± 1.7738 × 10−3 0.9064 ± 2.0067 × 10−4 0.9032 ± 6.3105 × 10−5 0.8227 ± 2.1584 × 10−4

DBN 0.7609 ± 2.5562 × 10−3 0.3608 ± 2.6251 × 10−4 0.9785 ± 1.3553 × 10−5 0.8404 ± 3.3678 × 10−4 0.7164 ± 1.0713 × 10−3

CV-CNN 0.9658 ± 8.2194 × 10−5 0.1098 ± 6.0291 × 10−2 0.9936 ± 2.0359 × 10−5 0.9063 ± 2.5394 × 10−4 0.8168 ± 1.1516 × 10−3
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Table 2. Cont.

Method Water Vegetation Urban OA Kappa

DSNet 0.9998 ± 1.2924 × 10−7 0.8830 ± 1.2248 × 10−3 0.8856 ± 1.4197 × 10−3 0.9201 ± 7.8113 × 10−4 0.8470 ± 3.1580 × 10−3

SF-CNN 0.9722 ± 1.1009 × 10−3 0.2631 ± 9.8136 × 10−4 0.9598 ± 2.3465 × 10−4 0.7880 ± 4.3201 × 10−4 0.6637 ± 8.9135 × 10−4

Our method 0.9620 ± 7.3259 × 10−5 0.7851 ± 2.1159 × 10−3 0.9596 ± 3.2721 × 10−5 0.9451 ± 1.9813 × 10−5 0.9008 ± 6.5051 × 10−5

Table 3. Classification Results of Flevoland with Different Methods, where the highest mean and
lowest variance for each category are marked in bold.

Method Water Vegetation Urban OA Kappa

SVM 0.9988 ± 1.6262 × 10−10 0.8292 ± 3.1570 × 10−5 0.6360 ± 3.2902 × 10−5 0.9430 ± 1.0475 × 10−6 0.8068 ± 1.2204 × 10−5

Wishart 0.9974 ± 1.0026 × 10−12 0.3758 ± 2.9857 × 10−8 0.7180 ± 1.4332 × 10−8 0.9244 ± 9.2585 × 10−12 0.7450 ± 1.0847 × 10−10

RF 0.9969 ± 2.4317 × 10−7 0.5330 ± 3.8137 × 10−4 0.6360 ± 5.1594 × 10−4 0.9272 ± 6.2141 × 10−6 0.7554 ± 8.6080 × 10−5

XGBoost 0.9998 ± 2.0881 × 10−10 0.6823 ± 2.4003 × 10−6 0.6470 ± 2.6271 × 10−6 0.9414 ± 7.1546 × 10−8 0.8016 ± 7.7266 × 10−7

SAE 0.9995 ± 1.1122 × 10−7 0.5058 ± 8.5162 × 10−4 0.5871 ± 5.7323 × 10−5 0.9228 ± 8.0808 × 10−6 0.7422 ± 6.2543 × 10−5

DBN 0.9790 ± 4.6474 × 10−6 0.5661 ± 8.8795 × 10−4 0.8897 ± 2.2973 × 10−3 0.9348 ± 2.4635 × 10−5 0.7702 ± 3.0833 × 10−4

CV-CNN 0.8208 ± 8.8816 × 10−2 0.1154 ± 2.0616 × 10−2 0.9691 ± 4.5583 × 10−3 0.7816 ± 5.9127 × 10−2 0.5486 ± 6.1239 × 10−2

DSNet 0.9983 ± 3.5805 × 10−7 0.7366 ± 4.4047 × 10−3 0.9596 ± 5.2545 × 10−5 0.9689 ± 8.5768 × 10−5 0.8989 ± 7.6711 × 10−4

SF-CNN 1 ± 0 0.6524 ± 3.2565 × 10−3 0.6169 ± 5.2057 × 10−4 0.9341 ± 2.7373 × 10−5 0.7801 ± 3.0667 × 10−4

Our method 0.9973 ± 2.6221 × 10−7 0.8365 ± 3.5085 × 10−3 0.8955 ± 1.0678 × 10−3 0.9756 ± 1.1788 × 10−5 0.9179 ± 1.3558 × 10−4

Table 4. Classification Results of Xi’an with Different Methods, where the highest mean and lowest
variance for each category are marked in bold.

Method Water Vegetation Urban OA Kappa

SVM 0.1187 ± 1.3141 × 10−6 0.7117 ± 2.8244 × 10−5 0.4533 ± 9.9304 × 10−6 0.5503 ± 1.0795 × 10−5 0.2473 ± 8.1624 × 10−6

Wishart 0.9426 ± 5.9199 × 10−10 0.6929 ± 4.6971 × 10−8 0.5352 ± 2.3842 × 10−8 0.6777 ± 2.4949 × 10−8 0.4876 ± 4.8599 × 10−8

RF 0.5714 ± 1.9666 × 10−3 0.6899 ± 1.1314 × 10−3 0.7690 ± 4.6189 × 10−4 0.6772 ± 5.5937 × 10−4 0.4765 ± 1.6474 × 10−3

XGBoost 0.8080 ± 1.1019 × 10−5 0.7154 ± 5.9034 × 10−7 0.7764 ± 3.3800 × 10−6 0.7457 ± 7.8391 × 10−7 0.5713 ± 1.6880 × 10−6

SAE 0.7414 ± 3.7074 × 10−3 0.7676 ± 7.7493 × 10−4 0.6726 ± 1.2384 × 10−3 0.7236 ± 2.5146 × 10−4 0.5521 ± 5.5544 × 10−4

DBN 0.2023 ± 8.2545 × 10−5 0.8401 ± 1.3976 × 10−3 0.5259 ± 8.0207 × 10−3 0.3569 ± 6.3245 × 10−4 0.1527 ± 4.8978 × 10−4

CV-CNN 0.8781 ± 1.4510 × 10−2 0.3229 ± 7.9481 × 10−2 0.9690 ± 1.4333 × 10−3 0.6295 ± 1.2193 × 10−2 0.4673 ± 1.8775 × 10−2

DSNet 0.6091 ± 2.8907 × 10−4 0.9173 ± 5.2544 × 10−5 0.7569 ± 2.4082 × 10−3 0.7864 ± 5.1668 × 10−4 0.6639 ± 1.2111 × 10−3

SF-CNN 0.8654 ± 1.5009 × 10−4 0.8178 ± 6.2817 × 10−4 0.8761 ± 4.0403 × 10−4 0.8421 ± 3.2540 × 10−4 0.7359 ± 9.8751 × 10−4

Our method 0.9211 ± 4.9214 × 10−4 0.8881 ± 3.0958 × 10−4 0.8492 ± 5.8033 × 10−4 0.8799 ± 8.4130 × 10−5 0.8027 ± 2.1868 × 10−4

4.3. Classification Results of Multi-PolSAR Images with Different Methods

The classification results of the three PolSAR images with different methods are shown
in Figures 9–11. It can be seen that our method achieves the best classification performance
on all the three images. Our method gains a better regional consistency than other methods
because of larger patches, and also, our method obtains a better boundary location by
splitting the patches that are judged as impure patches into smaller patches. SVM only
shows an acceptable result in the PolSAR image of Flevoland, while in the other two
images, there exist a great many error points, which destroys the regional consistency.
Wishart also generates numerous error points in vegetation and urban areas in the three
experimental images. RF, XGBoost and SAE cannot discriminate urban and vegetation
well. DBN cannot even classify the PolSAR image of Xi’an, where a large number of
pixels are classified as water. CV-CNN assigns the category urban to a large proportion of
water in Flevoland and almost does not distinguish vegetation in the third PolSAR image.
The classification performances of DSNet and SF-CNN are near to our method, but the
ability to distinguishment between urban and vegetation is still weaker.



Remote Sens. 2022, 14, 2451 19 of 30

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Classification results of San Francisco with different methods. (a) SVM. (b) Wishart.
(c) RF. (d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Classification results of Flevoland with different methods. (a) SVM. (b) Wishart.
(c) RF. (d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Classification results of Xi’an with different methods. (a) SVM. (b) Wishart. (c) RF.
(d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.
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The detailed statistical values of different methods’ classification results are listed
in Tables 2–6 and Appendix C. The results suggest that, though our method cannot be
superior to all the comparative methods in every class , it achieves steady classification
performance in all categories, and obtains the highest OAs and Kappas for all experimental
images. Furthermore, the comparative methods cannot get satisfying results for all the
images. SVM gets a low ACC of water in Xi’an with 0.1187. Wishart and SAE classify
vegetation in Flevoland with accuracies of 0.3758 and 0.5058. RF, XGBoost, SAE and SF-
CNN produce less accuracy in vegetation. DBN and CV-CNN have extremely low ACC
values for vegetation of San Francisco 0.3608 and 0.1098 separately. DSNet only gets higher
OAs for the top two images. By contrast, the lowest ACC derived from our method is
0.7851, which is still the third highest value for vegetation in San Francisco. Table 5 reports
computational time for inference of different methods. Our method takes a similar duration
compared with DSNet. The Chi-square values of different methods’ results are displayed in
Table 6. It can be found that Wishart and Cv-CNN obtain very small Chi-square values to
reveal that Wishart and Cv-CNN can approximate the distribution of PolSAR land covers
very well. We deeply resort to Wishart and Cv-CNN when selecting samples and designing
the network. Thus, our classification results acquire the smallest Chi-square values for
Flevoland and Xi’an. In Appendix C, confusion matrixes of classification results with
different methods are exhibited. Especially in Figure A3, the compared methods, except
ours, generate confusion matrixes that contain a lot of values in non-diagonal positions.
This further suggests that our proposed model is superior to the comparison methods.

Table 5. Computational time (second) for inference of different methods, where the minimum value
for every class is are marked in bold.

Method San Francisco Flevoland Xi’an

SVM 685.45 1372.09 202.54
Wishart 0.22 0.38 0.09

RF 121.87 254.42 44.16
XGBoost 1.63 3.00 0.70

SAE 7.87 16.25 3.02
DBN 17.46 36.75 6.40

Cv-CNN 16.83 44.86 7.19
DSNet 88.74 191.52 31.22

SF-CNN 593.67 1178.56 208.34
Our method 81.86 216.60 53.54

Table 6. Chi-Square values of different methods’ results, where the minimum value for every class is
are marked in bold.

Method San Francisco Flevoland Xi’an

SVM 25,058.4988 7800.7902 437,197.4096
Wishart 0.2284 2.1369 1.3562

RF 746.2526 172.5812 9674.8736
XGBoost 132.4841 2255.7278 4540.7887

SAE 141.4533 1790.7738 1287.4820
DBN 4453.4618 2294.0851 285,667.3573

Cv-CNN 2.1132 0.6441 4.5426
DSNet 4277.5784 673.8785 5833.1897

SF-CNN 17,402.9442 3487.4468 872.4309
Our method 7.2187 0.0035 0.2038
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4.4. Ablation Study
4.4.1. Influence of Different γ in L1 Loss

In loss function L1 defined in (11), the weight γ controls the contributions of classifi-
cation head and projection head. To study the influence of γ, we run experiments with γ
increasing from 0.1 to 0.9 at an interval of 0.1. Figure 12 shows the variation of OAs with
γ. As is shown in Figure 12, the change of γ cannot notably influence the performance of
the TCSPANet, and whatever γ is, the rank order of OAs of the three images’ classification
results does not change.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

0 . 8 8
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0 . 9 4
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 F l e v o l a n d
 X i ' a n

Figure 12. Influence of different γ in L1 loss.

4.4.2. Influence of the Number of Transformer Layers in the SPAE

Transformer encoder is a stack of transformer layers and is the core part of our
proposed SPAE to capture the dependence among sub-patches in a patch sample. To
research the effect of different numbers of transformer layers on classification results, we
set the number of transformer layers E = 1∼10 to run experiments. From Figure 13, we can
find that there is no positive correlation between E and OA. Hence, too many transformer
layers are unnecessary in the SPAE.

0 2 4 6 8 1 0

0 . 8 8
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0 . 9 6

0 . 9 8

OA
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Figure 13. Influence of the number of transformer layers in the SPAE.
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4.4.3. Effect of Gradually Training

As previously mentioned, through gradually training, our model progressively achieves
all its functions. In order to study the effect of the gradual strategy, we compare the
classification results from our model under three kinds of training strategies. Besides the
gradually training strategy described in Appendix A, we also compare two other training
ways. For one training way, in the TCNet, the first contrastive learning stage is removed,
and all parameters of networks f , g, and b are optimized with the SsMsPD. For another
training way, all parameters of the TCSPANet are trained simultaneously with training the
TCNet. According to Figure 14, the blocking effect in the first column is apparently fewer
than in the other two columns, which proves that the presented gradually training strategy
works and can improve classification effect. The classification results listed in Tables 7–9
also demonstrate the effectiveness of gradually training.

Figure 14. Effect of gradually training for our model. The left column is the classification results
based on the completed gradually training; the middle column is the classification results without
self-supervised contrastive learning; the right column is the classification results with the model
removing the two stages of contrastive learning.

Table 7. Classification Results of San Francisco by using different training strategies, where the
highest mean and lowest variance for each category are marked in bold.

Training Strategy Water Vegetation Urban OA Kappa

Completed training 0.9620 ± 7.3259 × 10−5 0.7851 ± 2.1159 × 10−3 0.9596 ± 3.2721 × 10−5 0.9451 ± 1.9813 × 10−5 0.9008 ± 6.5051 × 10−5

Without #1 contrastive
learning 0.9812 ± 6.6249 × 10−5 0.4996 ± 1.1437 × 10−2 0.9940 ± 9.6518 × 10−7 0.9461 ± 5.9103 × 10−5 0.8984 ± 2.3459 × 10−4

Without #1 and #2
contrastive learning 0.9847 ± 5.6209 × 10−6 0.5786 ± 1.3812 × 10−3 0.9890 ± 4.5659 × 10−6 0.9514 ± 5.1887 × 10−6 0.9094 ± 2.1073 × 10−5

Table 8. Classification Results of Flevoland by using different training strategies, where the highest
mean and lowest variance for each category are marked in bold.

Training Strategy Water Vegetation Urban OA Kappa

Completed training 0.9973 ± 2.6221 × 10−7 0.8365 ± 3.5085 × 10−3 0.8955 ± 1.0678 × 10−3 0.9756 ± 1.1788 × 10−5 0.9179 ± 1.3558 × 10−4

Without #1 contrastive
learning 0.9984 ± 1.0624 × 10−6 0.5052 ± 3.6292 × 10−3 0.9390 ± 6.9606 × 10−4 0.9557 ± 1.0303 × 10−5 0.8499 ± 1.2203 × 10−4

Without #1 and #2
contrastive learning 0.9978 ± 2.7103 × 10−7 0.5572 ± 6.9977 × 10−3 0.9423 ± 1.4765 × 10−4 0.9595 ± 2.8556 × 10−5 0.8630 ± 3.2772 × 10−4
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Table 9. Classification Results of Xi’an by using different training strategies, where the highest mean
and lowest variance for each category are marked in bold.

Training strategy Water Vegetation Urban OA Kappa

Completed training 0.9211 ± 4.9214 × 10−4 0.8881 ± 3.0958 × 10−4 0.8492 ± 5.8033 × 10−4 0.8799 ± 8.4130 × 10−5 0.8027 ± 2.1868 × 10−4

Without #1 contrastive
learning 0.9541 ± 1.3524 × 10−4 0.8298 ± 2.3071 × 10−3 0.9022 ± 7.3232 × 10−4 0.8738 ± 2.7037 × 10−4 0.7969 ± 5.9251 × 10−4

Without #1 and #2
contrastive learning 0.8682 ± 6.3581 × 10−4 0.8314 ± 4.8735 × 10−4 0.8885 ± 9.4727 × 10−5 0.8566 ± 3.8449 × 10−5 0.7671 ± 7.1434 × 10−5

5. Conclusions

In order to take full advantage of unsupervised PolSAR data and extract the context
within patch samples, we propose a novel PolSAR image classification model TCSPANet.
For one thing, the TCNet is trained with two stages for fully extracting the presentation of
unsupervised samples in the first contrastive learning and learning supervised information
in the second contrastive learning. For another, we design the SPAE based on transformer
and insert it into the TCNet to model the context within a PolSAR sample so as to judge the
land cover complexity of a patch. Considering the hardness of pixel-level annotation, we
build up two patch-level datasets, an unsupervised dataset UsMsPD and a semi-supervised
dataset SsMsPD, to gradually train our model. The experiments show that, in addition
to achieving fine regional consistency, our method also reduces the blocking effect and
improves the boundary location. However, with the shrink of patches, the influence of
noise on classification comes to increase, which is a problem worth studying in the future.
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Appendix A. Algorithm for Training the TCSPANet

Algorithm A1 Gradually Training the TCSPANet

Input: Datasets UsMsPD and SsMsPD, cluster number Nscal for scale scal ∈ 32, 16, 8, 4, 2,
land cover category number M, batch size B for the TCSPANet, structure of f , g, b and
u, temperature τ, weight γ

Output: The trained TCSPANet
1: # the first contrastive learning stage of the TCNet
2: for all scal ∈ {32, 16, 8, 4, 2} do
3: get a minibatch Dscal

1 =
{

T1, ..., T2Nscal

}
from the UsMsPD;

4: for all k ∈ {1, ..., 2Nscal} do
5: hk = f (Tk);
6: zk = g(Tk);
7: end for
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8: if scal = 2 then
9: Generate T2Nscal+1 based on random four patch from Dscal

1 ;
10: h2Nscal+1 = f

(
T2Nscal+1

)
;

11: z2Nscal+1 = g
(
h2Nscal+1

)
;

12: end if
13: for all i ∈ {1, ..., 2Nscal} and j ∈ {1, ..., 2Nscal} do
14: calculate the ENT-Xent li,j,scal ;
15: end for
16: update networks f and g by minimizing LC in (9);
17: end for
18: # the second contrastive learning stage of the TCNet
19: for all scal ∈ {32, 16, 8, 4, 2} do
20: if scal = 2 then
21: get a minibatch of pure patches Dscal

2 = {T1, ..., T2M} from the SsMsPD;
22: end if
23: if scal > 2 then
24: get a minitatch including 2M pure patches and an impure patch Dscal

2 =
25: {T1, ..., T2M, T2M+1} from the SsMsPD;
26: end if
27: for all k ∈ {1, ..., 2M}or{1, ..., 2M + 1} do
28: hk = f (Tk);
29: zk = g(hk);
30: end for
31: for all i ∈ {1, ..., 2M} and j ∈ {1, ..., 2M} do
32: calculate the ENT-Xent li,j,scal by (8) replaced Nscal with M;
33: end for
34: calculate LC by (9) replaced Nscal with M;
35: fetch labels Y for pure patches T1 ∼ T2M;
36: for all k ∈ 1, .., 2M do
37: vk = b(hk);
38: end for
39: calculate LCE by (10);
40: update networks g, b and last two layers of f by
41: mininizing L1 in (11);
42: end for
43: #training the SPAE in the TCSPANet;
44: combine the SPAE u with trained newtorks f , g and b (softmax removed) according to

Figure 6a;
45: for all scal ∈ {32, 16, 8, 4} do
46: get a minibatch Dscal

3 =
{

T∗1 , ..., T∗B
}

from the SsMsPD;
47: generate new labels Ẏ for Dscal

3 by (14);
48: for a doll i ∈ {1, ..., B}
49: hi = f

(
T∗i
)
;

50: zi = g(hi);
51: vi = b(hi);
52: get four sub-patches sTi,1 ∼ sTi,4 by evenly splitting T∗i ;
53: shi,1 ∼ shi,4 = f (sTi,1) ∼ f (sTi,4);
54: szi,1 ∼ szi,4 = g(shi,1) ∼ g(shi,4);
55: pack szi,1 ∼ szi,4 into a matrix sZi;
56: εi = u(sZi);
57: get the output _yi = softmax([vi, εi]) by (12);
58: end for
59: update the SPAE u by minizing L2 in (13);
60: end for
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61: return the trained TCSPANet.

Appendix B. Algorithm for Classifying with the Trained TCSPANet

Algorithm A2 Classifying or Splitting

Input: A PolSAR image ρ, the trained model TCSPANet
Output: The classification result of ρ

1: set the biggest scale scal = 32;
2: get a patch set Ω by sliding window of scal × scal with the stride of (scal, scal);
3: while scal >= 2 do
4: for all Ti ∈ Ω do
5: get four sub-patchessTi,1 ∼ sTi,4 through evenly splitting Ti;
6: get the current patch’s prediction result _yi by (12);
7: if scal = 2 then
8: removing the last element of _yi,

_yi =
_yi[1 : M];

9: assign all pixels of Ti with category ToClass
(
_yi

)
;

10: else
11: if ToClass

(
_yi

)
= M + 1 then

12: #splitting for impure patch
13: store the four sub-patches into Ωnew;
14: else
15: #classifying for pure patch
16: assign all pixels of Ti with category ToClass

(
_yi

)
;

17: end if
18: end if
19: end for
20: set Ω = Ωnew;
21: set Ωnew = ∅;
22: scal = scal/2;
23: end while
24: return the classification result of ρ.

Appendix C. Confusion Matrixes
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Figure A1. Confusion matrixes of classification results for San Francisco with different methods. (a) SVM.
(b) Wishart. (c) RF. (d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.
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Figure A2. Confusion matrixes of classification results for Flevoland with different methods. (a) SVM.
(b) Wishart. (c) RF. (d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.
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Figure A3. Confusion matrixes of classification results for Flevoland with different methods. (a) SVM. (b)
Wishart. (c) RF. (d) XGBoost. (e) SAE. (f) DBN. (g) CV-CNN. (h) DSNet. (i) SF-CNN (j) Our method.
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