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Abstract: There is a growing need for an area-wide knowledge of SOC contents in agricultural
soils at the field scale for food security and monitoring long-term changes related to soil health and
climate change. In Germany, SOC maps are mostly available with a spatial resolution of 250 m to
1 km2. The nationwide availability of both digital elevation models at various spatial resolutions and
multi-temporal satellite imagery enables the derivation of multi-scale terrain attributes and (here:
Landsat-based) multi-temporal soil reflectance composites (SRC) as explanatory variables. In the
example of a Bavarian test of about 8000 km2, relations between 220 SOC content samples as well
as different aggregation levels of the explanatory variables were analyzed for their scale-specific
predictive power. The aggregation levels were generated by applying a region-growing segmentation
procedure, and the SOC content prediction was realized by the Random Forest algorithm. In doing
so, established approaches of (geographic) object-based image analysis (GEOBIA) and machine
learning were combined. The modeling results revealed scale-specific differences. Compared to
terrain attributes, the use of SRC parameters leads to a significant model improvement at field-
related scale levels. The joint use of both terrain attributes and SRC parameters resulted in further
model improvements. The best modeling variant is characterized by an accuracy of R2 = 0.84 and
RMSE = 1.99.

Keywords: soil reflectance composites; digital soil modeling; soil organic carbon; GEOBIA; Landsat;
terrain analysis

1. Introduction

Soil is the largest carbon sink on earth after the oceans and can store more than twice
as much CO2 as the atmosphere [1]. Therefore, the soil of agricultural ecosystems can
contribute to the mitigation of greenhouse gas (GHG) emissions and thus to climate change
mitigation through increased carbon sequestration [2]. In order to assess this potential and
promote it through adaptation of land use systems, as well as to localize adaptation needs
on an area-by-area basis in the context of the European Common Agricultural Policy (CAP)
and the Sustainable Development Goals (SDGs), up-to-date, area-wide, and high-resolution
information on carbon contents of agricultural soils is needed [3,4]. Germany-wide maps
of the carbon content of agricultural soils are currently only available as static maps with a
spatial resolution of 200 m2 to 1 km2 [5]. The maps are not suitable as a basis for small-scale
field-specific analyses. In addition, the maps do not contain quality measures that are
important for communicating model uncertainties [6,7].
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Detailed information on carbon content is available in the form of point soil samples
collected at the state, national or European level (e.g., [8–10]). The data sets differ in
sampling methodology, frequency, and density as well as in their representativeness. Ex-
planatory variables are needed for the operational transformation of point data into spatial
data sets. Since the nationwide availability of digital elevation models at various spatial
resolutions, digital soil mapping has transitioned from the research phase to operational
use [11]. The increasing availability of multi-temporal satellite imagery allows an expansion
of the data space to distinguish both spatial and temporal patterns of SOC content [4,12].
Multi-temporal soil reflectance composites (SRC), based on Landsat or Sentinel-2 time
series, have proven as explanatory variables for the prediction of (top)soil organic carbon
(SOC) content [5,13–20].

In this article, we deepen a study by Zepp et al. (2021), which applied different
modeling methods on Landsat-based SRC data for SOC content prediction in Bavaria,
Germany [5]. As a result, the Random Forest (RF) showed the best predictive capabil-
ities in terms of model accuracy and performance. Using a sub-area within Bavaria as
an example, we extend the modeling approach and compare the predictive single and
mutual capabilities of Landsat-based SRCs and multi-scale terrain attributes. The latter
should take into account the fact that soil properties and soil-forming processes are an
expression of complex relationships between soil forming factors and landforms, which
occur on different scales [21–28]. Multi-scale terrain attributes enable the consideration of
contextual information, which can improve the prediction accuracy of soil properties [24].
In addition, different aggregation levels of the two parameter sets were generated. The
used segmentation algorithm results in spatial objects with soil-related meaning [29,30],
which are also referred as soil-terrain objects [6] or ecotopes [31]. They can be defined as
groups of terrain attribute raster cells which are aggregated to landform elements according
to a scale-specific homogeneity [29,32,33]. Their usage in digital soil mapping applications
has been proven as superior compared to pixel-based approaches [30,34,35]. The main
objective of this study is the analysis of relations between SOC content samples as well as
different aggregation levels of terrain attributes and Landsat-based SRC data regarding
their scale-specific predictive power.

2. Materials and Methods

Figure 1 illustrates the principle digital soil modeling workflow, in which scale-specific
reference units (RU) with explanatory variables are related to soil measurements and
analyzed with machine learning methods. The workflow can be distinguished into the
two categories:

1. “Input data” comprises the provision of soil samples (Section 2.1.1) as well as the
derivation of terrain attributes (Section 2.1.2) and multi-temporal SRCs (Section 2.1.3).
By applying a segmentation algorithm (Section 2.1.4), both data types are used for gen-
erating multi-hierarchical reference units (RU), which are parameterized by applying
zonal statistics operations (Section 2.1.5).

2. “Machine learning” refers to the actual spatial SOC content prediction by applying
the Random Forest algorithm. In addition, an internal and independent validation
schema, as well as a recursive feature elimination analysis, is included (Section 2.2).

The workflow was implemented using R functions [36] documented in a Github
repository (https://github.com/FLFgit/ScaleP.git; accessed on 13 March 2022).

https://github.com/FLFgit/ScaleP.git
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Figure 1. Workflow for the scale-specific SOC content prediction based on SCMaP Soil Re-
flectance Composites (SCMaP-SRC) and terrain attributes (RU: reference units; RFE: recursive
feature elimination).

Figure 2. Test site location in Bavaria and the distribution of soil samples. Projection: EPSG 31468
(https://spatialreference.org/ref/epsg/31468; accessed on 13 March 2022).

2.1. Input Data
2.1.1. Soil samples

The test area in Bavaria (Figure 2) was selected because the ranges of SOC content
values are comparable with the entire area (Figure 3). The data set comprises soils with
well-developed B horizons (mainly Cambisols), soils with initial soil formation (mainly
Leptosols), soils with water stagnation (mainly Stagnosols and Planosols), soils with clay
migration (mainly Luvisols), clay-rich soils (mainly Vertisols), groundwater soils (mainly
Gleysols), and natural bogs and fens (mainly Histosols) according to the German soil
systematic and the equivalent reference soil groups of the WRB system [37]. Both mineral
soils with lower SOC contents and organic soils in the form of fens (e.g., Königsmoos) with
higher SOC contents occur in the test area. In addition, the test area has a comparable
heterogeneous terrain composition as in Bavaria.

Figure 2 shows the spatial distribution of available sampling sites throughout Bavaria
(N = 939) and in the test area of about 8000 km2 (N = 220) selected for modeling, with
the size of the agricultural area accounting for about half. The available soil samples were
provided by the Bavarian Environment Agency (LfU) and the Bavarian State Research
Center for Agriculture (LfL). All databases were determined by dry combustion using
elemental analyzers [8,9]. The final soil data set of the test site comprises 220 soil samples
(LfL: 14 samples; LfU: 206 samples). The SOC contents range from 0.74 % to 18.3 % with

https://spatialreference.org/ref/epsg/31468
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a median content of 2.00 %. The comparison of both value distributions reveals that
differences mainly occur in the value range between 3 and 10 % (Figure 3). Applying the
nonparametric Kolmogorov–Smirnov goodness-of-fit test [38] revealed that the empirical
cumulative distributions are significantly different, with the D = 0.24 of the curves being
rather small (cf., [6]).

Figure 3. Comparison of soil samples’ SOC content [%] distributions: density plot with quantile
values Q (left) and plot of empirical cumulative distribution functions (ECDF) with ECDF distance D
(right) for entire Bavaria (black) and the subset (red; cf., Figure 2).

2.1.2. Terrain Attributes

Terrain attributes have been established for decades as explanatory variables for
predicting soil properties in general [11,39] and SOC content in particular [40]. Since
the scale dependency of terrain attributes has an effect on SOC predictions (e.g., [23,26]),
multi-scale terrain attributes have been derived (Table 1). This concerns in particular
variants of attributes “Normalized Height” (NH; Figure 4a,b) and “Topographic Position
Index” (TPI) [41,42], for whose calculation different moving window sizes were applied.
The variants of the attributes “Vertical Distance above Channel Network” (VDC) and
“Terrain Classification Index” (TCI) [41] are based on different aggregation levels of the
channel network derivations. The “Mass Balance Index” (MBI) versions are expressions
of the differentiability regarding dominant and subdominant relief shapes [21]. All multi-
scale variants are based on tuning parameters listed in Table 1. Their definition is the
result of exponential functions for which the start and end values were determined em-
pirically (see https://github.com/FLFgit/ScaleP/blob/master/callScaleP.R; accessed on
13 March 2022). Finally, the one-dimensional attributes including local attributes (sink-
filled digital elevation model (FILL) and “Slope” (SLP)) as well as regional attributes
(“Topographic Openness” (TOP and TON) [43] and the “Topographic Wetness Index”
(TWI; Figure 4c) [44]) were calculated [45].

The corresponding process chain is documented in an R function (Table 1). There,
all terrain attribute variants are defined. In this study, a DEM with a resolution of 10 m
was used, which is provided by the German Federal Agency of Cartography and Geodesy
(https://gdz.bkg.bund.de; accessed on 13 March 2022). The DEM was resampled to 30 m
according to the resolution of the SCMaP SRC data set (Section 2.1.3).

https://github.com/FLFgit/ScaleP/blob/master/callScaleP.R
https://gdz.bkg.bund.de
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(a) NHt=2 (b) NHt=1000

(c) TWI (d) SRC4,5,3

Figure 4. Visualization of multi-scale (a,b) and one-dimensional terrain attributes (c); cf., Table 1) as
well as of selected SRC bands (d). Projection: EPSG 31468 (https://spatialreference.org/ref/epsg/31
468; accessed on 13 March 2022).

https://spatialreference.org/ref/epsg/31468
https://spatialreference.org/ref/epsg/31468
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Table 1. Explanatory variables for the SOC content prediction: terrain attribute variants and SCMaP-
SCR bands (SM1−...: definitions of terrain attribute variants and tuning parameters see function
fNumP() and R function collection (https://github.com/FLFgit/ScaleP/blob/master/callScaleP.R;
accessed on 13 March 2022).

Explanatory
Variable Meaning Multi-Scale Tuning Parameter

(Start and End Value)
Variant
Number Source

FILL Digital Elevation Model
with filled sinks – 1 [46]

SLP Slope – 1 [47]

VDC Vertical Distance above
Channel Network

Catchment Area
(CA ∈ [10,000:1000,000]) 10 [41]

TCI Terrain Classification In-
dex

Catchment Area
(CA ∈ [10,000:1000,000]) 10 [41]

TWI Topographic Wetness In-
dex – 1 [44]

MBI Mass Balance Index Curvature Transfer
Constant (T ∈ 0.0001:0.1) 10 [21]

TOP Topographic (positive)
Openness – 1 [43]

TON Topographic (negative)
Openness – 1 [43]

NH Normalized Height Generalization Parameter
(t ∈ [2:1000]) 10 [41]

TPI Topographic Position In-
dex

Scale Parameter
(S ∈ [20:1000]) 10 [42]

SRC1−7
SCMaP-SRC (1984–2014),
Landsat Reflectances – 7 [48]

SRC8−14

SCMaP-SRC (1984–2014),
normalized Landsat Re-
flectances

– 7 [48]

2.1.3. SCMaP-SRC

In addition to the terrain attributes, spectral information of a remote sensing soil
reflectance composite (SRC) was used for SOC content modeling (Figure 4d). The Soil Com-
posite Mapping Processing (SCMaP) chain enables the generation of SRC for individually
selected regions and time periods [48]. Based on a modified vegetation index (PV) two
thresholds are determined to separate predominantly uncovered soils from all other land
cover types. The development of the database for the threshold derivation is automated.
The threshold itself has been derived based on manually defined percentile measures [49].

A 30-year (1984–2014) compositing period was chosen to enable a smooth spectral
database [5]. The compositing period was chosen according to the dates of soil sampling.
The 30-year SRC was built on all Landsat (69 Landsat-4 TM, 1784 Landsat-5 ETM, and 998
Landsat-7 ETM+) collection scenes [50] available between 1984 and 2014 with a resolution
of 30 m for the investigation area. For all scenes, the same pre-processing steps were applied.
The FMask algorithm was used to detect and remove clouds, cloud shadows, and pixels
covered by snow [51,52]. Additionally, an atmospheric correction was performed using
the Atmospheric Correction (ATCOR) software for satellite imagery [53]. The reflectance
soil composites show the averaged reflectance per-pixel composites for the observed time
period of exposed soils. The patterns in the reflectance soil composite correspond to patterns
of existing soil maps and the underlying geological structural region. Products therefore
provide useful information on soils and exposed soil coverage. The resulting bands SRC1−7
represent the “normal” averaged reflectances, for bands SRC8−14 the averaged reflectances
are normalized per scene by the albedo, which is calculated as mean reflectance over all six
reflective bands.

https://github.com/FLFgit/ScaleP/blob/master/callScaleP.R
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2.1.4. Segmentation

Different aggregation levels of explanatory variables were derived by applying a
region-growing segmentation algorithm that spatially groups grid cells of terrain attributes
and SRC bands according to their neighborhood in a feature space and raster. As a result,
polygons with scale-specific comparable heterogeneity are generated.

The region-growing algorithm “Fractal Net Evolution Approach” (FNEA) was ap-
plied [54], which is implemented in the software eCognition and has been shown to be
suitable for detecting spatial objects of soil-related relevance [6,30,34,35] in the context of
geographic object-based image analysis (GEOBIA) [55–57]. The algorithm relies on seed
pixel groups with the smallest (here: Euclidean) distance in both the raster and the feature
space of the parameters used. Then, the seeds grow until the user-specific heterogeneity of
the raster values within the resulting objects is reached.

In this study, the segmentation input data were the variables TWI, SLP, TCICA=10000,
MBIT=0.0005, NHt=1000 as well as SRC8−14 (cf., Table 1). The shape of the resulting objects
is influenced by the user-defined parameters “shape variance” and “compactness”, which
have been set to 0.05 and 0.01 here. The degree of object aggregation is controlled by the
parameter “Scale Level” L (cf., [30]). The corresponding 17 scale level values are listed in
Table 1. As an example of a test site subset, Figure 5a displays polygons of three scale levels.
There, red-colored polygon boundaries represent parent polygons, which are decomposed
by the smaller yellow-colored child and blue-colored grandchild polygons. The latter can
be viewed as vectorized raster cells [21,30]. The white areas were identified by the SCMaP
algorithm as areas of no or little reflectance changes. This applies, for example, to forests or
built-up areas.

(a)

0
50

0
10

00
15

00

L

O
N

 (
x1

00
0)

0.3 0.5 0.8 2 3 4 6 8

(b)

Figure 5. Visualization of reference unit-specific scale levels on the example of a test site subset (a) as
well as relation between logarithmized scale level L and object number ON ((b); cf., Table 3). The
colored dashed lines refer to the scale levels L = 0.3, L = 1 and L = 10. (a) White areas represent
land that is not used by agriculture.

2.1.5. Parametrization

While the parametrization of scale-specific reference units (RU) is realized by applying
zonal statistics functions [41,58], Zepp et al. (2021) applied a filter-based parameterization
of the samples [5]. This involved averaging the spectra of the sample pixel and its eight
neighboring pixels to reduce local and spatial variability. The background to this approach
is that the SCMaP-SRC provides ground reflectance information at a pixel resolution of
30 m based on Landsat imagery. Linking point samples to a 30 m remote sensing pixel
is a potential source of inaccuracy because not all samples are collected at least 30 m
inside the fields. As a result, the SRC pixel may combine multiple surfaces with different
spectral information. The ground sample is then combined with a mixture of spectral
information. Therefore, spectral and spatial filtering was applied to the sample pixel and

https://geospatial.trimble.com/products-and-solutions/ecognition
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its eight neighboring pixels to evaluate spectral differences within a field cluster. All pixel
clusters showing deviating spectra are excluded from further processing.

2.2. Machine Learning

Random Forests (RF) is a regression and ensemble-based decision tree algorithm [59],
which has been regularly used for predicting soil properties [60,61]. RF divides the feature
space of the explanatory variables until the resulting tree has the best statistical correlation
by minimizing the variance. Based on bootstrap samples, RF generates a large number
of independent trees (ensembles). Two-thirds of the samples are used to grow the trees
(in-bag data), and one-third are drawn randomly to calculate error estimates through
cross-validation (out-of-bag data).

To validate the classification results, the total data set is randomly divided into a
training and test data set of 75% and 25%, respectively, taking into account the target
parameter distribution. Model building is based on the training data set. On the basis of
the training data set, a calibration and a repeated 5-fold cross-validation are performed.
The test data set is used for independent validation [62], to which the trained model is
applied. Modeling performance is evaluated using the metrics of “Root Mean Square
Error” (RMSE) and “Coefficient of determination” (R2) for cross-validation, calibration,
and independent validation. The SLOPE of the regression line indicates the degree of
underestimation or overestimation.

All used explanatory variables are more or less affected by multicollinearity. This
concerns in particular the terrain attribute variations. RF can be considered tolerant
of this phenomenon regarding the model prediction or the accuracy of the model [61].
However, collinearity might impair the interpretability of the model and may lead to
misidentification of relevant predictors [63]. This especially concerns the interpretation of
the variable importance of each explanatory variable, which is derived from the percent
increase in mean squared error (MSE) resulting from the permutation of the out-of-bag data
for each variable [64]. To ensure the interpretability of relevant predictors, the recursive
feature elimination approach (RFE) is used [65,66], where the least important predictors
are iteratively eliminated before the model is rebuilt [64].

3. Results
3.1. Filter-Based Parametrization

Table 2 lists the accuracy metrics resulting from applying the modeling approach to
the samples for Bavaria [5] and the test site based on the filter-based parameterization.
Figure 6 visualizes the corresponding validation scatter plots. The accuracy metrics include
all RMSE and R2 values of calibration (CAL), cross-validation (CV), and (independent)
validation (VAL) (Section 2.2).

Table 2. Accuracy metrics for the SOC content (%) prediction based on SCMaP-SRC parametrization
applied by Zepp et al. (2021) [5] for Bavaria and the test site subset.

Variant Sample
Number RMSECV R2

CV RMSECAL R2
CAL RMSEVAL R2

VAL SLOPEVAL

Bavaria 939 1.29 0.62 0.54 0.94 1.32 0.65 0.58
Subset 220 2.30 0.60 1.00 0.92 2.11 0.74 0.74
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Figure 6. Comparison of independent validation results based on SOC content (%) data sets for entire
Bavaria (a) and the subset ((b), cf., Table 2). The red line is the regression line of the scatter plot, the
gray and dashed line indicates the optimal regression line.

The different accuracy metrics reflect the differences between the distributions of SOC
content values, which is also indicated by the Kolmogorov–Smirnov distance between the
entire Bavarian and the subset data set used in this study (Section 2.1.1). The differences
mainly concern the RMSECV,CAL,VAL and R2

VAL values, with the metrics of the subarea
being higher than those for all of Bavaria.

3.2. Scale-Specific Parametrization

Table 3 summarizes all scale-specific accuracy metrics. The naming of the aggregation
levels follows the scale level specification within the eCognition software setting, which was
varied during the application of the algorithm and controls the parameter heterogeneity
and thus indirectly the number and sizes of the resulting polygons [21,30,67]. Figure 5b and
Table 3 show the relation between object number ON and scale level L. From the size of the
agricultural area (about 4000 km2) and the number of objects, we find approximately the
average object size, which varies depending on the heterogeneity of the soil landscape [6,21].

The CAL, CV, and VAL-related accuracy metrics are derived for all scale levels and
the parameter variants “terrain attributes” (A), “SCMaP-SRC” (B), and “terrain attributes +
SCMaP-SRC” (C). The CAL and VAL value differences reflect the degree of model over-
fitting [68], which correlates with the VAL values. It is also noticeable that the R2

CV values
are often considerably smaller than R2

VAL values, which were also observed by Zepp et al.
(2021) [5].

Figure 7 reveals scale-specific dependencies. Accordingly, the variation range of
R2

A,VAL values (0.43 to 0.62) is smaller than of R2
B,VAL (0.47 to 0.84) and R2

C,VAL values
(0.43 to 0.84). The RMSEVAL values vary between 2.78 and 3.47 (A), 2.00 and 3.28 (B), and
1.99 and 3.34 (C). With R2

B,VAL = 0.65 and RSMEB,VAL = 4.75, the highest R2
A,VAL value is

associated with scale level L = 6.
The use of SCMaP-SRC parameters leads to a significant model improvement. Two

main scale ranges can be distinguished, with scale level 3 as the boundary. The highest
R2

B,VAL value is found at scale level L = 0.6. The joint use of terrain attributes and SCMaP-
SRC parameters leads to further slight model improvements. At the scale level L = 0.3,
which corresponds to the original grid resolution of 30 m2, the accuracy metrics again drop
significantly. The RMSEVAL and 1− SLOPEVAL values display similar characteristics with
opposite minima and maxima.
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Table 3. Scale-specific accuracy metrics for SOC content (%) prediction variants based on terrain attributes (subscript A; cf. Table 1), SCMaP-SRC (subscript B)
and both data sets (subscript C). RMSE—root mean square error; R2—coefficient of determination; subscript CV—cross validation; subscript CAL—calibration;
subscript VAL—independent validation. The gray and bold emphasized values refer to the prediction variant with highest accuracy metrics (Figure 9 and the
corresponding scatter plots (Figure 8). The gray, bold and red values emphasized is related to the best prediction variant (cf., Figure 8f).
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10 18183 2.89 31 0.43 85 3.26 0.53 0.35 2.57 0.45 1.33 0.87 3.28 0.47 0.42 2.61 0.44 1.32 0.87 3.34 0.48 0.41

9 54306 2.90 0.32 1.34 0.87 2.96 0.58 0.38 2.49 0.51 1.28 0.86 3.01 0.53 0.44 2.54 0.50 1.18 0.90 3.18 0.51 0.43

8 55011 3.04 0.27 1.37 0.86 3.07 0.57 0.34 2.73 0.43 1.30 0.86 2.97 0.53 0.45 2.73 0.44 1.39 0.85 2.92 0.59 0.39

7 56113 2.86 0.33 1.11 0.90 2.91 0.61 0.35 2.55 0.44 1.18 0.88 3.01 0.58 0.48 2.57 0.44 1.09 0.91 2.88 0.64 0.45
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3 74575 2.64 0.41 0.97 0.91 3.47 0.46 0.34 2.19 0.59 0.98 0.92 2.88 0.59 0.48 2.22 0.58 0.86 0.94 2.74 0.62 0.46

2 98630 2.85 0.32 0.95 0.91 3.03 0.56 0.34 2.19 0.61 0.97 0.91 2.35 0.73 0.60 2.28 0.57 0.89 0.94 2.43 0.71 0.50

1 203379 2.62 0.41 0.85 0.93 3.31 0.52 0.37 2.15 0.60 0.90 0.94 2.16 0.81 0.69 2.20 0.58 0.85 0.95 2.35 0.78 0.61

0.9 235484 2.73 0.37 0.93 0.93 3.32 0.50 0.35 2.14 0.61 0.81 0.95 2.39 0.75 0.66 2.22 0.58 0.86 0.94 2.35 0.76 0.59

0.8 280084 2.75 0.36 0.90 0.94 3.10 0.54 0.34 2.22 0.58 0.90 0.94 2.00 0.84 0.73 2.25 0.56 0.78 0.95 2.02 0.84 0.66

0.7 345398 2.80 0.33 0.93 0.93 3.18 0.54 0.34 2.24 0.57 0.90 0.94 2.23 0.79 0.72 2.26 0.56 0.82 0.94 2.30 0.79 0.65

0.6 450939 2.81 0.34 0.93 0.92 3.21 0.54 0.33 2.18 0.60 0.86 0.94 2.11 0.81 0.70 2.20 0.59 0.85 0.94 1.99 0.84 0.63

0.5 631794 2.79 0.35 0.89 0.93 3.29 0.55 0.33 2.28 0.57 0.96 0.93 2.14 0.81 0.71 2.31 0.55 0.85 0.94 2.06 0.83 0.65

0.4 965994 2.86 0.31 0.93 0.93 3.44 0.53 0.35 2.43 0.52 0.96 0.93 2.31 0.82 0.66 2.39 0.52 0.89 0.93 2.27 0.82 0.65

0.3 1515513 2.83 0.32 0.96 0.93 3.30 0.58 0.36 2.12 0.65 0.84 0.95 3.10 0.65 0.53 2.16 0.63 0.81 0.95 3.18 0.67 0.50
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Figure 7. Relations between logarithmized scale level L and accuarcy metrics R2
VAL (a), RMSEVAL (b),

and SLOPEVAL (c) (cf., Table 3) for the parametrization variants terrain attributes (TA), SCMaP-SRC
(SRC), and terrain attributes + SCMaP-SRC (TA + SRC). The gray dashed line refers to scale levels
L = 0.6 and L = 6 (cf., Figures 8 and 9).

Each scale level is characterized by scatterplots of the predicted and observed SOC
values with respect to the test data. Figure 8 illustrates this for all three parametrization
variants and the scale levels L = 0.6 and L = 6, which can be considered as representatives
of both scale ranges. Besides the measures R2 and RMSE, the slope of the regression line
(SLOPE) as an indicator for model over- or underestimation is displayed. According to
Figure 7, all models lead to a SOC underestimation. The degree of underestimation is
the lowest for the SRC-based models in the scale range between L = 0.4 and L = 1. It is
also noticeable that the pure SRC models show better results than the mixed TA and SRC
models. Both effects can be observed in Figure 8.

The most accurate modeling variant regarding R2 and RMSE with “scale level L = 0.6,
parametrization variant C” (Figure 8f) is mapped in Figure 9. The SOC content pattern
reflects the soil and terrain landscape structure with higher SOC values in lowlands and
lower SOC values in hilly regions (cf., Figure 4). This is also true for the prediction “scale
level L = 6, parametrization variant A” (Figure 8a), which makes the main landscape
structures visible. However, a visual comparison of both variants shows more detailed
differentiation and higher spatial variability of predicted SOC contents for the L = 0.6
variant, which is particularly pronounced in the lowlands. This is also where the greatest
differences in the value distributions between the two variants can be observed, which
lie roughly in the value range between 4 and 8% SOC content (Figure 10). Furthermore,
a comparison of the two SOC content distributions with the distribution of the training
data set shows that the L = 6 prediction variant deviates more than the L = 0.6 variant,
as shown by the Kolmogorov–Smirnov (KS) distances of the corresponding empirical
cumulative distribution functions (ECDF) (cf., [6]).



Remote Sens. 2022, 14, 2295 12 of 20

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.622
RMSE = 2.775
SLOPE = 0.36

(a) Variant A (L = 6)

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.651
RMSE = 2.646
SLOPE = 0.51

(b) Variant B (L = 6)

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.647
RMSE = 2.755
SLOPE = 0.48

(c) Variant C (L = 6)

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.539
RMSE = 3.212
SLOPE = 0.33

(d) Variant A (L = 0.6)

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.812
RMSE = 2.112
SLOPE = 0.7

(e) Variant B (L = 0.6)

5 10 15

5
10

15

Observation (test data)

P
re

di
ct

io
n

R2 = 0.838
RMSE = 1.991
SLOPE = 0.63

(f) Variant C (L = 0.6)

Figure 8. Comparison of SOC content (%) validation results based on test data sets for six prediction
variants (cf., Table 3). The red line is the regression line of the scatter plot, the gray and dashed line
indicates the optimal regression line.

Figure 9. Predicted SOC content (%) values for scale level L = 0.6 and parametrization variant terrain
attributes + SCMaP-SRC (TA+SRC) (left) as well as scale level L = 6 and parametrization variant
terrain attributes (TA) (cf., Table 3 and Figure 8a,f). Projection: EPSG 31468.

https://spatialreference.org/ref/epsg/31468/
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Figure 10. Comparison of soil samples’ (red) and predicted SOC content (%) distributions
(black/blue): density plots with quantile values Q (left) and plots of empirical cumulative distribution
functions (ECDF) with Kolmogorov–Smirnov (KS) distances D (right) for two prediction variants.

Table 4 summarizes the recursive feature elimination results. There, the most relevant
parameters, which lead to minimal RMSE values, are listed. In addition to the one-
dimensional terrain features FILL, SLP, TOP, and TON, variants of the multi-hierarchical
terrain features NH and (subordinately) VDC have the greatest influence on the modeling
results. As for the SRC attributes, in particular the normalized multi-temporal Landsat-
band 5 (SRC12) as well as the bands 2 (SRC2,9) and 3 (SRC3,10) are important. The analysis
of the combined parameterization variants reveals the dominance of the SRC attributes at
all scale levels. Figure 11 visualizes the example of two modeling variants that, with only a
few attributes, lead to a significant reduction of RMSE values.
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Figure 11. RFE-based dependencies between RMSE values and parameter combinations for scale
level L = 0.6 and parametrization variant terrain attributes + SCMaP-SRC (TA+SRC) (a) as well as
scale level L = 6 and parametrization variant terrain attributes (TA) ((b); Table 4). The dashed blue
lines indicate minimal RMSE values.
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Table 4. The most important parameters based on RFE algorithm, which lead to minimal RMSE
accuracy metrics. The order of the parameters represents their meaning. The gray marked table cells
refer to Figure 11.

Scale
Level TA SRC TA+SRC

10.0 FILL, TOP, SLP,
MBI1

SRC10, SRC12, SRC3,
SRC1, SRC9, SRC4,
SRC2, SRC11, SRC15,
SRC7

SRC10, SRC9, SRC12, SRC3, SRC2,
SRC11, SRC4, SRC1, NH2, SRC15,
SRC7

9.0 FILL, TOP,
VDC599484, MBI1

SRC10, SRC12, SRC2,
SRC7, SRC3, SRC9,
SRC11, SRC5, SRC4,
SRC1, SRC13, SRC6

SRC10, SRC2, SRC9, SRC3, SRC11,
SRC12, SRC7, SRC15, SRC4

8.0 FILL, NH4, TOP SRC10, SRC12, SRC7,
SRC3, SRC2

SRC10, SRC3, SRC2, SRC9, SRC12

7.0 TOP, FILL, TON SRC10, SRC3, SRC12,
SRC4

SRC3, SRC10, SRC4, SRC12,
SRC2, SRC15, VDC46416, SRC1,
SRC9, TON, TOP, SRC5, SRC7,
VDC359381, SRC11, FILL

6.0 FILL, TOP, NH4,
SLP, VDC46416

SRC12, SRC3, SRC10
SRC3, SRC12, SRC2, SRC10,
SRC15

5.0 FILL, NH4, TOP,
SLP, NH8

SRC12, SRC3, SRC10

SRC3, SRC15, SRC4, SRC2, SRC10,
SRC12, FILL, SRC9, SRC13, SRC7,
SRC1, TOP, SRC11, SLP, NH4

4.0 FILL, TOP, NH4,
NH8

SRC3, SRC12, SRC10,
SRC15, SRC1

SRC3, SRC2, SRC15, SRC12,
SRC10, SRC4, SRC1, SRC9, SRC7,
SRC5, SRC13, SRC11

3.0 FILL, SLP
SRC12, SRC3, SRC10,
SRC4, SRC2, SRC11,
SRC15, SRC9, SRC1

SRC3, SRC12, SRC10, SRC2, SRC4,
SRC15, SRC9, SRC11, SRC1, SRC5,
SRC13, SLP, VDC359381, TON,
SRC7, VDC16681

2.0 FILL, NH4

SRC12, SRC3, SRC10,
SRC2, SRC14, SRC4,
SRC9, SRC1, SRC5,
SRC13

SRC3, SRC2, SRC12, SRC4,
SRC5, SRC10, SRC1, SRC9,
SRC15, SRC14, SRC7, SRC13,
FILL, VDC10000, SLP, SRC11,
VDC599484, VDC359381

1.0 FILL, NH4, SLP

SRC12, SRC10, SRC2,
SRC3, SRC4, SRC9,
SRC11, SRC14, SRC8,
SRC1, SRC5, SRC13,
SRC7, SRC6

SRC12, SRC2, SRC3, SRC4,
SRC10, SRC14, SRC5, SRC9, SRC1,
SRC13, SRC11, FILL, SRC15, NH4,
VDC129155, SLP

0.9 FILL, NH4

SRC12, SRC2, SRC10,
SRC3, SRC9, SRC4,
SRC11, SRC1, SRC14

SRC12, SRC2, SRC3, SRC10, SRC4,
SRC9, VDC129155, SRC1, SRC14,
SRC5

0.8 FILL, NH4 SRC12, SRC10, SRC2 SRC12, SRC2, SRC3, SRC10

0.7 FILL, NH4 SRC12, SRC10, SRC2
SRC12, SRC2, SRC3, SRC10, SRC4,
SRC13

0.6 FILL, NH4

SRC12, SRC2, SRC10,
SRC3, SRC9, SRC4,
SRC13, SRC8, SRC11,
SRC5

SRC12, SRC2, SRC3, SRC10, SRC4,
SRC13, SRC9, VDC129155, SRC5,
NH4, SRC1, SRC15, FILL

0.5 FILL, NH4, TON SRC12, SRC2, SRC3,
SRC10

SRC2, SRC12, SRC3, SRC13,
SRC10, SRC4, FILL, VDC129155

0.4 FILL, NH4
SRC12, SRC2, SRC3,
SRC10

SRC2, SRC3, SRC12

0.3 FILL, NH4, TON

SRC2, SRC12, SRC10,
SRC3, SRC9, SRC13,
SRC7, SRC1, SRC8,
SRC4

SRC2, SRC3, SRC13, SRC12,
VDC359381, SRC4, SRC10, TON,
NH2, SRC1, FILL, NH4, SRC7,
SRC5, VDC10000, SLP, SRC11,
VDC46416
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4. Discussion
4.1. Data Quality and Fitness-for-Use

Approved data quality is a prerequisite for the reusability of data. The SOC content
modeling results presented are examples of standardized soil mapping products. Standard-
ization refers to reproducible data processing and modeling, as well as their evaluation
based on accuracy metrics [6,69–71]. In contrast to static conventional soil maps, the
scale-specific suitability can be determined, which helps to communicate map quality to
end-users [71–73], to provide additional information about data fitness-for-use [74,75], to
improve the model’s interpretability [4] as well as to get a additional geospatial provenance
description [76]. Although the process chain presented is reproducible, individual steps are
based on expert knowledge. This concerns in particular the selection of segmentation pa-
rameters (Section 2.1.4) and terrain attributes as well as their multi-scale tuning parameters
(Table 4). Here, further research is needed to define statistically sound parameters [25,67].

The validation scheme in this study follows the approach of Zepp et al. (2021) [5] and
the recommendations of Piikki et al. (2021) [73] including data splitting, cross-validation,
and independent validation, as well as the use of different types of accuracy metrics. The lat-
ter were primarily used to compare different scale-specific parameterization variants. Maps
for practical use should also contain uncertainty metrics, which estimate the prediction vari-
ation for every raster cell. Geostatistical metrics or prediction intervals (e.g., [18,61,77–79])
are widely used.

4.2. Scale-Specific Optimization

The SOC content map quality is affected by factors such as the spatial and temporal
representativeness of the samples or the scale-specific explanatory power of the variables
used. Following the effective map scale (EMS) approach [30], each scale-specific map is char-
acterized by its “predictive efficiency” [33]. The underlying workflow can be considered as
a procedure where the relationship between SOC content samples and different aggregation
levels of multi-scale terrain attributes and SCMaP-SRCs is statistically optimized. This is
also evident in the comparison of the modeling results based on the filter-specific parame-
terization (Section 3.1), which represents a static window-based aggregation procedure. In
contrast to changes in grid resolution of terrain attributes [26,28], the segmentation-based
aggregation considers both parameter-specific and spatial data variability. In this way, a
more precise delineation of the reference units can be made. This is relevant, for example,
for samples taken at field boundaries [5]. This means that the optimization can counteract
possible positional inaccuracies of the samples [27,80].

The accuracy measure R2 of the best modeling SCMaP-SRC variant (L = 0.6, variant
B with R2 = 0.81; Table 3) exceeds the result of Zepp et al. (2021) (R2 = 0.74; Table 2) [5],
whereas the RMSE values are the same for both models (RMSE = 2.11). It can be assumed
that the accuracy measures of the SCMaP-SRC variant L = 0.3 (variant B), which corre-
sponds to the original raster resolution, are exceeded by both variants of the filter- and
scale-specific parameterization models. The additional consideration of terrain attributes
leads to a further model improvement regarding both accuracy measures (L = 0.6, variant
C with R2 = 0.84 and RMSE = 1.99; Table 3).

The prediction results made a jump in scale visible (cf., Figure 7). They refer to concepts
of hierarchical landscape structuring, according to which (here: soil-relevant) processes and
states are associated with specific scale ranges [30,81,82]. Accordingly, SCMaP-SRC-related
accuracy measures in particular show significant differences around the L = 3 level, with
almost the same spectral bands having the highest impact on predictions at all scale levels.
Compared to terrain attributes, SCMaP-SRC parameters are also characterized by a higher
explanatory power at fine scales, especially below scale level L = 3.

TA-related accuracy measures display a smaller and more balanced variation across
scale levels. One reason might be that various expressions of terrain attributes have
been used as explanatory variables. They represent variations regarding scale or terrain
complexity. This means that in addition to scale optimization, the terrain attribute variations
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also serve as optimization variables [30]. Of the multi-scale terrain attributes, the NH and
the VDC variants are particularly relevant at different scale levels, which Guo et al. (2019)
also consider as key attributes that influence SOC distribution [26]. While below scale level
L = 3 the multi-scale attribute variant NH4 dominates, above scale level L = 3 other NH
or VDC variants appear. This underlines the scale dependence of the soil-related processes,
for which scale-specific parameters have to be identified as optimal for prediction [28,83,84].
It is finally noticeable that the one-dimensional attribute FILL has the highest explanatory
power. Other one-dimensional attributes of high relevance are SLP and TON/TOP.

From a machine learning perspective, all used explanatory variables represent “hand-
crafted” features whose selection is based on domain or expert knowledge [85]. This
mainly concerns the determination of multi-scale tuning parameters (cf., Table 1) and scale
levels (see Section 2.1.4). Although reproducible, there is potential for unsupervised and
statistically driven approaches for the derivation of the parameters (e.g., [56,86]). This is
also true for object-based contextual parameters [56], which have not been considered in
this study.

4.3. SCMaP-SRC as Additional Input for SOC Modeling

The results shown in Section 3.2 indicate an increase in the SOC model performances
using SCMaP-SRC data in addition to terrain attributes (see Figure 7). Though the R2

values (both model calibration and validation) for TA and TA+SRC point to high model
performances, the RMSE are relatively high (>1.99). The federal state of Bavaria shows a
wide range of SOC contents, as mineral and organic soils occur. As the focus of the subset
definition was on the selection of a representative subarea of the entire federal state, a
possible wide range of SOC contents was included here. Hence, the high RMSE could
be related to the wide range of SOC contents in the study area. Relatively high RMSE
values for SOC modeling in Bavaria were also reported by Zepp et al. (2021) [5]. According
to the results of the recursive feature elimination shown in Table 4, the most important
SRC attributes are bands 2 and 3 which are selected over all different scale levels. Zepp
et al. (2021) also showed the importance of the bands 2 and 3 for the SOC modeling [5].
Additionally, band 12 (band 5 normalized) is of high importance for SOC modeling.

To investigate the influence of the combination of terrain attributes and the SCMaP-
SRC information, the same remote sensing database as shown in Zepp et al. (2021) [5]
was used. The SOC modeling was performed using a spatial subset of the 30-year SCMaP
SRC data. The 30-year compositing period enables stable conditions and mainly includes
permanent spatial soil moisture differences, related to soil texture or type characteristics.
Influencing factors as varying short-term soil moisture differences thus have a lower effect
compared to analysis based on shorter compositing lengths or single scenes. However,
an analysis of this assumption is still necessary. Additionally, a long compositing period
enables the integration of a high number of cloudless scenes, which is accountable for a
reliable data source [49]. Here, the 30-year period was applicable, as, among others shown
by Kühnel et al. (2020) [87], SOC contents are constant for Bavaria. Based on permanent
observation sites, no to low SOC changes were observed between 1984 and 2016. However,
the use of a 30-year composite could hamper the SOC prediction if the investigation area
includes short-term SOC changes or changes over several years. For the transferability
of the shown modeling techniques to other areas with temporally higher SOC changes,
shorter compositing periods have to be considered. In addition, an investigation of the
impacts of political regulations (e.g., carbon farming [88] or denser modeling of soil health
and status) would be enabled. The integration of Sentinel-2 data can potentially shorten
the compositing time length, as the twin satellites provide a huge amount of data based on
the combined revisit time of fewer than five days [89,90]. Additionally, the global available
Harmonized Landsat Sentinel-2 (HSL) surface reflectance data set [91] can be considered.
Both harmonized data sets are based on the same pre-processing schemes, enabling the
data set as a highly valuable input regarding the large number of available scenes for the
compositing approach.
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5. Conclusions

In this study, approaches of multi-scale feature engineering, geographic object image
analysis (GEOBIA), and machine learning have been coupled to a workflow where relations
between SOC content samples as well as different aggregation levels of multi-scale terrain
attributes and multi-temporal soil reflectance composites are optimized. The main findings
of the study can be summarized as follows:

• There are scale-specific dependencies between the representativeness of the soil sam-
ples and the explanatory power of the variables used.

• Compared to terrain attributes, parameters based on multi-temporal soil reflectance
composites are characterized by a higher explanatory power at fine scales.

• The explanatory power of terrain attributes is generally smaller but more balanced
across scale levels.

• The best modeling variant is characterized by an accuracy of R2 = 0.84 and RMSE = 1.99,
which outperforms modeling results based on a static window-based aggregation
procedure with R2 = 0.74 and RMSE = 2.11.

• The study results suggest that DSM workflows should include scale-related optimizations.
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29. Drăguţ, L.; Eisank, C. Object representations at multiple scales from digital elevation models. Geomorphology 2011, 129, 183–189.
[CrossRef]

30. Möller, M.; Volk, M. Effective map scales for soil transport processes and related process domains—Statistical and spatial
characterization of their scale-specific inaccuracies. Geoderma 2015, 247–248, 151–160. [CrossRef]

31. Radoux, J.; Bourdouxhe, A.; Coos, W.; Dufrêne, M.; Defourny, P. Improving ecotope segmentation by combining topographic and
spectral data. Remote Sens. 2019, 11, 354. [CrossRef]

32. Minár, J.; Evans, I.S. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorpholog-
ical mapping. Geomorphology 2008, 95, 236–259. [CrossRef]

33. MacMillan, R.; Shary, P. Landforms and landform elements in geomorphometry. In Geomorphometry: Concepts, Software,
Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 227–254. [CrossRef]
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