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Abstract: The visualization of synthetic aperture radar (SAR) images involves the mapping of high
dynamic range (HDR) amplitude values to gray levels for lower dynamic range (LDR) display devices.
This dynamic range compression process determines the visibility of details in the displayed result. It
therefore plays a critical role in remote sensing applications. There are some problems with existing
methods, such as poor adaptability, detail loss, imbalance between contrast improvement and noise
suppression. To effectively obtain the images suitable for human observation and subsequent inter-
pretation, we introduce a novel self-adaptive SAR image dynamic range compression method based
on deep learning. Its designed objective is to present the maximal amount of information content in
the displayed image and eliminate the contradiction between contrast and noise. Considering that,
we propose a decomposition-fusion framework. The input SAR image is rescaled to a certain size and
then put into a bilateral feature enhancement module to remap high and low frequency features to
realize noise suppression and contrast enhancement. Based on the bilateral features, a feature fusion
module is employed for feature integration and optimization to achieve a more precise reconstruction
result. Visual and quantitative experiments on synthesized and real-world SAR images show that
the proposed method notably realizes visualization which exceeds several statistical methods. It has
good adaptability and can improve SAR images’ contrast for interpretation.

Keywords: synthetic aperture radar (SAR); visualization; dynamic range compression; deep learning

1. Introduction

As one of the main sources of remote sensing, synthetic aperture radar (SAR) has
the all-day and all-weather observation capability [1]. Therefore, the SAR image plays
an important role in remote sensing applications, including disaster monitoring, resource
exploration, target detection, etc. However, the pixel values of SAR images have a high
dynamic range, it is difficult to present the maximal amount of information content in the
displayed image, and it is unsuitable for human observation. This problem also affects
the subsequent intelligent interpretation. Hence, the visualization of SAR images plays a
crucial role in remote sensing applications.

In order to realize SAR image visualization, many dynamic range compression algo-
rithms are proposed. Generally speaking, the HDR compression techniques can be roughly
divided into two types: filter based and transfer function based. However, the filter-based
techniques are fundamentally improper for SAR image dynamic range reduction tasks.
This is because for SAR images, filter-based HDR compression techniques actually perform
a high boost filtering on the input SAR images. Although the contrast can be enhanced
significantly by high boost filtering, the ranks of the intensity levels are destroyed in the
output image. The loss of intensity ranks may cause the visual reversal of brightness. It
means that an object with higher reflectance ratio may appear darker than the other objects
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with a lower reflectance ratio. This may bring unpredictable consequences to the applica-
tions such as object detection and classification, image analysis, and so on. Therefore, an
important criterion for SAR image dynamic range compression is to preserve the intensity
ranks in the output image. It is necessary to preserve the structure information of original
SAR images.

The rank preservation property is one of the most significant advantages of the transfer
function-based HDR compression techniques. This kind of techniques can reshape the
output histogram and at the same time the rank of intensity levels can be preserved. A typ-
ical histogram based dynamic range compression algorithm is the well-known histogram
equalization HE [2] and its variants. But the overall brightness of images processed by HE is
too high to damage details and noise is enlarged, therefore adaptive histogram equalization
(AHE) [3] was proposed. AHE divides images into sub-regions, then it performs histogram
equalization on each sub-region. But when a sub-region contains similar pixel values,
the noise in this area will be further enlarged. For this reason, an adaptive histogram
equalization method based on contrast limitation (CLAHE) [4] is proposed. By presetting a
threshold value, the histogram is clipped to avoid excessive contrast amplification. In addi-
tion, there are some image enhancement methods based on Retinex [5] theory. Single-scale
Retinex (SSR) [6] struggles to achieve the balance between good contrast enhancement and
detailed structure information preservation. For this reason, multi-scale Retinex (MSR)
was proposed [7], but it will generate halo in areas with a large discrepancy of brightness.
Besides, the details in bright areas of its results will not be significantly improved. Other
dynamic range compression algorithms are based on S-type function mapping, such as
Gamma correction [8] and logarithmic transformation [9]. They both have poor adaptability
and rely on manual parameter selection. To sum up, these traditional methods are fast
in calculation, but poor in performance, unable to adjust the contrast of different images
adaptively, and have the problem of missing detailed structure information, which brings
challenges to subsequent image interpretations.

Then, in terms of the above problems, some improved methods have been put forward.
Zhijiang Li et al. [10] proposed a new SAR image high dynamic range compression and
pseudo-color processing algorithm based on Retinex. Gaussian filtering was used to divide
the SAR images into uniform parts and detail parts, and then the detail parts were remapped
to obtain the final compressed images. Satoshi Hisanaga et al. [11,12] proposed a dynamic
range compression algorithm for SAR images based on classification and fusion respectively.
Firstly, the algorithm eliminated the little difference between pixels to achieve the effect
of noise suppression through neighborhood nonlinear processing. Then, a Laplacian
filter was used to roughly classify the target region with high pixel values. The k-mean
clustering algorithm and region growth algorithm were used to perform fine classification.
Finally, linear equalization processing with brightness limitation was carried out for various
regions, and the final visual image could be obtained by fusion of the processed results.
The character of this algorithm is that the target and the background were separated, so the
details of the target area were saved effectively. However, the fusion results of the algorithm
were prone to generating obvious classification boundaries. Aakash Upadhyay et al. [13]
proposed a SAR image adaptive enhancement algorithm after compression. Firstly, the
Detail Preserving Anisotropic Diffusion algorithm (DPAD) was used to separate speckle
noise and the edge details in the images to realize noise suppression. The edge details
were enhanced and superimposed with other parts to obtain the final processing results.
In the algorithm, JSEG (J-segmentation) was used to extract edge details, and the linear
contraction function was used to enhance the edge details adaptively. This algorithm could
not only suppress the speckle noise, but also enhance the details in the images. To sum
up, these improved methods can overcome the existing problems to a certain extent, but
in practical applications, they are too time-consuming. Furthermore, they achieved good
performance in specific scenes and had their own limitations when processing SAR images.

For the inherent noise of SAR images, various model-based methods have been de-
veloped to suppress speckle noise, such as adaptive local statistical filtering methods [14],
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wavelet-based methods [15], sparse representation methods [16], block match and 3-D
filter (BM3D) algorithm [17], and the total variation(TV) method [18]. However, traditional
algorithms still have difficulty in distinguishing details from noise, which usually results in
noise residuals or over-smoothing effects. Researchers have also explored the application
of deep networks to SAR image despeckling. SAR-CNN [19] is the first network based on
deep learning that realizes SAR image despeckling through 17-layer CNNs. SAR-DRN [20]
is a lightweight dilated residual network for SAR image despeckling, which introduced
residual structure and dilation convolution to maintain performance while reducing train-
ing complexity. In addition, HDRANet [21] employed the skip connection and the dilation
convolution to make full use of contextual information. It also introduced attention mecha-
nism to emphasize effective features and suppress useless features. In our paper, we aim
to avoid the amplification of noise. In other words, noise suppression is taken into con-
sideration rather than despeckling. By referring to these despeckling methods [22,23], our
proposed dynamic range compression method can realize visualization without amplifying
the existing noise.

In recent years, deep learning has achieved great success in the field of low-level
image processing [23–25]. End-to-end networks and GANs [26] have been widely used
as powerful tools, including image super-resolution [27,28], image denoising [29] and
image-to-image conversion [30,31]. Yan et al. [32] took the first step in exploring the use of
CNN for image editing. Some CNN-based methods, such as LLCNN [33], a convolutional
neural network for low-light image enhancement, can handle brightness and contrast
enhancement. Lore et al. [34] proposed a deep learning-based approach to adaptively
enhance and denoise images captured in low-light environments, i.e., LLNet, directly using
the existing deep neural network architecture (i.e., stack sparse denoising auto encoder)
to establish the relationship between low-light images and corresponding enhanced and
denoised images. Experimental results show that the method based on deep learning is
suitable for low-light image enhancement. Because of the successful exploration in the
field of optical images for low-light images enhancement, this paper will explore the use of
CNN for SAR image dynamic range compression tasks.

As far as we know, the SAR image dynamic range compression based on deep learning
has not been widely studied, so we propose a framework for SAR image visualization by
learning the mapping from original SAR images with high dynamic range to ground truth.
The main contributions of this work are as follows: (1) To realize SAR images visualization
adaptively, we propose a dynamic range compression framework based on CNN. This
framework improves the image contrast, suppresses noise and preserves details effectively
by decomposition and fusion; (2) In order to eliminate the contradiction between contrast
and noise, a bilateral feature enhancement module is designed. It can build a more effective
semantic feature description of SAR images by remapping high and low frequency features
of SAR images; (3) To achieve a more precise reconstruction result, a feature fusion module
is designed. It can integrate bilateral features and further optimize feature description by
fine-tuning and selecting useful responses; and (4) To testify the validation of the proposed
framework, visual and quantitative experiments are conducted on synthesized and real-
world SAR images. The results show that our proposed framework notably improves
contrast with better preserving details and suppressing noise, which outperforms several
traditional dynamic range compression methods.

The rest of this paper is organized as follows: In Section 2, the proposed decomposition-
fusion framework for SAR visualization is introduced in detail; in Section 3, implementation
details of experiments are introduced, visual results are presented and quantitative analysis
is carried out; in Section 4, we discuss the success of the proposed method and some
additional notes; finally, conclusions are drawn in Section 5.
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2. Proposed Method

In this section, firstly, we give an overview of the proposed decomposition-fusion
framework. Then, the modules in the proposed framework are illustrated respectively.
Finally, we introduce the hybrid loss function that we designed.

2.1. Overview of Proposed Decomposition-Fusion Framework

The proposed framework comprises two adjacent modules: a bilateral feature enhance-
ment module and a feature fusion module. One is for high and low frequency features
remapping and the other is for bilateral features integration.

As shown in Figure 1, the inputs of dimension H ×W × 3 are mapped into feature
space by the bilateral feature enhancement module. Then, the bilateral feature maps are
passed through the feature fusion module to be integrated. After scaling to the original
dimension of H × W × 3, visualized images are obtained. Moreover, by minimizing a
metric between generated images and ground truth, the network is trained and updated.
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Figure 1. Overview of the proposed decomposition-fusion framework.

2.2. Bilateral Feature Enhancement Module

In general, optical low-light image enhancement tasks usually utilize networks to
remap pixel values directly. However, direct mapping causes noise to increase along with
contrast. In order to eliminate the contradiction between contrast and noise, a bilateral
feature enhancement module is proposed. As shown in Figure 2a, two independent
feature extraction branches are used to suppress noise and enhance contrast by remapping
respectively. This ensures that features in each branch are valid and would not interfere
with each other. Finally, the output features of dimension H × W × 64 from the two
branches are added together as an input of feature fusion module presented in Section 2.3.
The two independent feature extraction branches: high frequency feature branch and low
frequency feature branch, will be separately introduced below.
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2.2.1. High Frequency Feature Branch

DnCNN has demonstrated that employing residual learning and convolution layers
can endow a strong ability of denoising. In Figure 2a, the left part of the bilateral feature
enhancement module is the high frequency feature branch.

First, the input of dimension H ×W × 3 is mapped into feature space by a ConvBlock.
A ResBlock is followed, as shown in Figure 2b. It consists of 3 × 3 convolution, batch
normalization and Leaky ReLU [35], with appropriate zero padding to ensure that the
output of each layer has the same dimension as the input image. After a series of cascaded
operation, the feature map is added with the input feature of dimension H ×W × 64 to
integrate more spatial information. Then, the feature map of ResBlock is fed into a channel
attention module (CAM), which is designed to highlight important features and reduce
computational redundancy. Finally, the outputs of CAM and these two ConvBlocks are
added together as the high frequency feature branch’s output of dimension H ×W × 64.

The high frequency feature branch builds a preliminary remap of high frequency
features and suppresses noise.

2.2.2. Low Frequency Feature Branch

In the CNN models, more context information is usually obtained by enlarging the
receptive field, which is mainly achieved by increasing the size of the filters or stacking
the convolution layers. However, these operations undoubtedly increase the number of
parameters and the complexity of the model. In Figure 2a, we cascade hybrid dilation
convolution blocks to extract and remap the low frequency features from the input image
of dimension H ×W × 3.

By employing dilation convolution, it can effectively enlarge the receptive field while
keeping the filter size and network depth unchanged. The structure of DilationBlock
is shown in Figure 2c. First, we adopt a channel-split strategy to avoid channel-wise
interferences. Specially, two paralleled convolution branches are split into two 64/2 feature
maps. In the left branch, the dilation rates are set to 1, 2, and 3 respectively to avoid grid
artifacts [36]. The right branch consists of a 3 × 3 convolution and a ReLU. The output
feature maps of two branches are added and adjusted by a 3 × 3 convolution to obtain an
H ×W × 64 feature map. Then, the input feature of dimension H ×W × 64 is added to
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integrate more spatial information. After two ConvBlocks and three DilationBlocks, the
feature map of dimension H ×W × 64 is added with that of the high frequency feature
branch for feature fusion.

The low frequency feature branch builds a preliminary remap of low frequency fea-
tures and improves overall contrast.

2.3. Feature Fusion Module

To fuse remapped high and low frequency features in a more effective way, a feature
fusion module is proposed. For the features generated from bilateral feature enhancement
module, we employ a symmetric encoder-decoder network to integrate and optimize them.
This structure allows details to be captured at different scales with the increase of network
depth. The encoder part is utilized to integrate different values of bilateral features, and
the decoder part is used for retrieving and reconstructing features.

The feature fusion module consists of a preprocessing block (PB), three encoder blocks
(EB), a middle block (MB), three decoder blocks (DB), and an output block (OB). The
architecture is presented in Figure 3.
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First, the input of dimension H ×W × 64 is down-sampled to a certain size by PB.
Then, the feature maps with different scales pass through a series of cascaded EBs. Each EB
is made up of a max pooling and two residual recursive learning (RRL) units described in
Section 2.3.1. Each EB produces a tensor of the feature map with double the channels. The
MB is followed. It resizes the feature map in preparation for decoding. After a series of
symmetrical DBs and the OB, the result of the visualized image is obtained.

Moreover, the skip connection is introduced to fuse the shallow and deep features
between PB and OB, EB-1 and DB-1, EB-2 and DB-2, EB-3 and DB-3, respectively. Before
the shallow features passed to the corresponding blocks, a muti-scale attention mechanism
(MA) described in Section 2.3.2 is used to enhance useful features to obtain an effect of fur-
ther noise suppression. Hence, with the skip connections and the MA, the information lost
during the maximum pooling operation can be restored and a larger amount of contextual
information is integrated to compensate the more genuine details.

2.3.1. Residual Recursive Learning Unit

To enhance feature extraction, we introduced the residual recursive learning unit (RRL)
in the EBs, MB and DBs. Different from the subblocks of the traditional UNet, the RRL
combines the residual blocks and recursive structure, as presented in Figure 4.
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An RRL unit can optimize the input feature representation. First, feature maps after
each recursion contain previous information. It utilizes a very large context through extract-
ing features recursively compared to ordinary serial convolution. Second, all recursions
are supervised. By combining all feature maps resulting from different levels of recursions,
it can deliver a more accurate final prediction map. The optimal feature representation is
automatically learned during training.

Let the input feature of dimension H ×W × C be F0. It is the output of RRL’s previous
layer in the feature fusion module. The output Fi of each residual block in the recursive
relationship can be expressed as:

Fi = δ(δ(Fi−1 ∗W3×3) ∗W3×3) + Fi−1, (1)

where, δ is the activation function LeakyReLU, ∗ is the convolution operation, and W is the
weight of the current convolution kernel.

The results of each residual block are reconstructed by two 2 × 2 convolution kernels:

Outputi = δ(W2×2 ∗ Fi), (2)

We directly pad zeros before each convolution to make sure that feature maps of the
middle layers have the same size as the input image. Their dimensions are H ×W × C.

In order to avoid the difficulty of convergence caused by recursion and to select the
optimal feature, the outputs of residual recursive blocks are supervised by weighting them
to obtain the final output feature of dimension H ×W × C:

OF =
1
3∑3

i=1 Outputi, (3)

2.3.2. Multi-Scale Attention Mechanism

In order to highlight salient features that are passed through the skip connections,
a multi-scale attention (MA) mechanism is incorporated into the encoder-decoder archi-
tecture, as presented in Figure 5. Information extracted from the coarse scale is used to
disambiguate irrelevant and noisy responses in skip connections. This is performed right
before the concatenation operation to merge relevant activations only.
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Specially, each feature of DB-i is used for each feature of EB-i to determine focus
regions. MA helps generate attention coefficients αi to prune lower feature responses before
concatenation. The attention coefficients are formulated as follows:

αi = σ3(σ2(σ1(FDB−i ∗W1×1×1 + FEB−i ∗W1×1×1) ∗W1×1×1)), (4)

σ1(x) = max(0, x), (5)

σ2(x) = xγ, (6)

σ3(x) =
1

1 + e−x , (7)

where, ∗ is the convolution operation, W is the weight of the current convolution kernel,
σ1 is ReLU operation, σ2 is Gamma correction, σ3 is sigmoid operation, γ is the Gamma
correction coefficient, x is the feature map.

First, the linear transformations are computed using channel-wise 1×1×1 convolutions
for the input tensors. Features of DB-i and EB-i are linearly mapped to an intermediate
space with the same dimension. Second, the noise response is further pruned using a
ReLU operation. According to the property of the ReLU, it sets feature response which
is below zero to zero while the noise response is always below zero during training.
Third, 1×1×1 convolution adjusts the map to a designated dimension. Then the Gamma
correction fine tunes the coefficients map to avoid excessive enhancement and loss of
weak useful information. It helps expand the coefficients level of feature to retain details.
Four, the sigmoid operation helps assign high weights to feature maps with a higher
response. According to the property of the sigmoid, it weights the feature filtered in the
previous steps to between 0.5 and 1. The higher the response, the closer the weight is to
1. Finally, the αi ∈ [0, 1] is achieved. By multiplying with the αi, the feature transferred
for concatenation can be selected for spatial regions by analysing both the activations and
contextual information provided by the feature of the encoder layer which is collected from
a coarser scale.

In conclusion, the fusion feature module integrates bilateral features in a more effective
way. The MA combined with skip connections means that the information in degraded
areas can be restored. They compensate details and adjust deviations so as to construct a
more precise feature description. In the end, a visualized result can be produced by the
proposed decomposition-fusion framework.

2.4. Loss Function

In order to improve the image quality both qualitatively and quantitatively, using
common error metrics such as L2 is shown to be insufficient. Therefore, we propose a hybrid
loss function by further considering the structure information and context information.

L2 loss compares differences between two images pixel by pixel, and it focuses on
low-level information. It is also necessary to use some kind of higher-level information to
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improve the visual quality. In particular, supervision by L2 loss usually causes structure
distortion such as artifacts, which are visually salient. Therefore, we introduce the structure
loss to measure the difference between the visualized image and the ground truth in
order to guide the learning process. In particular, we use the well-known image quality
assessment algorithms MS-SSIM to build our structure loss.

The loss function L proposed in this paper is a hybrid of mean square error loss (L2)
and multi-scale structural similarity loss (MS-SSIM). The formula is as follows:

L = λ1L2 + λ2LMS−SSIM, (8)

where,

L2 =
1
n∑n

i=1 (yi − xi)
2, (9)

yi and xi indicate the predicted value and label value respectively. N is the pixel
number of an image.

LMS−SSIM = 1−∏M
m=1 (

2µxµy + c1

µ2
x + µ2

y + c1
)

βm

(
2σxy + c2

σ2
x + σ2

y + c2
)

γm

, (10)

where M is the number of an image’s different scales, µx is the mean value of the label,
σx

2 is the variance of the ground truth, µy is the mean value of the prediction, σy
2 is the

variance of the prediction, σxy is the covariance of the label and the prediction, βm and γm
represents the relative importance of two items, c1 and c2 is constant, avoiding divisor to
be zero. The values of λ1 and λ2 are finally selected as 0.7 and 0.3 according to the results
of the experiment.

3. Experiments and Analysis

We evaluate the validity of the proposed framework on synthesized and real SAR
images in this section. First, the dataset and the setting of experimental parameters are
introduced. Then, evaluation metrics we adopt are introduced in detail. After that, we
present the experimental results and analysis on the synthesized and real-world SAR
datasets. The visual results were qualitatively compared with other algorithms in terms
of details, contrast, and noise. We also perform quantitative analysis from the aspect of
metrics calculation. Finally, we perform ablation experiments to show that the proposed
method is effective.

3.1. Implementation Details

We use synthesized SAR image pairs as datasets. Fifty original SAR images containing
different scenes were selected from Sentinel-1 SAR data to be visualized. For each image,
we use the Photoshop method to figure out the ideal brightness and contrast settings, and
then process them one by one to get the images with the best visual effect in consistency to
act as the ground truth. By cutting them into pieces, the resultant datasets total 800 ground
truth data pairs to be visualized. Six hundred and fifty pairs were divided into training
sets and 150 pairs were divided into validation sets. Finally, real SAR images are tested to
verify the visualization effect of the proposed method in practical scenes. In Figure 6, we
display the examples of the generated synthesized SAR image slices.
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The proposed decomposition-fusion framework does not require a pre-trained model,
and it can be trained end-to-end from scratch. All experiments are conducted on a work-
station with Ubuntu 16.04. The deep learning framework is PyTorch 1.4.0. A TITAN RTX
graphics card is used for acceleration. The training epoch is set to 50. 256 × 256-sized
images are used and eight instances stack a mini-batch. The optimizer is the Adam [37]
algorithm and the initial learning rate is set to 0.001. The hybrid loss function we designed
was used to train the network.

3.2. Evaluation Metrics

In image reconstruction tasks, the effect of the proposed method can be evaluated
by calculating two metrics, namely peak signal-to-noise ratio (PSNR) [38] and structural
similarity index (SSIM) [39] when ground truth exists.

PSNR represents the ratio between the maximum signal power and the noise power
that affect image quality. It measures how closely the reconstructed image represents the
referenced one and is given by:

PSNR = 20 log10(
MAXI√

MSE
), (11)

where MAXI is the maximum gray scale range, and MSE is the mean square error between
the ground truth and its reconstructed image.
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The SSIM measures the similarity between two images from the perspective of struc-
tural information. Given two images x and y, the SSIM is defined as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ
2
X + σ2

y + c2)
, (12)

where, µx and µy are the mean of x and y respectively, σxy are the covariance of x and y,
σx

2 and σy
2 are the variance of x and y respectively, c1 and c2 are constants that ensure the

divisor is not zero.
Since ground truth is not available in the real domain, it is not possible to compute the

metrics introduced above. A different approach is thus required. One option is the visual
inspection of the reconstructed images, for which we provide several results on different
scenarios. Another common approach that we adopted in this work, is to evaluate Entropy
and the enhancement criterion (EME) to evaluate the performance of the proposed method
for detail retention and contrast enhancement.

Entropy [40] is a measurement of image information richness from the perspective of
information theory. It is defined as:

Entropy = −∑i ∑j Pi,j log10Pi,j, (13)

where, (i,j) is the pixel of a image, and Pi,j is the frequency of occurrence of (i,j). The larger
Entropy value is, the better information preservation is.

EME [41] reflects the overall dynamic range level of the image. For image I(x,y), its
EME value is expressed as:

EME =
1

k1k2
∑k1

l=1 ∑k2
k=1 20lg

Imax;k,l

Imin;k,l + c
, (14)

The image is divided into blocks of size k1 × k2. Imax;k,l and Imin;k,l respectively represent
the maximum and minimum value of pixel in region (k,l), and c represents a small constant.
The larger the EME value is, the better the image enhancement effect is.

3.3. Results and Analysis

We compare the proposed method with traditional dynamic range compression algo-
rithms: HE, CLAHE, Retinex, Gamma correction and logarithmic transformation, to verify
the effectiveness of the proposed method. The results on synthetic and real SAR images
from the visual and quantitative perspective are presented below.

3.3.1. Experiments on Synthesized SAR Images

For the synthesized SAR images visualization experiments, a combination of visual
and quantitative comparisons is used to analyze the effects of the different methods. Firstly,
Figure 7 shows the visual results on synthesized SAR images.
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It can be seen from the visual results that all methods can realize visualization to a
certain extent. However, the traditional methods have defects on different fronts. The
HE improves contrast significantly, while its result shows excessive enhancement. In
other words, it leads to the loss of details and the distortion of structure, along with the
amplification of noise. CLAHE prevents excessive enhancement by presetting a threshold
value. But it has a poor performance in improving contrast. Retinex shows an acceptable
tradeoff between proper contrast and detailed feature preservation. However, its results
look distributed by noise in some scenes. In short, these adaptive algorithms have the
above problems, and it is difficult to ensure the consistency of the visual effect. The Gamma
correction and logarithmic transformation are not adaptive and depend on the selection
of parameters. They even perform worse than the other methods. From the perspective
of contrast enhancement, noise suppression, detail retention and adaptivity, the proposed
algorithm is superior to the traditional algorithms. As shown in Figure 7, our method
obtains better results compared to the traditional ones. This can be explained from two
aspects: (1) Our method can notably improve contrast with better preserving details and
suppressing noise; and (2) The method has high adaptivity and its results can maintain a
consistency. Moreover, an important criterion for SAR image dynamic range compression
is to preserve the intensity ranks in the output image. By observing the histogram of the
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input image, our method protects the ranks of the intensity levels in original SAR images
compared with other methods. Besides, the histogram distribution of results achieved
by our method is consistent with the ground truth. This also confirms the superiority of
our method.

Except for the visual evaluation, quantitative evaluation is also necessary for compre-
hensive analysis of dynamic range compression performance. Table 1 lists the quantitative
evaluation results with the best performance marked in bold. As we can see, our proposed
method achieved the best results in terms of the PSNR and SSIM. This means that the
results of our proposed method are closer to the ground truth, with better structure feature
preservation and noise suppression.

Table 1. Numerical results on synthesized images. The highest scores are marked in bold.

Image 1 Image 2 Image 3 Image 4

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HE 6.572 0.527 7.397 0.493 7.324 0.490 6.721 0.587
CLAHE 25.293 0.584 25.431 0.572 25.445 0.571 25.240 0.589
Retinex 20.663 0.753 20.675 0.781 20.142 0.774 20.146 0.745
Gamma 21.193 0.538 21.690 0.574 21.031 0.576 21.832 0.508

Log 23.162 0.531 23.532 0.585 23.043 0.581 23.849 0.517
Proposed 31.308 0.845 31.774 0.890 31.866 0.894 31.267 0.838

3.3.2. Experiments on Real-world SAR Images

In order to further illustrate the practicability of the proposed method, we conduct
experiments on real-world 16bit SAR images from AIR-SARShip-1.0 [42] dataset. The
comparison results are shown in Figure 8.

The performance of these methods on real-world SAR images are similar to that on
synthesized images. For CLAHE, Gamma correction, and logarithmic transformation, the
cost of preserving detail is losing the contrast. And the latter two have poor adaptivity,
which is not suitable for a practical application. In common with the results on synthesized
images, a critical problem of HE and Retinex is that their results present an imbalance
between contrast enhancement and noise suppression. It can disturb subsequent interpre-
tations. By contrast, our method has good performance in solving the above problems. It
can deal with original real-world SAR images in different scenes. Our method can still
preserve the intensity ranks in the output image when dealing with real-world SAR images
compared with other methods.

Due to ground truth not being able to be achieved as the reference, the PSNR and SSIM
are no longer applicable for the real-world SAR dynamic range compression evaluation.
Thus, we employ another two non-reference indexes, Entropy and EME. They can reflect
the richness of information and the degree of contrast, respectively. Table 2 provides
the quantitative comparison, with the best and second-best performance marked in bold
and underlined.

As can be seen from Table 2, HE has a strong ability of improving contrast. However,
it loses the detailed features of the excessive enhanced region. CLAHE surpasses other
traditional methods in terms of information preservation according to its higher Entropy
score. But it doesn’t have good performance in terms of improving contrast. Our method
can always achieve the best or second-best numerical results. By combining the visual
results, it showed good dynamic range compression ability in terms of contrast enhance-
ment, noise suppression and detail preservation. It is practical in real scenes for SAR
image visualization.
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Table 2. Numerical results on real SAR images. The highest and second-highest scores are marked in
bold and underlined respectively.

Image 1 Image 2 Image 3

Entropy EME Entropy EME Entropy EME

HE 6.195895 0.922171 5.493693 0.920750 3.406962 0.921220
CLAHE 8.533201 0.791921 8.103221 0.778417 4.734564 0.741041
Retinex 5.172613 0.858365 4.164617 0.829591 1.321904 0.798544
Gamma 3.707392 0.7473 3.059469 0.7421 0.874383 0.7116

Log 3.695861 0.8301 3.034859 0.8188 0.870504 0.8031
Proposed 7.779042 0.921855 10.72357 0.920489 8.081626 0.920724

3.4. Ablation and Analysis

To further demonstrate the effectiveness of the proposed method, we conducted
a series of ablation experiments on the framework, including high frequency feature
branch (HB), low frequency feature branch (LB), bilateral feature enhancement module
(BM), feature fusion module (FM), RRL unit, and MA. Figure 9, with SSIM and PSNR as
evaluation metrics, shows the evaluation results of different network structures in each
training stage on the verification set.
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As shown in Figure 9, the decomposition-fusion framework proposed achieves a stable
and good performance. By comparing the curves of HB + FM, LB + FM, BM, BM + FM
without MA, we can ascertain the importance of the bilateral feature enhancement module
and the feature fusion module. They supplement each other, and the step of decomposition
and fusion is vital. High and low frequency features are both integral for fusion into a more
precise description. The last two curves (BM + FM without MA, BM + FM with MA) present
the effect of MA. After adopting the MA mechanism to bridge the corresponding layers
of the encoder and decoder, the PSNR and SSIM scores rise sharply. It follows that the
MA helps optimize the spatial feature representation. Furthermore, we list the numerical
results of different network structures on the test set in Table 3 with the best performance
in bold and the second-best ones underlined.

As seen in Table 3, the PSNR score employing the HB + FM structure is higher than
employing LB + FM. It indicates that HB plays an important role in remapping high
frequency features and suppressing noise. The other scores of the LB + FM structure are
higher than that of HB + FM. It can be seen that LB has obvious advantages in remapping
low frequency features and improving contrast.
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Table 3. Numerical analysis of different structures. The highest and second-highest scores are marked
in bold and underlined respectively.

PSNR SSIM Entropy EME

HB + FM 28.554 0.757 2.938 0.644
LB + FM 27.058 0.799 4.068 0.843

BM (HB + LB) 28.983 0.808 4.417 0.828
BM + FM without MA 30.341 0.810 5.081 0.887

BM + FM with MA(Ours) 31.817 0.848 5.497 0.899

To prove the effect of FM, we experimented with the increase and decrease of it. The
improvement of various indicators shows that the FM can integrate bilateral features and
optimize feature representation.

Though without MA, the decomposition-fusion framework has performed very well
with regard to dynamic range compression. But after adding MA, the scores of PSNR, SSIM,
Entropy and EME are all improving. MA helps select useful information for transmission
and further suppresses noise.

In conclusion, the proposed method and modules have superior performance in SAR
image dynamic range compression tasks. First, from the perspective of adaptivity, rapid
visualization processing of SAR images is a problem of practical application. Our method
can realize self-adaptive dynamic range compression compared with filter based and
transfer function based methods. Second, it is better from the perspective of solving the
existing problems. Detail loss and imbalance between contrast improvement and noise
suppression are the main problems. Visual and quantitative experiments on synthesized
and real-world SAR images show that the proposed method notably realizes visualization
which exceeds several statistical methods. It has good adaptability and can improve SAR
images’ contrast for interpretation.

4. Discussion

In this study, we designed a decomposition-fusion framework for SAR image dynamic
range compression. This method can give an adaptive result for improving contrast, sup-
pressing noise and preserving details. In order to make full use of high and low frequency
features, a bilateral feature enhancement module is designed. It can establish the accurate
feature description of SAR images by extracting and enhancing high and low frequency
features of SAR images, respectively. To fuse the bilateral features effectively, we designed
a feature fusion module for building adaptive and multi-scale context representation of
SAR images. It can optimize the feature description to achieve a better result. In addition
to these, the RRL unit and modified MA mechanism are proposed to optimize feature
extraction and selection. Compared with traditional methods, the CNN-based method
has the advantages of strong adaptability, and the performance of the decomposition-
fusion framework proposed in this paper is far better than that of several dynamic range
compression methods.

As mentioned earlier, the hybrid loss function takes the structure information and
context information into consideration at the same time. It can boost the performance in
our proposed framework. And the values of λ1 and λ2 are set to be 0.7 and 0.3. For the
objective evaluation about L2 loss, MS-SSIM loss and hybrid loss function, we present their
performance on four structures respectively, in terms of the average PSNR and SSIM scores.
As shown in Figure 10a, the average PSNR and SSIM scores of hybrid loss function are
larger than the others. Therefore, the hybrid loss function can improve the performance of
the network generally.
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λ2 values on proposed framework.

In addition, to explain the reason for selecting the λ1 and λ2 values, we provide a set
of comparative experiments. λ1 is set from 0 to 1, with interval of 0.1, and λ2 equals to
1 − λ1. As shown in Figure 10b, the average PSNR and SSIM scores of λ1 = 0.7 are larger
than those of other values. This was because when λ1 = 0.7 and λ2 = 0.3, the framework
can concentrate on structure information and context information properly. Hence, 0.7 and
0.3 are the superior value of λ1 and λ2, and the hybrid loss function can effectively boost
the performance of our proposed framework for SAR image dynamic range compression.

We also present the reason for setting the gamma value to 0.8. The Gamma correction
fine-tunes the weight graph to avoid excessive enhancement and information loss. For
the visual results under different gamma values, only 1, 0.9, 0.8, 0.7, 0.6 are compared in
Figure 11a. Because when the gamma value is too small, the contrast of generated images
is too low, so we omit the others’ visual results. As we can see in Figure 11a, the contrast
increases as the gamma value improves. However, the information from the low pixel
values region is lost. To achieve balance between the high contrast and the information
preservation, we set the gamma value to be 0.8 according to the visual results. On the other
hand, the average PSNR and SSIM scores of gamma value = 0.8 are larger than those of
other values. Thus, the chosen value can improve the performance of our proposed method.
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5. Conclusions

In this paper, a decomposition-fusion framework for SAR image dynamic range
compression is proposed. First, a bilateral feature enhancement module is designed to
extract and enhance high and low frequency features. It can realize noise suppression
and contrast improvement. Then, a feature fusion module is designed for fusing bilateral
features. It can integrate bilateral features and optimize feature reconstruction. We also
propose an RRL unit to improve the ability of the extracting features, and employ a
modified MA mechanism to further enhance this useful feature. In addition, the proposed
method is compared with traditional SAR image dynamic range compression methods
from qualitative and quantitative perspectives, and the experimental results show that the
proposed method is effective and practical.
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Because of the lack of paired data sets, unsupervised deep learning will be studied
in future work for SAR image visualization, and a better network will be designed by
combining the characteristics of SAR images.
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Abbreviation

Abbreviation Definition
SAR Synthetic Aperture Radar
HDR High Dynamic Range
LDR Low Dynamic Range
CAM Channel Attention Module
RRL Residual Recursive Learning Unit
MA Multi-scale Attention Module
HB High frequency feature Branch
LB Low frequency feature Branch
BM Bilateral feature enhancement Module
FM Feature fusion Module
PB Preprocessing Block
EB Encoder Block
MB Middle Block
DB Decoder Block
OB Output Block
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity Index
HE Histogram Equalization
CLAHE Contrast Adaptive Limitation Histogram Equalization
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