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Abstract: Current railway tunnel inspections rely on expert operators performing a visual exam-
ination of the entire infrastructure and manually annotating encountered defects. Automatizing
the inspection and maintenance task of such critical and aging infrastructures has the potential to
decrease the associated costs and risks. Contributing to this aim, the present work describes an aerial
robotic solution designed to perform autonomous inspections of tunnel-like infrastructures. The
proposed robotic system is equipped with visual and thermal sensors and uses an inspection-driven
path planning algorithm to generate a path that maximizes the quality of the gathered data in terms
of photogrammetry goals while optimizing the surface coverage and the total trajectory length.
The performance of the planning algorithm is demonstrated in simulation against state-of-the-art
methods and a wall-following inspection trajectory. Results of a real inspection test conducted in a
railway tunnel are also presented, validating the whole system operation.

Keywords: tunnel inspection; aerial platform; inspection path planning; autonomous systems

1. Introduction

The aging of the existing infrastructure [1] and the increasing necessity of building
new ones have set a lower limit, around 3.9%, of the GDP corresponding to EU member
states for financing infrastructure-related activities [2]. Furthermore, current predictions
point to a 1.2 trillion EUR annual investment being required at least up to 2030 to support
the risky labor of inspection and maintenance [3].

In the last decade, multiple robotic solutions that aim to facilitate inspection and main-
tenance procedures have emerged [4-7]. This growing interest is fueled by the potential of
maintaining the same performance of traditional methods while increasing the time and
cost-efficiency of the operation and mitigating the risks. Different types of robots, such as
crawlers [8], flying vehicles [9-11], ground robots or underwater vehicles [12], are being
put forward by the research community and commercialized by several companies (e.g.,
Hovering Solutions (Madrid, Spain), Flyability (Lausanne, Switzerland), Kespry (Menlo
Park, CA, USA), Eddyfi Technologies (Quebec, Canada)) with the objective of fulfilling the
operational needs that the infrastructure maintainers have.

Focusing on tunnel-like infrastructures, the particularities of their grounds that are
usually uneven, potentially wet and, as in the case of railway tunnels, contain tracks and
other obstacles, limit the number of solutions that consider ground robots for the inspection
task [13,14]. In contrast, the use of flying robots as an inspection tool is continuously
increasing due to their capacity to easily traverse 3D space and quickly reach high and
difficult to access areas [15-19].

Despite these advantages, the lack of Global Navigation Satellite Systems (GNSS)
signals, the poor lighting conditions, the highly symmetrical environment, as well as the
presence of the catenary in railway tunnels pose several challenges in terms of localization
and navigation performance of an autonomous aerial vehicle. Thus, many of the current
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commercial solutions are either semi-autonomous or require an expert pilot to command
the aircraft. Recently, a coordinated effort around the Defense Advanced Research Projects
Agency (DARPA) Subterranean Challenge has pushed the limits of autonomous navigation
of aerial robots in confined, tunnel-like environments [20-22]. Examples of this can be found
in [14], where the authors combine a local and global planning strategy to autonomously
navigate with both legged and aerial vehicles through a complex subterranean environment,
as well as in [23], where a risk-aware planning method is proposed to account for the
degradation of perception modules which occurs in long and complex missions. Despite
the progress made, these works focus mainly on exploratory goals, leaving aside the
inspection objectives required by infrastructure maintainers and operators.

To aid expert operators in assessing the infrastructure’s health condition, a robotic
inspection must ensure that the sensor data collected is accurate and provides a suffi-
cient level of detail. Having the infrastructure inspection in mind, the works presented
in [15,24,25] use different strategies to provide meaningful data for the infrastructure main-
tainers. Authors in [15] equip multiple visual cameras on-board a UAV with the objective
of generating panoramic images of the tunnel surface. The work presented in [24] tack-
les the inspection of railway tunnels by equipping their proposed aerial platform with a
high-definition camera, the output of which can be used to detect surface defects. The
authors of [25] presented a UAV-based system to perform close visual inspections of vessel
cargo holds under a supervised autonomy paradigm. While it is true that these approaches
have the main goal of the inspection of infrastructures, the first two approaches do not
consider the quality of the inspection in any way, resulting in robot trajectories close to the
central tunnel axis, while the last one does perform a close inspection, but it requires the
supervision of an operator for the mission definition and execution.

To account for the sensors equipped on-board while also performing an autonomous
flight, inspection-driven path planning algorithms can be implemented to achieve trajec-
tories that promote information gathering. One of the most popular approaches in these
cases is to solve a Next-Best-View (NBV) problem to find sensor placements that maximize
a predefined utility gain. Initially proposed in [26], this method has the big advantage of
using a utility gain formulation that can be easily adapted to many different tasks. For
an inspection task, the gain is usually formulated as a function of the sensor information
gathered at a given viewpoint. Several implementations of the NBV strategy have been
proposed to solve the exploration or inspection of an unknown environment. The authors
of [27] propose a receding horizon NBV scheme (RH-NVB), which builds a rapidly explor-
ing random tree (RRT) by sampling viewing configurations and computing the information
gain of each branch. Then, in an RH fashion, the first node of the best branch is executed,
and the process is iterated. In large and complex environments, this method is prone to
be stuck in local minima configurations. To tackle this problem, Selin et al. [28] propose
using the RH-NBV strategy as a local planning strategy and combining it with a frontier
exploration method used for global planning. A different strategy is used in [29], where the
authors propose to keep track of the previously visited positions and use them as seeds for
the RRT when the mapped environment increases and no local, high-gain viewing points
are near. While the aforementioned path planning strategies succeed in avoiding local
minima configurations, their focus is still on exploration tasks, leaving aside the particular
needs of infrastructure inspection. The authors of [30] take it a step further and present
an RRT-based information path planning strategy to achieve accurate Truncated Signed
Distance Field (TSDF)-based 3D reconstructions of previously unknown environments.
Their approach incorporates a measure of the 3D reconstruction accuracy directly into the
information gain. Moreover, they maintain a single large RRT tree to find both local and
global paths.

This paper proposes an end-to-end robotic solution meant to automatize traditional
visual inspections of tunnel infrastructures. The proposed solution consists of an aerial
platform equipped with a properly selected navigation and inspection payload, as well as
a novel inspection path planning algorithm meant to ensure a high quality of the captured
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data. Several other authors present platform and system descriptions designed to work in
complex, tunnel-like environments [15,16,31]. However, the systems and sensors equipped
on-board tend to solve localization and mapping problems rather than focusing on the
quality of the captured data, which is key to performing an accurate inspection. Here,
we describe the entire process of system design, integration and validation, leading to a
complete solution for tunnel inspection tasks. The inspection path planning algorithm
developed for this task builds upon the strategy presented in [30], as it also employs a
single, large RRT tree to mitigate local-minima situations. However, we approach the
3D reconstruction task from a photogrammetry point of view. Instead of directly using
the depth sensor to obtain a 3D reconstruction of the environment, we use the on-board
inspection sensors to obtain detailed and accurate information of the tunnel surface and
employ photogrammetry techniques in post-processing to achieve the 3D reconstruction.
Moreover, to provide meaningful and detailed information to an interested infrastructure
maintainer, we put the focus of our inspection method on achieving high-definition imagery
of the tunnel surface. Thus, the main objective of the robotic inspection is to ensure that the
images captured during the autonomous flight are of sufficient quality to enable further
post-processing steps. To tailor the inspection path planning towards this objective, the
on-board inspection sensor characteristics are taken into account within the planning
algorithm, and the information gain is formulated such that the inspection distance is
minimized. Moreover, to increase the sampling efficiency of the planning algorithm, we
exploit the geometric configuration of tunnel-like structures. Our algorithm detects the
tunnel wall’s location and uses this information to automatically increase the density of
the sampled sensor viewpoints in the locally explored map surrounding the walls. In this
manner, the probability of detecting rich information paths not previously explored is
increased. The main contributions of this paper are the following:

*  This paper proposes a hardware and software selection for automated tunnel inspec-
tions that have been validated through simulation and real experiments.

*  We present an inspection path planning method that focuses on the quality of the
gathered sensor data by formulating the information gained in terms of the distance
from which the surface is inspected.

*  The planning algorithm is enhanced with an efficient sampling strategy. The tunnel
wall’s location is firstly detected and then employed to increase the sampling density
in the areas located nearby the tunnel surface.

The remainder of the document is structured as follows. The hardware setup, including
perception sensors and inspection payload containing multiple visual and thermal cameras,
is presented in Section 2. Localization, mapping, control and planning modules that enable
the autonomous operation are discussed in Section 3. Section 4 evaluates the performance
of the current approach against other methodologies through simulation and a real-world
use case. Finally, conclusions are drawn in Section 5.

2. System Overview

Autonomous aerial inspection requires the integration of specific sensors, as well as a
navigation system embedded on the flying platform to be used. Moreover, enough payload
capacity from both weight and energy perspectives must be ensured. This section presents
an overview of the entire system hardware composing the robotic solution proposed within
this work.

2.1. The Aerial Platform

The platform chosen to perform the infrastructure inspection task is the DJI Matrice
100 quadrotor. This platform has an approximated size of 90 x 90 x 35 cm and weighs
2.43 kg when no payload is added. The size of this quadrotor makes it suitable for many
different tunnel environments (e.g., railway or road tunnel, mines, big sewers), while
its simple airframe can be easily customized to incorporate task-specific sensors. As the
proposed inspection method aims to attain a high level of automation, we integrate on
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the Matrice 100 platform an Intel NUC8i7BEH mini computer with a 7th Generation Intel
Core i7-8559U at 4.50 GHz, 32 GB DDR4 RAM and a 1.5TB SSD. This computer provides
sufficient computational power to run the mapping and navigation modules and contains
enough storage capacity to save the gathered inspection information.

2.2. Perception Sensors

The aerial platform is equipped with an Orbbec Astra depth camera to sense the tunnel
environment. This camera computes a depth map of the nearby environment (up to 8 m
of range) by triangulating the position of features generated by the projection of a specific
infrared (IR) pattern. To track the position of the robot within the mapped environment, an
Intel Realsense T265 tracking sensor is used. This lightweight sensor provides an efficient
and integrated Visual Simultaneous Localization and Mapping (V-SLAM) algorithm that
outputs the relative position of the robot with regards to a starting point at a frequency
as high as 200 Hz. The sensor relies on the accurate detection and matching of visual
features on its two fisheye cameras, which is supplemented by data from an integrated
Inertial Measurement Unit (IMU). As this sensor depends on visual information of the
environment, it is sensitive to different light conditions present in the tunnel environment.
However, this choice is motivated by its significantly low weight (55 g) when compared
to other more robust technologies, such as LIDARs. As the main objective is to design a
platform suitable for high-definition imagery capture, the inspection sensors equipped
on-board represent a big part of the available payload, imposing weight limitations to the
remaining perception sensors.

To correct potential drifts in the z-direction, a mid-range (up to 15 m) TeraRanger Evo
distance sensor is also mounted on-board. Figure 1 left shows the aerial platform with the
main localization and mapping sensors. As can be observed, the camera sensors have been
placed far from the body gravity center to avoid capturing the platform’s body within the
camera’s field of view. The distance sensor is not visible in this figure as it is mounted on
the back of the platform, pointing downwards.

Orbbec Astra

Figure 1. Aerial platform and inspection sensors schematics. Left: DJI Matrice 100 equipped with
the Intel NUC unit, as well as the localization and mapping sensors. Right: Schematic showing the
visual and thermal camera arrangement on the 3D-printed inspection sensor support. The left and
front cameras are slightly tilted upward to avoid capturing the airframe in the images.

2.3. Inspection Sensors

The main objective of this work is to provide an end-to-end robotic solution that could
substitute the traditional visual inspection performed by human operators. To this end, the
aerial platform has been equipped with four visual cameras: three IDS UI-3251LE and one
high-resolution Basler acA4112-20um, as well as one FLIR Tau 640 thermal camera. Table 1
shows their main characteristics. The sensors have been selected, taking into account
performance and weight aspects of the entire inspection payload. In terms of weight, due to
the impossibility of equipping a gimbal stabilizer, all visual sensors have global shutters
to avoid artifacts and blurry images being captured. Moreover, the sensors selected are
among the lightest available, given their specifications in terms of resolution. The entire
platform equipped with the navigation and inspection sensors reached a total weight of
4.2 kg and achieved an overall autonomy of 8 min of flight.
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The data captured by the inspection sensors should serve two main objectives. First,
it must be suitable for manual or automated defect detection on the tunnel walls and
ceiling. Second, it must be post-processed and employed in photogrammetry techniques to
obtain an accurate 3D reconstruction of the tunnel environment. Both objectives require
that the images captured are detailed and sharp, presenting no artifacts or change in
illumination. The photogrammetry methods involve a first correspondence search step that
tries to match a common scene in multiple images. This requires that the captured images
have a certain overlap and that multiple environment features are correctly extracted and
matched. Therefore, higher-quality images will output more features that will increase
the accuracy of the matching process. The same requirements are needed for the manual
or automated detection of defects. Detecting structural and other types of infrastructure
defects using merely visual and thermal images is an active research topic, with multiple
works being published in this regard [32-35]. These techniques also benefit from the use
of high-definition, detailed images, as the smaller the feature that can be identified on
the image, the smaller the defect that can be detected. The early detection of the smallest
defects could be of much interest for an infrastructure maintainer, as this would allow for
early intervention, avoiding high repair costs once the defect is larger.

To ensure a detailed reconstruction of the environment, one of the main parameters to
consider is the Ground Sampling Distance (GSD). GSD represents the distance between
two adjacent pixel centers measured on the observed object. This metric indicates the level
of detail that can be captured by a sensor from a certain observation distance, which, for
an inspection task, translates to the smallest defect that can be detected. Assuming an
inspection distance of 2 m, the GSD of each sensor can be computed as:

S‘wd
wa

where Sy, is the sensor width, d is the observation or capturing distance, f is the focal
length, and I, is the image width in pixels. Thus, for each camera, the resulting GSD is
shown in Table 1.

Assuming that at least two pixels are required to detect a potential defect, the smallest
defect that can be detected by the three camera types on-board the UAV is 4.5, 1.72 and
3.58 mm for the IDS, Basler and thermal cameras, respectively. As expected, the higher-
resolution sensor is the one capable of detecting smaller features, and thus, smaller defects
on the tunnel surface.

All the inspection sensors have been attached to a lightweight (82 g) 3D-printed
structure that can be easily mounted and unmounted on the aerial platform (see Figure 1
right). The height and angle at which the sensors are placed ensure that the platform’s
body is not captured within the camera’s field of view.

To obtain accurate and sufficiently illuminated visual images, we equipped the aerial
robot with four shutter-synchronized LEDs pointing in each camera direction. The LEDs are
powered in an energy-efficient manner with a duty cycle of ~5% working at a frequency of
15Hz along with the cameras. Hence, regardless of the existing tunnel illumination, the robot
is able to perform surface inspections making sure that enough details are being captured.

GSD =

)
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Table 1. Inspection payload sensor characteristics.
Camera Model
Parameter IDS UI-3251LE-M-GL  Basler acA4112-20 um  FLIR Tau 640
Weight (g) 32 344 70
Sensor size (mm) 72 x54 14.1 x 10.3 10.8 x 8.1
Resolution (px) 1600 x 1200 4096 x 3000 640 x 480
FoV (°) 84H x 68V 83H x 65V 32H x 26V
Focal length (mm) 4 8 19
GSD @2 m (mm) 2.26 0.86 1.78
Orientation Front, Left and Up Right Right

3. Autonomous Inspection Methodology

This section presents an overview of the main navigation system components and a
description of the approach taken in this work towards providing an autonomous end-to-
end solution for tunnel inspection tasks. Figure 2 shows the main components required for
this task and how they are interconnected.
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Visual Data

1

AprilTag
Detector

3D voxel
map

™ Path Planner

4D Trajectory

High-level controller |

Linear MPC
Module

Mapping module %

E PointCloud
|

Figure 2. Overview of the main sensors and software components composing the entire system.

On-board Computer /

3.1. Mapping Module

To map the previously unknown environment, the 3D pointcloud provided by the
depth camera is used to obtain a 3D voxel map. The mapping framework used to achieve
this representation is based on Voxblox [36]. Similar to other occupancy maps, Voxblox
classifies each voxel as either known free, known occupied or unknown. This classification
is sufficient for an exploration task, but for an inspection procedure, we are also interested
in marking and keeping track of the voxels that have already been inspected or sensed
by the on-board inspection sensors. Thus, we add an additional category to each voxel to
mark their state as either inspected or not. The end result is a map representation that is
used for both collision avoidance and the determination of inspection progress.

3.2. Localization and Drift Correction

The pose estimation provided by the Intel Realsense T265 sensor relies on a visual
odometry algorithm fused with IMU data and local loop-closure capabilities. The resulting
localization is prone to errors, especially in low-textured environments and long trajectories.
To mitigate these errors, measures from a TeraRanger pointing downwards are used to
correct the z estimation if the tunnel terrain is sufficiently flat. Otherwise, an AprilTag
detector module is also implemented, which uses the visual data provided by the depth
camera pointing forwards to detect tags located on the uneven tunnel floor and provide a
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second z estimation that can be used to correct the height measurement. These corrections
can be activated or deactivated to suit the needs of any tunnel morphology.

3.3. Vehicle Control

The lack of GNSS signals in tunnel environments prevents the use of the embedded
DJI N1 flight controller in position mode. Thus, a cascaded control strategy is implemented
consisting of a Linear Model Predictive Controller (MPC) acting as the outer control loop
and the embedded attitude N1 flight controller as the inner control loop. The linear MPC
implementation is based on the work presented in [37], which gives a model of the system
and the estimation of the vehicle pose and velocities, outputs attitude and vertical velocity
command references to the low-level N1 controller.

To account for the specific load distribution of the aerial platform when equipped
with the sensors composing the navigation and inspection payload, system identification
methods have been used to derive the vehicle’s model that encompasses the low-level
control response over the body dynamics.

Several flight experiments have been performed recording the response of roll, pitch,
yaw-rate and vertical velocity channels to open-loop control inputs. A first-order continu-
ous linear model of the form:

H(s) =k/ts+1 )

was fitted to the gathered experimental data resulting in the model parameters shown in
Table 2.

Table 2. First order model parameters for each axis.

Roll Pitch Yaw-Rate Vertical Velocity
Gain k (-) 1.097 0.715 0.988 0.756
Time constant 7 (s) 0.144 0.088 0.172 0.184

3.4. Inspection Path Planning

Considering the problem of inspecting the surface of an unknown tunnel-like environ-
ment, we propose an RRT*-inspired inspection path planning algorithm. Building upon the
work performed in [30], we adapt the gain formulation to optimize photogrammetry-based
3D reconstruction metrics. Moreover, the implementation enhances the sampling process
with a guided strategy to increase the probability of sampling the relevant areas around the
tunnel surface.

Similar to [30], we expand and maintain a single RRT* tree, which is executed in a
receding horizon manner. The tree consists of nodes and edges connecting the given nodes.
The root of the tree is assigned to the current position of the aerial platform, and each tree
node 7 has an associated trajectory T7;, which connects it to its parent node. For each sample
added to the tree, a value V; is computed as the following:

Vi=G(7) - C(n) ®)

with G(7;) being the gain and C(7;) the cost associated with the trajectory 7;. The gain
reflects the amount of environmental information that has been gathered by following the
path T; to reach node i. For this application, we define as relevant environment information
the number of voxels corresponding to the tunnel surface that has been sensed by the
on-board inspection sensors from a close distance. The location, orientation and parameters
of the cameras included in the inspection payload are considered within the planning
algorithm at this step. Their field of view is discretized, and a ray-casting procedure is
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implemented to determine the amount of tunnel area seen by each sensor as shown in
Figure 3. Thus, the gain is formulated as

N
Glw) = ¥ g(n) @
n=0
where
M
g(i’l) = Zogvoxel(m) )
and

0 ifd > dgpseq V previously sensed

. (6)
1 ifd < dsensed

8voxel (m) = {
with N being the number of points evaluated along the trajectory 7;, and M being the
number of occupied map voxels that intersected the cast rays for all the sensors on the
inspection payload. The parameter dgs.4 represents the minimum distance to the tunnel
wall from which it is considered that a close inspection has been performed. If the rays
have been cast from a bigger distance, then no gain is associated with that voxel. If the
rays intersect the tunnel surface voxels from a smaller distance and these voxels were not
previously seen, then a gain of 1 is assigned. The occupied voxels corresponding to the
floor of the tunnel are not considered in this case.

The cost C(7;) is proportional to the length of the trajectory assigned to each node:

C(Tl) = dl'i " Pdistance (7)

where d-, is the length of the trajectory 7; and pjssanc, is a constant tuning factor assigned
to balance the gain and cost values. The resultant value V; computed for each node is
used to decide which is the next-best node within the tree towards which the robot will
be commanded to move in order to optimize the length and information gain of the
inspection path.

As discussed, evaluating each tree node involves iterative ray-casting procedures to
compute the associated information gain. This operation is computationally demanding
and should be kept to a minimum level of queries. To avoid this costly operation for poor
informative samples, we implement a guided sampling strategy to steer the sampling
process towards the most relevant areas faster. We use the inherent tunnel geometry to
first detect the location of its walls and then limit the sampling area to the tunnel bounds.
The operation starts without previous knowledge of the tunnel wall’s location, only with a
rough estimation of the tunnel width. Initially, the samples are drawn from a predefined
bounding volume around the robot’s position. Once the drone starts moving within the
environment, and the on-board sensors see both tunnel walls, the width of the search
space is reduced to the actual tunnel width measured within the mapped environment.
The tunnel wall’s location is constantly monitored to detect any change in the tunnel
geometry, which would then trigger the resizing of the search space.

Aside from the adaptation of the search space, the probability distribution used to
obtain the samples is also tuned to increase the chances of drawing high-gain samples.
At first, a uniform sampling probability is assigned to the entire search space (Figure 4a).
Once the robot starts moving within the environment locating the tunnel walls (Figure 4b),
a weighted discrete probability is used where the weight associated, to each space interval
is updated, taking into account the information gain of the samples evaluated within it.
The weight of the i-th bin is updated as:

(wi, + i)
Wi = 7p : : ®)

Z (wjk + ’)’fk)

=1
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where w;_represents the weight assigned to the bin prior to the gain evaluation, v;, is the
gain summation in Equation (5) of all samples within the bin volume i, P represents the
number of bins and w;, | represents the probability weight at the next iteration.

Figure 3. Visualization of the inspection sensors’ FOV, the voxels sensed by these sensors are marked
in green and the explored tunnel wall in grey.
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Figure 4. Instances of the tree expansion and execution using the guided sampling approach: (a) The

15

al

HEE EEEE
==
L
&

[]
peai
[]
|

[

tree is expanded from the current robot position in a uniform manner. (b) The samples have been
evaluated, and the most informative trajectory is selected (marked in red). While the platform is
moving within the environment, the tunnel walls are detected. (c) In an RH fashion, the robot
moves to the first node of the best branch and samples again the search space. This time, a discrete
probability distribution is applied. The weights of each discrete interval are computed based on the
information gain of each sample falling in that interval.

The suggested procedure ensures that if high-gain samples have been drawn in a
specific area, the probability of sampling that zone in the following iteration is increased.
In this manner, the algorithm learns the relevant regions of the environment and increases
the probability of drawing a sample from those areas (Figure 4c). By employing this
method, the probability of drawing a sample in the middle of the tunnel is reduced as the
information gathered from that area and its corresponding gain is lower than when the
robot flies close the tunnel walls. However, to keep a level of exploration when performing
the sampling procedure, the probability distribution is reset to a uniform distribution once
a certain threshold of w;,_, is reached. This is especially useful in situations in which the
field of view of the mapping sensor is not large enough to capture the entire infrastructure
(e.g., the robot might not be seeing both tunnel walls), for example, in very wide tunnels. In
such scenarios, the weight of the interval corresponding to the area surrounding the visible
tunnel wall would increase up to saturation, leading to a situation in which samples would
be taken only in that area. Thus, the robot would keep inspecting one side of the tunnel
without ever discovering the opposite wall. By resetting the weights, we enable a certain
exploration of the entire tunnel while also accounting for changes in the tunnel geometry.
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Figure 5 shows an overview of the planning algorithm. While the robot is moving
towards the goal position, the RRT* tree is continuously expanded with new samples
following the sampling procedure described in the previous paragraphs. The samples
are evaluated as described in Equation (3), and their computed value is stored. Once the
robot reaches its goal position, the trajectory towards the next-best tree node adjacent to
the current robot position is commanded, and the tree is updated by changing its root to
the new robot position. This process is repeated continuously until the inspection mission
is stopped. This main planner loop takes 1 ms to execute on an Intel(R) Core(TM) i7-
10610U CPU @ 1.80 GHz computer, from which 70% of the time is spent on expanding and
evaluating the tree.

Select and Move
towards Mext Best
Tree Node

Update Tree
/ v Expand and Evaluate _'e\

Tunnel walls yes
detected?

Goal position
reached?

command frajectory

h J

Resize sampling
space and Draw
samples

Draw samples from
fixed bounding box

L

Compute samples
value

e

Figure 5. Inspection path planning overview. The tree is continuously expanded and evaluated until

Compute samples

value and Update
probability distribution

the robot reaches its current goal position. Then, the trajectory to the next best tree node adjacent to
the robot’s position is commanded, and the tree is updated. All modules can access and are aware of
the state of the tree.

4. Experimental Evaluation

This section presents the results of both simulation-based and real-world environment
experiments performed using the proposed methodology.

4.1. Simulation-Based Experiments

To assess the performance of the proposed inspection path planner, several experi-
ments have been conducted using the Gazebo-based simulation environment RotorS [38].
The platform model used is the AscTec Firefly multi-rotor equipped with a visual-inertial
sensor [39], which provides the 3D pointcloud of the environment. The tunnel environment
simulated for these experiments corresponds to a section of a real, single-track railway
tunnel located in Rome, Italy. The simulated tunnel is 160 m long and has a cross-section of
7 x 9m. Figure 6 depicts an inside and outside view of this simulated environment.
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Figure 6. Inside (Left) and outside (Right) view of the simulated tunnel environment.

Under these simulated tunnel conditions, the performance of the proposed inspection
method is evaluated based on the number of surface voxels that are observed by the
inspection sensors from a predefined sensing distance, dg,;,s.q. Moreover, we show the
mean trajectory length and the distribution of observed voxels at different distance intervals.
Each simulation experiment was run for exactly 1750s.

For these experiments, the four visual cameras described in Section 2.3 are considered.
All rays cast from the inspection sensors and intersecting a map voxel located at a distance
lower or equal to dg,,,.4 are labeled as voxels sensed. Because inspection results are strongly
affected by this parameter, we assess the generated path performance under three different
scenarios. Going from more restrictive to less restrictive, the dy.y5.s parameter takes values
of 1.5, 2.5 and 3.5m. Each of these scenarios represents different inspection quality require-
ments, as the closer the inspection sensors can observe the tunnel walls, the smaller the
defects that can be identified using the captured data.

The inspection trajectory generated by our proposed method is compared to a constant
height, wall-following trajectory and the trajectory generated by the TSDF-based 3D-
reconstruction method proposed in [30]. The wall-following path is meant to mimic a
potential manual flight or another inspection method in which a rail or ground vehicle
equipped with several inspection sensors moves along the tunnel wall. The TSDF-based 3D
reconstruction method is considered in this comparison because it indirectly steers the robot
closer to the inspected infrastructure in order to minimize the TSDF-based map uncertainty.

In this case, a complete inspection of the tunnel means having inspected the area
corresponding to half of the tunnel if we would slice it through its longitudinal axis. This
assumption is taken here to enable a fair comparison among methods as during the entire
simulation, the wall-following trajectory traverses the tunnel from one end to the other,
inspecting only one of its walls.

Throughout these experiments, the system constraints and other mapping parameters
have been equally applied to all methods. The same goes for the RRT* parameters that
have been selected in accordance with the simulated tunnel dimensions and have been
kept constant for both TSDF and our proposed method. These and other method-specific
parameters are shown in Table 3. The parameters of the TSDF method are kept as given
in [30] with the exception of the weight assigned to new, unknown voxels, which have
increased up to a value of 1.5. This parameter tuning is required to increase the exploration
component of the algorithm and achieve a comparable tunnel length being covered by all
methods. Additional parameters corresponding to our proposed method are also listed in
Table 3. Although the proposed path planning algorithm shows a good performance for a
range of parameter values, the ones presented here were selected as a result of previous
simulation experiments performed on this particular tunnel environment.
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Table 3. Parameters used throughout the simulation experiments.

Common Parameters

Max. velocity 2m/s
Max. acceleration 1 m/s?
Max. yaw rate 1.6 rad/s
Collision radius 1.0 m
Depth camera range 6.0 m
Depth camera FOV 60°H x 49.5°V
Voxel size 0.2 m
RRT* parameters

Max. sample distance 4 m

Min. sample distance 1m

TSDF-based Informed RRT* method [30]

Minimum impact factor 0.01
Frontier voxel weight 1.0
New voxel weight 15
Our proposed inspection method

New voxel sensed weight (Psensed) 1.0
Cost assigned to trajectory length (pgistance) 1.0
Discrete probability distribution nr. intervals (I) 50

High-gain sample weight (p,pdate) 1.0
Reset probability distribution threshold (Py;,) 500

For the wall-following trajectory, the specific height and distance to the tunnel wall
employed for each scenario are shown in Table 4. These parameters have been computed
taking into account the characteristics of the on-board inspection sensors and the simulated
tunnel geometry, ensuring that all the voxels captured by the sensor’s field of view are
inspected from a close distance.

Table 4. Wall-following trajectory parameters for the three different scenarios.

Scenario I Scenario II Scenario III
Distance to wall (m) 1.12 1.87 2.62
Height (m) 5 45 45

The main results of the simulation experiments are shown in Figure 7, while Figure 8
depicts an example of the inspection trajectory performed by all methods considered in
this analysis. Observing the evolution of the number of voxels sensed along the entire
inspection procedure, we first notice that the TSDF-based Informed-RRT* [30] method does
not manage to steer the robot as close to the tunnel walls as the rest of the methods. This is
especially perceptible in the scenario in which the robot had to inspect the tunnel wall from
a distance lower than 1.5 m, where almost no voxels observed by the inspection payload
sensors were closely inspected. Taking a closer look at the performance of this method,
for the first scenario, in Figure 7c, it can be seen how the majority of voxels were observed
from a distance of 2.5 up to 3.5m. This is justified by the fact that in [30], the optimization
problem that maximizes the TSDF-based map reconstruction error gets the robot closer
to the tunnel surfaces, but this distance is not directly controllable. Moreover, due to the
increase of the new voxels weight parameter to promote the exploration of the tunnel,
the accuracy with which the TSDF map is reconstructed is affected. All these points explain
the lower performance of this method when compared to the remaining ones. A further
exhaustive parameter tuning might improve its performance, although the distance to the
infrastructure would still not be directly controllable.
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Analyzing the performance of our proposed method, we see this is comparable and
even outperforms the designed wall-following trajectory. For the more restrictive scenarios
(dsensed = 1.5m and dgpp0g = 2.5m), the wall-following trajectory takes over the proposed
algorithm for short times, while our approach outperforms for sufficiently long missions,
managing to accurately sense more voxels. Moreover, the enhanced flexibility of our
method is capable of better adapting to the tunnel curvature while also moving up and
down along the tunnel wall to increase the number of voxels sensed (see Figure 8c).
These factors help achieve a greater number of voxels sensed when compared to the
wall-following trajectory.

Focusing on the percentage of voxels observed by the on-board inspection sensors,
as it is expected, the wall-following trajectory concentrates most of the observed voxels
within the required sensing distance d;s.4 for each scenario. In comparison, the inspection
trajectory generated by our method maximizes the number of observed voxels within the
required dg.;¢4, but at the same time, observes and explores a bigger section of the tunnel
wall (Figures 7c f,i). This is consistent with the results listed in Table 5, where we can see
the percentage of voxels explored by each method and for each scenario. By maintaining a
constant and close distance to the wall, the area observed by the wall-following trajectory
is smaller, resulting in a lower exploration of the entire tunnel structure. The method
presented in [30] achieves a greater exploration of the tunnel as its trajectory maintains
a bigger distance from the tunnel wall, increasing the number of voxels captured by the
sensor’s field of view. However, this results in a less-accurate tunnel surface inspection.
Finally, the method we propose manages to maximize the number of voxels accurately
inspected, as well as maintain a level of exploration. As expected, this level of exploration
is lower for the more restrictive scenarios in which the robot is required to maintain a
lower distance from the tunnel walls. The direct effect of achieving a close inspection
trajectory while also exploring the tunnel geometry is a higher trajectory length. For all
three scenarios, our proposed method generates a higher inspection path length for the
same amount of inspection time. Given the limited autonomy of aerial vehicles, this aspect
is important.

4.2. Railway Tunnel Experiments

The proposed end-to-end robotic solution for tunnel-like infrastructure inspection
has been tested in a single-track railway tunnel in Italy. Despite having a single track, this
tunnel is 7 m high and 8.2 m wide, with a highly uneven floor. The rail tracks are located on
one side of the tunnel, approximately 1.2 m higher than the rest of the floor (see Figure 9),
making this tunnel configuration a challenging one for the use of any range sensor pointing
in the z-direction. Thus, several April tags were placed along the longitudinal tunnel axis
on the lower-level floor with the objective of correcting any z estimation error. Regardless
of the existing lighting system inside the tunnel, some areas remained poorly illuminated,
highlighting the need for on-board lighting sources.

Table 5. Tunnel exploration percentage for all methods and scenarios.

Method Scenario I Scenario I  Scenario III
Wall-following trajectory 29.4% 60% 72.9%
TSDF Informed RRT* 94% + 3.1%

Ours 77.7% £ 4.7%  89% +=81%  94% £+ 4.3%
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Figure 7. Simulation experiment results for the three different values of dg,,,s.;. For each simulation
scenario: (a,d,g) number of voxels sensed along the inspection path for the three methods compared,
(b,e,h) mean length and standard deviation of the inspection trajectory, (c,f,i) mean distance distribu-
tion of all the voxels observed during the inspection. These results correspond to 10 simulation runs
for each experiment.

Figure 8. Example of executed inspection trajectories for each method in the simulated tunnel
environment. Sensed voxels are marked in green. (a) Wall-following trajectory. (b) TSDF Informed
RRT* [30]. (c) Proposed method.

Figure 9. Single track railway tunnel used for the real experiments: (a) Tunnel central height, width
and rail tracks height representation. (b) Aerial platform with the on-board illumination activated.
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In this experiment, a safety distance with respect to all nearby obstacles higher than
1.5m has been set while striving to inspect the tunnel surface from a close distance
(dsensed = 2.5m). Due to the presence of the catenary and the difficulty of accurately
detecting it as an obstacle with the depth sensor, the maximum height of the robot has been
limited to 5m, close to 1 m below the cable. Likewise, the maximum velocity allowed for
this operation has been configured to 0.5m/s.

To start the autonomous inspection mission, the robot is given a goal point located 25 m
from the take-off location. Once the goal is reached, the drone is commanded to return to
the initial take-off point. Along the entire forward and backward trajectory, the objective is
to maximize the tunnel surface inspected by the on-board sensors. Figure 10 shows several
instances of such an autonomous inspection procedure. Figure 10a depicts the moment at
which the drone is taking off, and the tunnel map representation is created in real-time by
the on-board computer. Next, the nearby environment is sampled, and viewpoint locations
are added to the RRT* tree, expanding it within the mapped environment. The next-best-
view position is identified based on the value formulation presented in Section 3, and the
robot is commanded to move to the next best location. The trajectory followed by the
robot is marked in red (see Figure 10b). The higher informative gain of the samples located
closer to the tunnel walls steers the platform’s trajectory towards that direction, as seen in
Figure 10c. At this point, the tunnel wall direction has not been detected yet. As noticed,
while flying towards the commanded goal closer to the right-hand side wall, the robot
was unaware of the location of the opposite wall. The field of view of the equipped depth
sensor was not sufficient to capture both walls of this wide tunnel environment. Once the
platform follows a trajectory closer to the center of the tunnel, the presence of the opposite
wall is detected. When the goal is reached, the platform returns to the take-off location
while inspecting the other side of the tunnel (see Figure 10d). As the information gain
obtained by inspecting the same wall decreases, a higher number of samples are taken
closer to the recently discovered surface.

Figure 11 shows the number of voxels observed and their corresponding observation
distance. As noticed, most of the tunnel wall surface (67%) has been inspected from the
desired inspection distance, and 80% of the surface was sensed from a distance closer
than 3m. Due to the height limitation, the ceiling surface could not be closely mapped.
Nonetheless, the commanded path included several up and down movements along the
tunnel wall, increasing the level of details captured by the upper camera when the robot
was flying higher.

Figure 10. Instances of an autonomous inspection trajectory performed by the aerial vehicle: (a) Real-
time map generation at take-off. (b) Environment sampling and movement to the first next-best-view
location. The robot’s trajectory is marked in red. (c) Inspection trajectory following the tunnel wall
while keeping a safe distance. (d) Return to take-off trajectory while inspecting the opposite wall.
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Figure 11. (a) Autonomous inspection path and the 3D-reconstructed voxel map together with a color
indication of the distance at which each voxel has been sensed by the on-board inspection sensors.
(b) Accumulated percentage of voxels detected at different observation distances.

An example of the images taken with all the inspection sensors on-board the robot
is shown in Figure 12. As can be noticed, the visual and thermal data captured provides
clear and accurate information on the tunnel surface, showing no blurriness from the
robot motion. In the instant depicted in Figure 12, the voxels sensed from a close dis-
tance correspond to the ones captured by the sensors on the right side. The main defects
encountered during the inspection mission have been thin cracks and water inlet areas.
Figure 13 shows visual and thermal images capturing these defects on the tunnel walls and
ceiling. The level of detail captured by the visual images enables the identification of thin
concrete cracks (see Figure 13a). To check how accurate the measurements performed in
these images compare with the real ones, two elements (1 and 2 depicted in Figure 13) have
been measured in the real tunnel and compared with their sizes measured in the captured
image. To measure these elements on the image, the distance from which the wall was
observed (dgeseq) Was obtained from the estimated robot position and used to compute the
GSD. Table 6 shows these computations, as well as the real measurements and the error
obtained. The measurement error of these elements is around 2%, indicating that features
and defects of interest can be measured on these images with high accuracy. However,
it must be noticed that these results depend on the robot position estimation and thus,
the measurement error could increase during the flight if the position estimation begins to
drift. Further post-processing steps involving image matching and aligning could improve
the robot position estimation and remove the drift effects.
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Figure 12. Example of images captured by all the inspection payload sensors together with a 3rd-
person view of the aerial platform flying inside the railway tunnel.

Regarding the effect of the on-board illumination system, it can be noticed how
the tunnel wall images captured from a smaller distance present a constant illumination
without being overexposed. Due to the height limitation imposed during the autonomous
flight, the images corresponding to the tunnel ceiling are slightly underexposed due to the
higher capturing distance. Nonetheless, defects, such as long cracks, can still be identified,
as seen in Figure 13b. Figure 13c,d highlights several water inlet areas visible on both visual
and thermal channels. Under these test conditions, no other temperature difference was
noticeable on the captured thermal data.

The sample of images presented here showcases how the inspection path planner can
guide the aerial platform to perform a close inspection of the tunnel surface. The raw data
gathered through the inspection mission forms the basis of further post-processing steps,
which can be applied to provide meaningful information to an infrastructure maintainer.

Table 6. Real measurement and error corresponding to the two reference measures taken of the
tunnel wall. The distance from which the image was captured, as well as the computed GSD, for the
image shown in Figure 13a is also shown.

Element Agensed (M) GSD (mm) Real Measure (m) Error (%)

1) 15 2.0
2 2.52 1.084 08 e
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Figure 13. (a) Thin concrete crack visible on the tunnel wall marked in red. (b) Long ceiling concrete
crack. (c) Water inlet areas marked in blue on the visual image. (d) Water inlet areas identified on the
thermal image.

5. Conclusions and Future Work

A robotic solution capable of performing autonomous visual inspections of tunnel-like
infrastructures is presented and validated in this work. The proposed aerial platform has
been equipped with carefully selected visual and thermal sensors and enhanced with an on-
board illumination system with the aim of capturing sharp and detailed images of the tunnel
surface. To enable the platform to perform autonomous inspection procedures, a sensor-
aware, informative path planning has been developed and tested both in simulated and real-
tunnel environments. The simulation experiments highlighted the capacity of the proposed
method to perform a close visual inspection while also exploring the previously unknown
tunnel environment. Although one could think that from an inspection perspective, the
ideal situation would be to get as close as possible to the objective surface, following such an
inspection trajectory is not suitable for an autonomous platform with no prior information
on the environment. As observed for the wall-following trajectory when the platform
gets closer to the tunnel surface, its awareness of the entire environment decreases. The
method proposed in this work generates trajectories that balance the inspection quality and
exploration of the environment, achieving safe navigation through a previously unknown
environment. This trajectory is nonetheless longer than the trajectories generated by the
other two methods used within the simulation experiments as it tries to cover the entire
tunnel surface from a close distance. Given the limited flight time of aerial vehicles, this
leads to shorter inspection missions. Future technological developments of visual cameras
could improve the total mission length by ensuring the same image quality without having
to get that close to the tunnel surface.

Including the desired inspection distance within the planning algorithm results in
a directly controllable inspection accuracy method. Thus, by controlling this parameter,
several types of visual inspections could be performed depending on the level of precision
needed. Quicker and less exhaustive inspections could be suitable for tunnels for which
the health conditions have been stagnant over the years, while more accurate, and thus,
slower inspections could be required for older assets that have to be closely monitored.

The autonomous inspection flight was demonstrated in a real and challenging tunnel
environment. The guided, informative path planning algorithm was able to steer the
platform towards the tunnel wall and achieve a close inspection. The sensor data collected
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from this experiment provided detailed tunnel surface information that can be further
post-processed or directly used as an alternative to the traditional visual inspection method.
The exploitation of these results, including their use for automatic defect detection, as well
as 3D reconstruction of the tunnel environment, will be addressed in future work.

From these real experiments, some valuable lessons have been learned. First, although
several measures were taken to avoid localization errors, the poorly illuminated, uneven
and symmetrical tunnel environment posed a challenge for the safety of a long autonomous
inspection mission. Thus, future work should concentrate on including different localiza-
tion methods that do not rely on visual inputs to ensure higher robustness of the localization
module in this type of environment. Secondly, the depth camera used provided enough
range and field of view to safely navigate the unknown environment. However, in large
and wide environments, it is not able to capture the entire infrastructure. As the inspection
planning algorithm relies on the mapped environment to generate next-best-view positions,
an initial exploration maneuver (e.g., 360 deg turn) could be implemented to first sense
the surrounding infrastructure geometry and then proceed with the inspection task. This
would improve the earlier detection of both tunnel walls in wide tunnel environments and
the use of the guided sampling process. A different solution would be to incorporate a
wider mapping sensor, such as a LIDAR. At the time of system design, the platform’s weight
limitations prevented the use of such technology. However, future developments targeting
the weight reduction of these sensors could enable their use as the main mapping sensor.
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Abbreviations

The following abbreviations are used in this manuscript:

DARPA  Defense Advanced Research Projects Agency

GDP Gross Domestic Product

GNSS Global Navigation Satellite Systems
GSD Ground Sampling Distance

IMU Inertial Measurement Unit

MPC Model Predictive Controller

NBV Next Best View

RH Receding Horizon

RRT Rapidly-exploring Random Tree
TSDF Truncated Signed Distance Field
UAV Unmanned Aerial Vehicle

V-SLAM  Visual Simultaneous Localization and Mapping
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