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Abstract: High-resolution remote sensing images have been put into the application in remote
sensing parsing. General remote sensing parsing methods based on semantic segmentation still have
limitations, which include frequent neglect of tiny objects, high complexity in image understanding
and sample imbalance. Therefore, a controllable fusion module (CFM) is proposed to alleviate the
problem of implicit understanding of complicated categories. Moreover, an adaptive edge loss
function (AEL) was proposed to alleviate the problem of the recognition of tiny objects and sample
imbalance. Our proposed method combining CFM and AEL optimizes edge features and body
features in a coupled mode. The verification on Potsdam and Vaihingen datasets shows that our
method can significantly improve the parsing effect of satellite images in terms of mIoU and MPA.

Keywords: remote sensing parsing; satellite imagery; semantic segmentation

1. Introduction

Remote sensing parsing aims to execute meticulous image parsing to assist envi-
ronmental monitoring [1,2], urban planning [3,4], agricultural and forestry change detec-
tion [5–7]. As a fundamental task in computer vision, semantic segmentation is proposed
to assign an accurate label to each pixel in an image, which embraces the core of remote
sensing parsing. The seminal work of Long et al. [8] reveals the formidable performance of
DCNNs (Deep Convolutional Neural Networks) in semantic segmentation, and seman-
tic segmentation is widely applied in many fields such as automatic driving [9], image
generation [10] and remote sensing [11].

DCNNs have been proved to have a powerful ability to extract features, and they can
be applied in many complex visual tasks [12,13]. Although semantic segmentation has
achieved undisputed success in remote sensing parsing, DCNNs are still bedeviled by some
challenging problems including frequent neglect of tiny objects, implicit understanding of
some certain category and unbalanced distribution of all categories:

• Compared to general semantic segmentation, more small fragments such as cars, trees
and buildings are found without expectation in remote sensing images. What is more
worrisome is that such tiny objects can be found strewn across high-resolution remote
sensing images, as illustrated in blue boxes in Figure 1.

• Due to changes in application scenarios, each data collection needs a certain criterion to
judge the category. As shown in yellow boxes in Figure 1, background information in-
cludes lake areas, ships and some certain regions in Potsdam dataset. The enormous com-
plexity of remote sensing images causes great difficulty in background understanding.

• Another vexing issue is the unbalanced distribution of each category pixels. In both
Potsdam and Vaihingen datasets, the background category is the clutter, and the
rest categories including car, tree, building, low vegetation and impervious surface
belong to foreground items. The distribution of each object category (including
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building, background, tree, low vegetation, car and impervious surface) is shown in
Figures 2 and 3. In the ISPRS Potsdam dataset, the distribution of foreground and
background is out of balance. Background pixels account for 4.70% in the training
set (IDs of training images are 02_10, 03_10, 03_11, 03_12, 04_11, 04_12, 05_10, 05_12,
06_08, 06_09, 06_10, 06_11, 06_12, 07_07, 07_09, 07_11 and 07_12) and 6.48% in the test
set (IDs of test images are 02_11, 02_12, 04_10, 05_11, 06_07, 07_08 and 07_10). More-
over, all foreground items are not evenly distributed, among which the proportion of
car is particularly low due to its small size and haphazard layout. The predicted re-
sults (can be observed in section Experimental Results) show that FCN [8] and similar
methods cannot explicitly guide recognition of backgrounds due to scarce samples,
and FCN and similar methods are likely to misclassify them as foreground pixels.

Figure 1. Illustration of Potsdam dataset. The left image is a raw image in Potsdam dataset, and the
right image is the corresponding label. Blue boxes mark the tiny objects such as cars, and yellow
boxes mark complicated objects such as clutters.
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Figure 2. Category distribution of Potsdam training dataset.
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Figure 3. Category distribution of Potsdam test dataset.

In order to improve the reliability of semantic segmentation in remote sensing parsing,
our method resorts to the alleviation of the above three problems. The crux of implicit
understanding of background information lies in the conflicting fusion of high-level and
low-level features, which is a controllable fusion module with adjustable weights that
will gradually filter out contradictory information. In order to address the unbalanced
distribution of foreground and background pixels, a new optimization strategy combining
boundary hard examples mining and the traditional cross-entropy loss function is pro-
posed. At the microscopic level, semantic segmentation indeed divides boundaries of each
semantic category, which aids in the identification of tiny objects [14].

In general, the following are our major contributions:

• The principles of semantic segmentation from both a macroscopic and microscopic
standpoint are explained. Following these standpoints, our method proposes a
controllable fusion module to reduce intra-class inconsistency and an adaptive edge
loss function to reduce inter-class confusion based on this idea.

• This paper present a novel semantic segmentation framework for remote sensing
parsing that uses the controllable feature module and edge adaptive loss function to
improve final performance.

• Our proposed module and loss function can be plugged into mainstream baselines.
Extensive experiments on ISPRS Potsdam and ISPRS Vaihingen datasets are carried
out to validate their efficiency and attain competitive performance.

2. Related Works

In remote sensing parsing, numerous studies have been reported to focus on semantic
segmentation. In this section, relevant advancements in three primary fields will be
reviewed, which include semantic segmentation in aerial image analysis, strategies of
feature fusion and introduction of edge detection.

2.1. Semantic Segmentation in Aerial Image Analysis

Several previous works have showcased the utility of semantic segmentation in aerial
image analysis [15–18]. Many related works have progressed in two ways: the designed
architecture and the modified mechanism in semantic segmentation. For the sake of
algorithm efficiency, they explored fine-grained segmentation with a designed architecture,
such as enlarging receptive fields [19] or constructing explicit spatial relations [20–22]. In
addition, some works altered the framework of semantic segmentation and successfully
applied them in aerial image analysis [23–25]. In particular, [26] exploited a new method to
avoid the need for costly training data. Their initial generation mechanism was designed
to provide more diversified samples with different combinations of objects, directions and
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locations. Furthermore, a variety of semantic segmentation algorithms was applied to
specific task scenarios, such as the change detection of Earth’s surfaces [27], monitoring
built-ups [28,29], analyzing urban functional zones [30,31] and aerial reconnaissance by
Unmanned Aerial Vehicles [32].

It is admitted that there is a significant and growing demand for up-to-date geospatial
data together with methods for the rapid extraction of relevant and useful information that
needs to be delivered to stakeholders [33]. This demand for precise geospatial information
is constantly growing in order to adapt to the current needs of the world at a global
level [34]. Remote sensing parsing is an important task in understanding geospatial data
that can provide semantic and localization information cues for interest targets. Remote
sensing parsing means analyzing very-high-resolution images, which helps to locate objects
at the pixel level and assign them with categorical labels [19,21]. Object-Based Image
Analysis (OBIA) has emerged as an effective method of analyzing high spatial resolution
images [34]. OBIA is an alternative to a pixel-based method, with the basic analysis unit as
image objects instead of individual pixels [35]. Hossain and Chen carried out extensive
high-quality research on segmentation for remote sensing parsing and focused on the
suitability of specific algorithms [36]. Recently, among the semantic methods, DL has been
used in studies [19,37], parsing very high images as it has the capability to treat data as a
nested model.

2.2. Strategies of Feature Fusion

The backbone feature fusion modules and head make up the general semantic segmen-
tation paradigm, as shown in Figure 4. The feature fusion module advanced fine-grained
segmentation in the initial fully convolutional networks [8]. High-level features contain
ample semantic information that helps identify pixel categories, and low-level features
contain abundant spatial information, which indicates how pixels are distributed. Feature
fusion modules are designed to build relationships between high-level and low-level fea-
tures. The feature fusion module, in terms of algorithm mechanisms, theoretically guides
spatial features with semantic features. Certain refined modules were proposed based
on this idea to bridge the gap between high-level and low-level features. Concatenation
in channel dimension [38], feature pyramids [39], spatial pyramid poolings [40,41] and
non-local modules [42,43] were among the modules that came into effect.

Feature 
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Up 

sample

F1

F2
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F4

F5

Backbone

Input

Loss

Feature 

fusion

Up 

sample

Up 

sample

Figure 4. Thg general semantic segmentation paradigm.
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2.3. Introduction of Edge Detection

In remote sensing parsing, distinct edge information is critical for remote sensing pars-
ing [44]. The common methods to supplement edge information include image processing
alone [45,46] and the introduction of extra data (such as Light Detection and Ranging
(LiDAR) and digital surface model) [16]. Automatic extraction of edge information can
reduce the data labelling costs and accelerates the development of remote sensing products
and services.

The goal of semantic edge detection is to identify distinct inter-class borders [47,48]. Re-
cent works have focused on the fusion of body segmentation and edge preservation [14,49],
highlighting the fact that semantic segmentation necessitates object body and edge model-
ing supervision. As a result, Li et al. [49] developed a unique framework by optimizing
body and edge loss in an orthogonal manner, and then combined them as a final loss func-
tion. In [48], they held the view that most methods still suffer from intra-class inconsistency
and inter-class indistinction. They aimed to acquire features with better homogeneity by
using designed architecture to address the problem of intra-class inconsistency. As for
the problem of inter-class indistinction, they made supervisory boundary labels from the
segmentation ground truth with Canny processing. As demonstrated by Ding et al. [50],
Weights in the corner of a square filter usually offer the least information in local feature
extraction. Hence, Zheng et al. [19] suggested a cross-like Spatial Pyramid Pooling module.
In order to improve learning edge information in DCNNs, they proposed an edge-aware
loss, which adds an extra supervised dice-based loss for the edge part.

3. Methodology
3.1. Feature Fusion

The hierarchical backbone network yields feature maps of various sizes, unless other-
wise mentioned, the backbone network in our experiments is Resnet-50. Consider feature
map �8 ∈ R�8×,8×�8 indexed in bottom-to-top order (�8+1 ≤ �8 ,,8+1 ≤ ,8), in which �,,
and � are height, width and channel dimension, respectively.

The fusion of multi-level features can be expressed as Equation (1):

(�1, �2, . . . , �8) → (�̃1, �̃2, . . . , �̃8). (1)

where �̃8 is the fused output in the 8-th layer.
The goal of feature fusions is to integrate semantic information (from top layers)

with spatial location information (from bottom layers). As a result, the process essence of
feature fusion is to assess the importance of different features and filter out information
that is inconsistent.

In mainstream semantic segmentation models, there are several types of feature fusions:

• The spatial pyramid pooling is embedded at the top of backbone networks to encode
multi-scale contextual information. PSPNet [41] and Deeplabv3+ [40] built pyramid
poolings with different dilation rates in convolutional neural networks.

• In encoder–decoder frame networks, the decoding process uses lateral connections [39]
or skip connections [38] to integrate feature information and then outputs
predicted probabilities.

• Another type of method computes a weighted sum of the responses at all positions
(such as Non-local neural networks [42], CCNet [43]).

Obviously, the fusion strategies described above have not explicitly established the
feature correlations and are unable to quantify the importance of each feature. Thus, a
controllable feature fusion module is proposed in this paper.

Gating mechanism has been proved to be valid in the evaluation of each feature vector
in long-short term memory networks (LSTM) [51]. Inspired by LSTM, the controllable
fusion module is depicted in Figure 5, which calculates the weighted sum of all features as
the adjustable outputs. In order to explain the whole process, take the controllable fusion
module in 8-th layer as an example. It can be formulated as follows:
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�̃8 = �8 · �8 + (1 −�8) ·
∑
:≠1

�: · �: , (2)

where the weight factor in 8-th layer is �8 , and the sum of other layers is factorized by
(1 −�8). It is noticeable that the spatial dimensions of other layers are unified as (�8 ,,8)
by bilinear interpolation. Furthermore, weight �8 ∈ R�8 is a vector activated by sigmoid
function, and the specific computing process is shown in Equation (3).

�8 = f(�>=E1×1 (�8)). (3)

�8 is optimized automatically according to the importance of feature �8 . The larger
the contribution of �8 to the final prediction, the closer �8 is to one and vice versa.
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Figure 5. FCN with CFM. The CFM module is applied in F3, F4 and F5 in Resnet-50, and the details
of CFM are shown at the bottom. The red lines represent upsampling.

3.2. Edge Detection

The cross-entropy loss function is a classic loss function in semantic segmentation
(shown in Equation (4)):

! (H, Ĥ) = − 1
#

#∑
8=1

 ∑
:=1

[H8: ;>6( Ĥ8: ) + (1 − H8: );>6(1 − Ĥ8: )] (4)

where # is the number of total pixels in a batch,  is the total number of categories and H

and Ĥ represent label and prediction.
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Segmentation methods are guided by two criteria: homogeneity within a congener
segment and distinction from adjacent segments [33]. Edge-based image segmentation
methods attempt to detect edges between regions and then identify segments as regions
within these edges. One assumption is that the edge feature aids in pixel location, while
the body part containing rich semantic information aids in pixel categorization. The
definition and location of edge regions are crucial to guide semantic segmentation with
edge information.

Recent research has revealed that purified edge information can help with semantic
segmentation. In DFN [14], Canny operator was used to obtain additional edge information
labels and a binary loss function was constructed for edge extraction. Gradient mutation
of optical image was utilized in some research studies relative to edge perception loss
function [19,49]. While the aforementioned works enhanced classification properties, they
simply followed the principle that intra-class features (also known as body part) and
inter-class features (also known as edge part) are of complete heterology and interact in
an orthometric manner. There appears to be an implicit link between intra-class and inter-
class features. Assuming that edge-body joint optimization can further improve semantic
segmentation, an adaptive edge loss function is proposed.

It is necessary to review the online hard example mining (OHEM) algorithm before
elaboration on the proposed adaptive edge loss function. The motivation of OHEM
algorithm is to improve the sampling strategy for object-detection algorithms while dealing
with extreme distributions of hard and easy cases [52]. The authors proposed the OHEM
algorithm for training Fast R-CNN and it proceeded in this manner: At iteration C, the
RoI network [53] performs a forward pass using feature maps from the backbone (such
as VGG-16) and all RoIs. Top 1% of them were assigned as hard examples after sorting
the loss of outputs in descending order (namely take top 1% examples where the network
performs worst). When implemented in Fast R-CNN, it computes backward passes only
for hard examples in RoIs.

The OHEM loss function could be extended to semantic segmentation frameworks
with only modest alterations. Outputs %, which refer to the predicted probability of
each category, are sorted in ascending order throughout forward propagation. Threshold
probability q is updated according to the preset minimum number of reserved samples
# ′ (typically # ′ is 100,000 when patch size is 512 × 512). Actually, threshold probability q
is equal to %[# ′], which is the # ′-th value of predicted outputs. Hard examples are those
with a probability of less than or equal to q. Then, the remaining samples are filled with
ignored labels and will not contribute to gradient optimization. Finally, only hard examples
contribute to cross-entropy loss.

OHEM loss function is formulated as follows:

! (H, Ĥ) = − 1
# ′

# ′∑
8=1

 ∑
:=1

[H8: ;>6( Ĥ8: ) + (1 − H8: );>6(1 − Ĥ8: )], (5)

where # ′ accounts for the number of pixels participating in practical backpropagation.
Although the OHEM algorithm can mine hard examples in semantic segmentation,

the practical findings reveal that a majority of hard examples are dispersed along the
boundaries. Different categories can be easily confused with each other due to visual
resemblance. Inaccurate classification of pixels adjacent to boundaries is a bottleneck
of FCN-likewise methods. The validity of OHEM is due to its ability to identify hard
examples allowing for more effective hard-example optimization. Nevertheless, the OHEM
loss function treats each pixel equally without identification of edge parts. This feature
limits OHEM’s ability to interpret intricate scenes, such as remote sensing photographs.
The optimization strategy must also analyze object structures in addition to mining hard
examples. Hopefully, segmentation maps contain rich edge clues, which are essentials for
semantic edge refinement.

In OHEM loss function, the number of sampled examples # ′ is set in advance, and
it will partition all examples into two sections (hard and easy examples). In essence, the
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OHEM loss function only selects relatively harder samples. Consider the following two
extreme scenarios: ¬ An image patch contains only one single object; ­ an image patch
comprises a variety of objects. There are many assimilative examples in the first scenario;
thus, # ′ shall be reduced to avoid overfitting. In the second scenario, it is difficult to
determine an exact category for pixels attached to both sides of the boundary. In this
case, # ′ is usually a larger number to ensure sufficient examples for optimization. In the
aforementioned cases, the selection of # ′ is fundamentally different, revealing that OHEM
cannot precisely suit regardless of how hyperparameter # ′ is selected. Our goal is to design
a loss function that can dynamically divide hard and easy examples based on each patch.

The model computes the probability of each label H for a training example G as follows:

?(: |G) = 4I:∑ 
8=1 4

I8
, (6)

where : represents the :-th category and : ∈ {1, 2, . . . , }, and I8 is the model’s logits.
Assume that for each training example G, the true distribution over labels is @(: |G) in
Equation (7).

@(: |G) =
{

1, : = H

0, >Cℎ4AF8B4.
(7)

Let us omit the dependence of ? and @ on example G for the sake of simplicity. Thus,
the cross-entropy loss for each example is defined as Equation (8).

; = −
 ∑
:=1

@(:);>6(?(:)) + (1 − @(:));>6(1 − ?(:)). (8)

Minimizing this loss function is equivalent to maximizing the expected log-likelihood
of the correct label. For a particular example G with label H, the log-likelihood is maximized
as @(:) = X:,H (X:,H is Dirac delta), where the label is selected according to its ground-truth
distribution @(:).

Consider the case of a single ground-truth label H so that @(: = H) = 1 and @(:) = 0
for all : ≠ H. For a particular example G with label H, the log-likelihood is maximized for
@(:) = X:,H , where X:,H is Dirac delta. The optimization is guided by the cross-entropy loss
function, where IH is substantially larger than I: (: ≠ H).

This strategy, however, may result in over-fitting. If the model learns to assign full
probability to the ground-truth label for a particular training example, it is not guaranteed
to generalize. Szegedy et al. proposed a regularization mechanism named label-smoothing
for a more adaptable optimization [54]. They set a unique distribution over labels D(:) and
a smoothing parameter Y in the label distribution, which were independent of the training
example G. For each training example G with ground-truth H, label distribution @(:) = X:,H
was replaced with Equation (9):

@′(:) = (1 − Y)X:,H + YD(:), (9)

which mixed the original ground-truth distribution @(:) and the fixed distribution D(:)
with weights 1− Y and Y , respectively. The distribution of the label : is obtained as follows:
First, set it as the ground-truth label : = H; then, with probability Y, replace : with a sample
drawn from the distribution D(:). They used the uniform distribution as D(:) so that the
label distribution was changed as Equation (10):

@′(:) = (1 − Y)X:,H +
Y

 
, (10)

where  is the number of total classes. Y represents the probability of the ground-truth
labels being replaced.

In our proposed adaptive edge loss function, the ratio of hard examples to all examples
determines Y. During actual optimization, a gradient information map using the Laplacian
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operator (deal with true label distribution) is calculated. Elements with a gradient of 0 are
regarded as easy examples, while the other elements are all filled with 1 and are regarded
as hard examples (as known as edge parts). Easy examples can only be optimized by cross
entropy when constructing the final loss function, while hard examples are input into the
adaptive edge loss function for optimization.

The calculation process of our proposed adaptive edge loss function is shown in
Algorithm 1, and it can be formulated as follows:

! (H, Ĥ) = − 1
#1

#1∑
8=1

 ∑
:=1

[H40BH
8:

;>6( Ĥ40BH
8:
) + (1 − H40BH

8:
);>6(1 − Ĥ40BH

8:
)]

− 1
#2

#2∑
8=1

 ∑
:=1

[H′ℎ0A38: ;>6( Ĥℎ0A38: ) + (1 − H′ℎ0A38: );>6(1 − Ĥℎ0A38: )],

(11)

where #1 and #2 are the number of easy examples and hard examples, respectively. H is
the ground-truth label and Ĥ is the predicted probability of the model.

Algorithm 1 Adaptive Edge Loss function

Input: D: training dataset composed of G8 , H8 ; K: number of total categories; @: label
distribution

Output: \: optimal parameters of the network
1: Initialize parameters of the network according to [55], #ℎ0A3 ← 0, #40BH ← 0
2: for all G8 , H8 ∈ D do
3: for : = 1 to K do
4: compute predicted probability Ĥ8 (:) = 5\ (G8)
5: compute smoothed label distribution @̂(:) = (1 − b)@(:) + b

 

6: for all pixel B ∈ G8 do
7: if Laplace(ĤB) < 0 then
8: compute loss value for easy examples
9: #1 ← #1 + 1

10: end if
11: if Laplace(ĤB) > 0 then
12: replace H(:) as H′(:) according to smoothed distribution @̂(:)
13: compute loss value for hard examples
14: #2 ← #2 + 1
15: end if
16: end for
17: end for
18: compute final loss value according to Equation (11)
19: end for
20: optimize \ according to Stochastic Gradient Descent

4. Experimental Results
4.1. Description of Data Sets

The Potsdam and Vaihingen datasets (https://www2.isprs.org/commissions/comm2
/wg4/benchmark/ (accessed on 12 December 2013)) are used for benchmarking. The
Potsdam dataset consists of 38 high resolution aerial images that cover a total area of
3.42 km2 and are captured in four channels (near infrared, red, green and blue). All images
are 6000 × 6000 pixels in size and are annotated with pixels-level labels of six classes. The
spatial resolution is 5 cm, and co-registered DSMs are available as well. In order to train
and evaluate networks, 17 RGB images (image IDs: 02_10, 03_10, 03_11, 03_12, 04_11,
04_12, 05_10, 05_12, 06_08, 06_09, 06_10, 06_11, 06_12, 07_07, 07_09, 07_11 and 07_12) were
utilized for training, and the test set was built with remaining RGB images (image IDs:
02_11, 02_12, 04_10, 05_11, 06_07, 07_08 and 07_10), which follows the setup in [56,57].

https://www2.isprs.org/commissions/comm2/wg4/benchmark/
https://www2.isprs.org/commissions/comm2/wg4/benchmark/
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The Vaihingen dataset is composed of 33 aerial images with a spatial resolution
of 9 cm that were gathered over a 1.38 km2 area of Vaihingen. Each image has three
bands, corresponding to near infrared, red and green wavelengths with an average size
of 2494 × 2064 pixels. Notably, DSMs, which indicate the height of all object surfaces in
an image, are also provided as complementary data. Sixteen of the images are manually
annotated with pixel-wise labels, and each pixel is classified into one of six land cover
classes. Following the setup in [56,58,59], 11 RGB images (image IDs: 1, 3, 5, 7, 13, 17, 21,
23, 26, 32 and 37) were chosen for training, and the remaining five RGB images (image IDs:
11, 15, 28, 30 and 34) were used to test our model.

4.2. Training Details and Metrics

ResNet-50 [60] is chosen as our backbone networks by default. Following the same
setting in [37], all models involved were trained with 100 epochs on cropped images.
During training, random scale variation (scale range is between 0.5 and 2.0) and horizontal
and vertical flip are used for data augmentation. A sliding window striding 256 pixels is
applied to crop the image into a fixed size of 512 × 512 for data preprocessing. The mean
intersection over union (mIoU) and mean pixel accuracy (MPA) are chosen as the main
metrics for evaluation. The baseline for ablation studies is Semantic-FPN [39] with output
stride 32.

4.3. Experiments

Extensive experiments concerning the controllable fusion module (hereinafter referred
to as CFM) and the adaptive edge loss function (hereinafter referred to as AEL) were
conducted.

Ablation experiments with FCN and Deeplabv3 as baseline separately were performed
to verify the effectiveness of CFM and AEL. A total of four experiments on Potsdam and
Vaihingen datasets were conducted. As shown in Tables 1 and 2, CFM and AEL can
significantly promote FCN like-wise networks. CFM increases by at least 1.148% in mIoU,
and AEL increases by at least 2.53% and 0.861% in mIoU and MPA. In the Deeplab like-wise
models shown in Tables 3 and 4, CFM effectively improves mIoU by 2.311%, and AEL
effectively improves mIoU by 1.176%.

The ablation experimental results showed that both CFM and AEL can play a positive
role in the general semantic segmentation framework model, especially in FCN networks.

Table 1. Ablation study of FCN likewise models on Potsdam dataset.

Method CFM AEL mIoU (%) MPA (%)

Baseline - - 69.698 81.223
Baseline X - 76.811 85.200
Baseline X X 77.959 86.061

CFM means the controllable fusion module. AEL means the adaptive edge loss.

Table 2. Ablation study of Deeplab likewise models on Potsdam dataset.

Method CFM AEL mIoU (%) MPA (%)

Baseline - - 73.340 81.453
Baseline X - 75.651 82.241
Baseline X X 78.202 86.264

CFM means the controllable fusion module. AEL means the adaptive edge loss.
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Table 3. Ablation study of FCN likewise models on Vaihingen dataset.

Method CFM AEL mIoU (%) MPA (%)

Baseline - - 65.782 81.379
Baseline X - 68.312 82.431
Baseline X X 73.346 84.241

CFM means the controllable fusion module. AEL means the adaptive edge loss.

Table 4. Ablation study of Deeplab likewise models on Vaihingen dataset.

Method CFM AEL mIoU (%) MPA (%)

Deeplabv3 plus - - 68.264 82.942
Deeplabv3 plus X - 69.440 83.056
Deeplabv3 plus X X 72.368 84.881

CFM means the controllable fusion module. AEL means the adaptive edge loss.

In addition to the ablation experiments, the hyperparameter selection of the kernel size
in AEL was also compared. The kernel size in AEL can only be odd, and the experimental
results with kernel size as 3, 5 and 7 were compared respectively. In the following four
groups of experiments, mIoU and MPA as evaluation were chosen as metrics shown in
Figures 6 and 7. The experimental results showed that the selection of kernel size has
limited influence on mIoU and MPA. When the kernel size is 3 and 5, the effect is basically
the same. Therefore, the kernel size in AEL is finally set as 5.
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(a) AEL with different kernels in FCN
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Figure 6. Comparison of different kernels of Adaptive Edge loss on Potsdam dataset. (a) The baseline
is FCN. (b) The baseline is Deeplabv3. The metrics are mIoU and MPA.
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Figure 7. Comparison of different kernels of Adaptive Edge loss on Vaihingen dataset. (a) The
baseline is FCN. (b) The baseline is Deeplabv3. The metrics are mIoU and MPA.

Furthermore, CFM is also compared with other general feature fusion modules, in-
cluding lateral connections in [39], spatial pyramid pooling with dilated convolutions
in [40], skip connections in [38], non-local fusion in [42] and semantic flows in [61]. In
this group of experiments, the baseline is unified as FCN. The detailed architectures of
all fusion modules are depicted in Figures 8–10. It is noticeable that Flow warp in [61]
referred to [62], but their warping procedure incorporated low-level and high-level features
to predict offset fields.

The pixel accuracy of each category (clutter, impervious surface, car, low vegetation,
tree and building) is also sorted out in Tables 5 and 6 in order to comprehensively analyze
the performance of each fusion module. In both Potsdam and Vaihingen datasets, the
proposed CFM has a significant improvement in mIoU and marginal improvements in
MPA. CFM can effectively classify complex categories. In both datasets, the corresponding
impervious surface pixel accuracies reach 77.476% and 72.898%, respectively, which are
the highest scores among all fusion modules. In parsing clutter pixels, CFM also helps
FCN in reaching an almost 2.96% increase in mIoU. Meanwhile, the CFM module can still
maintain high accuracy when discriminating small objects (car and tree). Theoretically,
CFM constructs a strong attention mechanism, which combines the semantic features of
each layer and redistributes weights to correct the prediction results of the model. Thus, it
can effectively distinguish the pixels of impervious surface. In addition, its fusion strategy
also integrates local and global information; thus, it also promotes the classification of
small objects.
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Table 5. Results of different fusion modules on Potsdam dataset. CL means clutter. I means
impervious surface. CA means car. L means low vegetation. T means tree. B means building. The
highest scores are marked in bold.

Method mIoU (%) MPA (%) CL (%) I (%) CA (%) L (%) T (%) B (%)

FPN 69.698 81.223 51.013 71.477 69.870 66.361 62.423 78.357
ASPP 71.186 82.141 55.085 73.056 73.530 67.737 61.775 79.834

CONC 69.698 81.223 51.013 71.477 69.870 66.361 62.423 78.357
Decouple 70.671 81.760 52.003 71.900 71.653 67.037 63.289 79.477
Nonlocal 72.857 84.797 54.167 76.131 63.332 71.289 67.294 86.242

CFM 76.811 85.200 54.979 77.476 81.503 71.752 67.613 85.712
CFM means our controllable fusion module.

Table 6. Results of different fusion modules on Vaihingen dataset. CL means clutter. I means
impervious surface. CA means car. L means low vegetation. T means tree. B means building. The
highest scores are marked in bold.

Method mIoU (%) MPA (%) CL (%) I (%) CA (%) L (%) T (%) B (%)

FPN 65.782 81.379 - 71.631 54.503 52.211 70.458 80.108
ASPP 64.357 81.518 - 71.899 45.885 52.458 70.031 81.509

CONC 63.060 81.115 - 71.333 41.602 52.422 69.752 80.193
Decouple 66.155 82.270 - 72.561 50.321 55.878 71.683 80.332
Nonlocal 50.213 74.713 - 63.405 11.482 42.533 61.000 72.645

CFM 68.312 82.431 - 72.898 60.389 55.547 71.255 81.471
CFM means our controllable fusion module.
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Figure 8. FCN with different fusion modules. (a) FCN with lateral connections. (b) FCN with spatial
pyramid poolings. (c) FCN with skip connections. The red lines represent upsampling.
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Figure 9. FCN with semantic flows. The red lines represent upsampling.
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Figure 10. FCN with non-local fusions. B, H, W and C represent batch size, height, width and channel
dimension, respectively.

In the last figure, existing state-of-art models are also represented, which include
CCNet [43], Deeplabv3+ [40], PSPNet [41], UNet [38], EANet [19] and Semantic flows
(FCN decouple and Deeplab decouple) [49]. All the above networks were retrained on a
single 2080-ti with batch size as eight for fairness. The training epoches are 100, and the
cropped size is 512. Therefore, their final performance is somewhat different from that in
the original paper. Visualization results can be found in Figures 11 and 12.

The results are shown in Tables 7 and 8, and some methods are distinguished as two
models according to their baselines (SF-F means semantic flows with FCN, SF-D means
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semantic flows with Deeplab, Ours-F means our proposed methods with FCN, and Ours-D
means our proposed methods with Deeplab). In both Potsdam and Vaihingen datasets,
FCN and Deeplab embedded with CFM and AEL outperformed other models in terms
of mIoU and MPA. CCNet constructs the attention mechanism in the spatial dimension.
It can accurately analyze complex categories such as impervious surface. However, it is
difficult to identify small objects such as cars and trees. Similar problems can also be found
in EANet. There is one possible theoretical explanation for such problems. Their models
set strong constraints but failed to establish a clear mapping relationship, which results in
the most important and common features but cannot take into account those rare samples.

Establishing an explicit fusion relationship between edge features and body features
can indeed advance remote sensing parsing. Semantic flows constructed flow-warp pro-
cedure in order to optimize edge loss and body loss; hence, it can achieve clear accuracy
leadings on both datasets. Similarly, our proposed scheme improves the feature fusion
process and edge-body loss optimization. It should be noted that these two strategies are
fundamentally different. During the process of feature fusion, the CFM proposed in this
paper actually fuses all features and then carries out self calibration, while the strategy
of semantic flows is to extract edge and subject features in a decoupled manner. When
analyzing complex and changeable impervious surfaces, the models with CFM and AEL
have achieved leading accuracy. When analyzing small targets, the model also achieves a
significant improvement.

Table 7. Results of other models on Potsdam dataset. CL means clutter. I means impervious surface.
CA means car. L means low vegetation. T means tree. B means building. The highest scores are
marked in bold.

Method mIoU (%) MPA (%) CL (%) I (%) CA (%) L (%) T (%) B (%)

CCNet 59.073 76.210 46.474 61.563 44.097 60.798 56.834 72.073
Deeplabv3+ 73.340 81.453 63.712 72.291 73.264 67.157 60.624 78.363

PSPNet 61.656 78.801 52.140 65.935 43.613 63.461 58.589 76.683
UNet 74.844 83.423 42.027 76.356 79.485 69.498 66.131 82.749

EANet 64.514 80.106 52.378 69.861 50.310 65.593 60.760 76.047
SF-F 70.671 81.760 52.003 71.900 71.653 67.037 63.289 79.477
SF-D 77.079 85.404 55.872 77.879 81.732 71.787 67.977 86.018

Ours-F 77.959 86.061 54.293 79.133 81.602 72.891 68.143 88.025
Ours-D 78.202 86.264 68.193 79.058 79.939 81.775 72.884 88.219

Table 8. Results of other models on Vaihingen dataset. CL means clutter. I means impervious surface.
CA means car. L means low vegetation. T means tree. B means building. The highest scores are
marked in bold.

Method mIoU (%) MPA (%) CL (%) I (%) CA (%) L (%) T (%) B (%)

CCNet 51.843 74.669 - 63.049 18.980 43.439 60.627 73.118
Deeplabv3+ 68.264 82.942 - 73.700 57.164 56.752 72.267 81.435

PSPNet 51.325 75.513 - 64.519 11.999 43.837 61.475 74.793
UNet 68.001 83.519 - 75.191 51.941 57.322 72.134 83.416

EANet 64.964 80.448 - 69.814 55.732 54.652 67.983 76.639
SF-F 66.155 82.270 - 72.561 50.321 55.878 71.683 80.332
SF-D 72.274 84.750 - 77.514 65.860 60.211 72.838 86.046

Ours-F 73.346 84.241 - 77.504 62.148 59.571 73.849 86.658
Ours-D 72.368 84.881 - 77.388 66.064 59.542 73.326 85.518
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(b) Ground truth (c)CCNET (d)Deeplabv3+ (e)PSPNet (f)UNet (g)EANet (h)SF-F (i)SF-D (j)Ours-F (k)Ours-D(a) Real image

Figure 11. Visualization of all models on Potsdam dataset. (a) Ground truth. (b) Results of CCNet. (c) Results of Deeplabv3+. (d) Results of PSPNet. (e) Results
of UNet. (f) Results of EANet. (g) Results of SFNet with FCN. (h) Results of SFNet with Deeplab. (i) Results of our method with FCN. (j) Results of our method
with Deeplab.
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(c)CCNet(b)Ground truth (d)Deeplabv3+ (e)PSPNet (f)UNet (g)EANet (h)SF-F (i)SF-D (j)Ours-F (k)Ours-D(a)Real image

Figure 12. Visualization of all models on Vaihingen dataset. (a) Ground truth. (b) Results of CCNet. (c) Results of Deeplabv3+. (d) Results of PSPNet. (e) Results
of UNet. (f) Results of EANet. (g) Results of SFNet with FCN. (h) Results of SFNet with Deeplab. (i) Results of our method with FCN. (j) Results of our method
with Deeplab.
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Only the controllable fusion module (CFM) proposed in this paper is involved with
inference. Therefore, four groups of experimental results are recorded in Table 9. Compared
with the baselines (FCN and Deeplabv3 plus), the forward inference time of CFM increased
by 15 ms and 12 ms. In view of its gain in mIoU and MPA, CFM is still cost-effective feature
fusion module.

Table 9. Inference time of our methods

Method Inference Time (ms)

FCN 150
FCN + CFM 165 ↑(15)

Deeplabv3 plus 116
Deeplabv3 plus + CFM 128 ↑(12)

5. Discussion

The experimental results indicate that our proposed method has three advantages
over other algorithms. First, our proposed controllable fusion module and adaptive edge
loss function can be plugged into general baselines (such as FCN and Deeplabv3) with
minimal modifications. The final evaluation metrics prove that our modified modules can
significantly improve the baselines. Second, our modified networks can effectively filter out
distractors. In Potsdam and Vaihingen datasets, categories such as clutters and buildings
have high semantic complexity. During upsampling, our proposed controllable fusion
modules adjust features at all levels and automatically determine weight values for all
features according to their importance. In the final weighted fusion, our modified networks
realize valid recognition for different categories. Third, our proposed method is capable of
dealing with tiny objects (such cars and trees). Inspired by edge detection, our proposed
adaptive edge loss function further mines difficult samples in edge information, which is
helpful for identifying small targets. In short, our proposed method has a powerful feature
fusion ability and detailed recovery capability for high-resolution remote sensing images.
Our method achieves competitive results, but further work on remote sensing parsing still
needs to be conducted.

6. Conclusions

In this study, a controllable fusion module (CFM) and an adaptive edge loss (AEL)
are proposed to solve problems in remote sensing parsing. Currently, parsing algorithms
based on semantic segmentation are trapped in three aspects including frequent neglect
of small distributed objects, high complexity of category understanding and unbalanced
distribution of categories. Our proposed CFM helps to construct an explicit relationship
between all-level features, which achieves 7.113% and 2.53% mIoU improvement in Pots-
dam and Vaihingen datasets, respectively. AEL can dynamically optimize hard samples
in edge pixels and simultaneously optimize body pixels. Results of ablation experiments
reveal that AEL achieves up to 4.862% and 7.564% mIoU improvement in Potsdam and
Vaihingen datasets. The strategies described above improve semantic segmentation models
in a coupled manner. The proposed CFM and AEL can be embedded into mainstream
baselines such as FCN and Deeplabv3, and the final results show that our methods achieve
best performances of 78.202% and 73.346% mIoU in Potsdam and Vaihingen datasets.
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