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Abstract: Titanium dioxide (TiO2) is a photocatalyst that can be used to remove nitrogen oxide (NOx).
When applied to cementitious materials, it reacts with photons in sunlight or artificially generated
light to reduce the concentration of particulate matter in the atmosphere. The concentration of
TiO2 applied to the cementitious surface is difficult to quantify in a non-destructive manner after
its application; however, knowledge of this residual amount is important for inspection and the
evaluation of life expectancy. This study proposes a remote sensing technique that can estimate the
concentration of TiO2 in the cementitious surface using a hyperspectral sensor. In the experiment,
cement cores of varying TiO2 concentration and carbon contents were prepared and the surfaces were
observed by TriOS RAMSES, a directional hyperspectral sensor. Machine-learning-based algorithms
were then trained to estimate the TiO2 concentration under varying base material conditions. The
results revealed that the best-performing algorithms produced TiO2 concentration estimates with
a ~6% RMSE and a correlation close to 0.8. This study presents a robust machine learning model
to estimate TiO2 and activated carbon concentration with high accuracy, which can be applied to
abrasion monitoring of TiO2 and activated carbon in concrete structures.

Keywords: hyperspectral remote sensing; TiO2; cementitious material; machine learning

1. Introduction
1.1. Research Background

Air pollution levels are continually rising due to the rapid development of industries
and cities. Nitrogen oxide (NOx) is major factor of air pollution that is mostly generated
by vehicle exhaust and factory emissions in urban areas. NOx is a concern as it can
lead to the generation of photochemical smog, acid rain, and particulate matter (e.g.,
PM 2.5). Photochemical smog is composed of nitrogen dioxide and hydrocarbon molecules
contained in VOCs (volatile organic compounds) and can cause eye irritation. Acid rain,
which can cause various health problems and severe damage to man-made structures,
occurs when NOx reacts in the atmosphere and oxidizes with nitric acid in clouds [1].

Particulate matter is categorized into solid-state dust and gas-state dust: Solid-state
dust is defined as tiny particulate dust from primary sources (e.g., car emissions), whereas
gas-state dust is formed when NOx chemically reacts with water vapor in the atmosphere.
NOx is reported to contribute up to 23% of PM 2.5 generation [2]. Particulate matter is a
concern as it can induce serious physical diseases (e.g., visibility obstruction, sore throat, or
pneumonia) [3]. Therefore, reducing NOx has become a global issue of interest that many
are working to solve.

In recent years, concrete blocks mixed with photocatalyst materials have been used for
the removal of NOx. Photocatalyst materials include titanium dioxide (TiO2), zinc oxide
(ZnO), cadmium sulfide (CdS), and gallium phosphide (GaP). Among the aforementioned
photocatalysts, TiO2 is the most used in industrial fields as it has zero toxicity and is
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not corroded by light [4]. In addition, TiO2 does not erode when exposed to acids or
organic solvents.

The principle of reducing NOx via photocatalytic reaction is as follows. Photocatalyst
materials generate electrons and holes as a consequence of a reaction with the energy in
light. These electrons and holes react with water and oxygen in the atmosphere, producing
superoxide ions (O2

−) and hydroxyl radicals (OH−). The OH− oxidizes NOx in the
atmosphere, changing NOx into NO−3. The NO−3 is then removed by rain or watering [5,6].

1.2. Literature Review of TiO2 and Active Carbon for NOx Reduction

Several studies have delved into the matter of reducing NOx via photocatalytic re-
actions. Cardenal et al. [7] measured the NOx reduction rate of a cement paste mixed
with TiO2; the NOx reduction rate increased by 7.2 times (1.33% to 9.4%) as the mixing
rate of TiO2 increased from 0.5% to 5% of the cement weight. Lee et al. [8] studied NOx
reduction rates according to various water–cement ratios (0.4–0.6), using cement paste
specimens with 5% TiO2. The authors reported that the NOx rate was reduced by up to 31%.
Pérez-Nicolás et al. [9] tested mortar specimens mixed with various TiO2 weight ratios; the
NO reduction rate increased from 48% to 65% as the TiO2 ratio in the specimens increased
from 1% to 10%.

For field applications, Guerrini [10] monitored NOx levels in the Roman Umberto I
Tunnel after coating the surface of the tunnel lining with TiO2 cement. The study revealed
that the average NOx level had decreased by approximately 21%. Folli et al. [11] reported
that concrete pavements with TiO2 reduced NO levels by approximately 22%. Lastly, Kim
et al. [12] conducted an NOx monitoring analysis on retaining walls sprayed with TiO2 on
roadsides; their findings revealed that NOx levels were reduced by up to 21.2% for walls
with TiO2.

Although activated carbon is not a photocatalyst material, it plays a role in reducing
NOx. Activated carbon, which is manufactured from various raw materials (e.g., wood,
lignite, anthracite, and palm shells), has a large internal and specific surface area due to
the formation of molecular-sized micropores during the activation process. The functional
group of carbon atoms present on the surface of activated carbon adsorbs the molecules
of surrounding liquids and gases via attraction forces. Horginies et al. [13] evaluated the
nitrogen dioxide (NO2) removal rate of concrete with 1.5% of the cement weight consisting
of activated carbon powder for applications in tunnels. The authors reported that the NO2
removal rate of activated-carbon-containing concrete was approximately 2.3 times better
than that of ordinary concrete. Furthermore, Horginies et al. [14] attempted to decrease
NO2 in garages using concrete structures with activated charcoal; in this case, the NO2
removal rate was shown to be 25 times higher than that of ordinary concrete. Thommaso
and Bordonzotti [15] used concrete specimens with 1.1% activated charcoal powder to
remove NO2; the results demonstrated that concrete specimens with activated charcoal
exhibited NO2 removal characteristics with removal rates six times higher than those of
ordinary concrete specimens.

1.3. Problems with TiO2 Wear

Due to TiO2 abrasion on the surface of structures, concrete structures with photocata-
lyst materials (i.e., TiO2) cannot reduce NOx for extended periods of time [16]. Abrasion (or
deterioration) is caused by dynamic loading (e.g., vehicle movement) or natural weathering
on the surface of the structure and can decrease NOx reduction effects. Chen and Chu [17]
analyzed the NOx removal rate of activated carbon and TiO2 coating mixtures on concrete
pavements. The authors reported the initial NO removal rate as 78.2% and the NO2 removal
rate as 58.5%. However, after TiO2 abrasion on the surface, the NO and NO2 removal
rates were reduced to 37.4% and 25.8%, respectively. De Melo et al. [18] evaluated the
wear effects of TiO2 for a concrete pavement coated with a TiO2-mixed mortar. It was
demonstrated that after one year, the efficiency of TiO2 had decreased by an average of
86.66% due to vehicle load and an average of 79.36% due to the walking load. Additionally,
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a study by Ballari and Brouwers [19] analyzed the removal rate of NOx by applying a
TiO2 solution on a concrete pavement. Here, it was estimated that the NOx removal rate
decreased from 38.6% to 4.1% after 2.5 months.

Several studies have estimated TiO2 abrasion levels experimentally. Osborn et al. [20]
evaluated the quantitative durability of concrete coated with a TiO2 solution using nitrate
sampled from a structure; their findings indicated that the greatest decrease in the efficiency
of TiO2 for NOx reduction occurred during the first month and that the reduction effect
only lasted up to eleven months. Lee et al. [21] examined remaining TiO2 on the surface of
concrete specimens via scanning electron microscopy combined with energy dispersive
analysis of X-rays (SEM/EDAX). Furthermore, Luo et al. [22] attempted to estimate the
amount of TiO2 remaining on the surface of concrete specimens using an environmental
scanning electron microscope (ESEM). Studies that attempt estimation with hyperspectral
sensing are very limited. One study investigated the correlation between TiO2 concentration
and the measure of spectral similarity calculated using the UV portion of hyperspectral
data [23]. However, the suggested polynomials are only valid for concentrations of up to
4% and only under the condition that other contents, such as carbon, are not included.

1.4. Research Purpose

It is vital to evaluate abrasion and monitor remaining TiO2 and activated carbon
in concrete structures to ensure efficient maintenance, as well as the proper timing of
repair and reconstruction procedures. In this study, concrete specimens mixed with TiO2
and activated carbon powder were prepared and tested to estimate the remaining TiO2
ratio using a hyperspectral sensor, which analyzed the remaining quantities of TiO2 and
activated carbon based on reflectivity characteristics. In addition, a machine learning model
was developed to estimate the remaining ratio of both TiO2 and activated carbon for the
concrete samples, and the model was verified through blind tests using newly generated
samples. All in all, this study proposes a methodology for the assessment of TiO2 and
activated carbon ratios for NOx-reduced concrete structures. More specifically, we first
devised an index-based approach that would work under the condition that no colored
constituents, other than TiO2, exist. Secondly, we examined several machine learning
models to estimate the abrasion of TiO2 when activated carbon exists in the base. This
study demonstrates the possibility of monitoring TiO2 and activated carbon through the
proposed machine learning model for concrete-based structures.

2. Experimental Program
2.1. Specimen Preparation

Two groups of specimens were prepared. The first group (for Dataset I) was used to
develop the machine learning model, and the second group (for Dataset II) was used to
verify the machine learning model.

2.1.1. Specimens for Algorithm Development (Dataset I)

Portland cement, TiO2 (titanium dioxide), and activated carbon were used as basic
mixing materials to fabricate the specimens (Figure 1). For the cement material, we used
ordinary Portland cement powder with a specific gravity of 3.14, a specific surface area of
4030 cm2/g, and an average particle size of 11.76 µm. For TiO2, we used the Anatase series
with an average particle size of 0.30 µm and purity of 99%. The activated carbon used in
this study had a purity of 90% and contained some quartz (SiO2).

In previous studies, the general mixing ratios of activated carbon for the purpose
of reducing harmful substances were 0.01–0.80, relative to the weight of cement, and the
mixing ratios of TiO2 were 0.05–0.40, relative to the weight of cement (e.g., [24,25]). In this
study, the specimens for algorithm development were fabricated with activated carbon and
TiO2 mixing ratios of 0–0.15 and 0–0.25, respectively, with reference to the mixing ratios of
previous studies.
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Figure 1. Materials used for the test specimens.

Table 1 presents the 24 mixing cases for the concrete specimens. The water/cement
ratio was fixed at 0.5 (130 g/260 g). Tap water was used (electrical resistivity: 36 Ω·m). The
mixing ratios of TiO2 relative to the cement weight (260 g) were set as 0, 0.05, 0.10, 0.15, 0.20,
and 0.25. Meanwhile, the mixing ratios of activated carbon relative to the cement weight
were set as 0, 0.05, 0.10, and 0.15. The TiO2 mixing ratios of 0, 0.05, 0.10, 0.15, 0.20, and 0.25
are denoted by A, B, C, D, E, and F, respectively, whereas the activated carbon mixing ratios
are indicated by numbers (0, 0.05, 0.10, 0.15) following the alphabet index (A, B, C, D, E, F).

Table 1. Test cases for algorithm development.

Specimen #
Mixing Ratio

Activated Carbon (AC) Titanium Dioxide (TiO2)

A0 0 0
A0.05 0.05 0
A0.10 0.10 0
A0.15 0.15 0

B0 0 0.05
B0.05 0.05 0.05
B0.10 0.10 0.05
B0.15 0.15 0.05

C0 0 0.10
C0.05 0.05 0.10
C0.10 0.10 0.10
C0.15 0.15 0.10

D0 0 0.15
D0.05 0.05 0.15
D0.10 0.10 0.15
D0.15 0.15 0.15

E0 0 0.20
E0.05 0.05 0.20
E0.10 0.10 0.20
E0.15 0.15 0.20

F0 0 0.25
F0.05 0.05 0.25
F0.10 0.10 0.25
F0.15 0.15 0.25

The specimens were cured for 14 days in a cylindrical mold with a diameter of 50 mm
and a height of 100 mm. During the curing process, the specimens were sealed to prevent
moisture evaporation. The laboratory environmental conditions during the curing process
were maintained at a temperature of 22.8 ± 0.3 ◦C and a humidity of 71.5 ± 7.0%. After
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curing, the measurement surface of the specimen was polished to ensure uniform surface
quality (Figure 2).
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2.1.2. Specimens for Algorithm Verification (Dataset II)

To verify the capability of the machine learning algorithm to evaluate TiO2 concen-
tration, additional specimens were prepared after the machine learning algorithm was
developed. Table 2 presents the mixing cases for the verification cement specimens. The
water/cement ratio was kept constant at 0.5. The mixing ratios of TiO2 to the cement weight
were 0.03, 0.08, 0.13, 0.18, and 0.23, whereas the mixing ratios of activated carbon to the
cement weight were 0 and 0.5.
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Table 2. Test cases for algorithm verification.

Specimen # Cement
(g)

Water
(g)

Mixing Ratio

Activated
Carbon (AC)

Titanium
Dioxide (TiO2)

V1 260 130 0 0.03
V2 260 130 0 0.08
V3 260 130 0 0.13
V4 260 130 0 0.18
V5 260 130 0 0.23

V6 260 130 0.05 0.03
V7 260 130 0.05 0.08
V8 260 130 0.05 0.13
V9 260 130 0.05 0.18
V10 260 130 0.05 0.23

The cement specimens were cured in the laboratory for 14 days. During the curing
process, the specimens were sealed to prevent moisture evaporation. The temperature and
humidity were maintained at 20.5 ± 0.6 ◦C and 61.9 ± 2.0%, respectively. After curing,
the measurement surfaces of the specimens were again polished using abrasive sandpaper.
Figure 3 shows the surfaces of the cured specimens for algorithm verification.
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2.2. Measurement of Surface Reflectance with a Hyperspectral Spectroradiometer
2.2.1. Hyperspectral Sensor and Reflectance

In this study, TriOS RAMSES was used to measure the hyperspectral radiance and
irradiance of the samples. The RAMSES system consists of two independent sensors: RAM-
SES ARC-VIS for radiance and RAMSES ACC-VIS for irradiance (Figure 4). The system
is capable of measuring radiance and irradiance in the wavelength range of 320–950 nm,
with 3.3 nm spectral resolution. The hyperspectral reflectance ρsample of a sample is then
calculated as follows:

ρsample =
πLsample

E
, (1)

where Lsample denotes the upwelling radiance reflected from the samples and E denotes
the downward irradiance incident on the samples. The ARC-VIS and ACC-VIS sensors
directly measure Lsample and E, respectively. Independent of ACC-VIS for irradiance
measurement, a Spectralon white reference panel was also used to measure irradiance
with the radiance sensor (Figure 4c). The irradiance measurement with the white reference
(Ewhite) is calculated as follows:

Ewhite =
πLwhite
ρwhite

, (2)
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where Lwhite is the upwelling radiance from the white reference and ρwhite is the reflectance
of the white panel. The reflectance of the Spectralon white panel was almost 99% in the
valid wavelength range. Detailed reflectance information can be found in the manual.
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(d) reflectance of the white reference panel.

2.2.2. Measurement Protocol

Both the radiance and irradiance sensors were positioned to be vertical but in opposite
directions: downward for the radiance sensor and upward for the irradiance sensor. The
samples were placed horizontally in an open space in such a way that no objects blocked
the upper hemisphere of the samples (Figure 5). The distance between the sample and the
radiance sensor was maintained at 30 cm. To account for the surface variability, a total
of 30 measurements were taken for each sample. Measurements were conducted three
times for each of five locations on the surface, and the process was repeated for both faces
of the column (top and bottom). The center location of the specimen face was identified
first, and four locations were determined at a distance of 1 cm from the center in four
directions: up, down, left, and right. The azimuth of the sensor was controlled so that the
sensor did not cast a shadow on the samples, nor the center part of the reference panel. The
reasoning behind this replication of measurements is mainly because it is extremely difficult
to obtain a homogeneous TiO2 concentration in the sample, both horizontally and vertically
throughout the core. The measurement uncertainty is eventually taken into account in the
uncertainty of the final estimation algorithm, but this replication was expected to reduce
the bias from a small number of samples.
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2.3. Spectral Reflectance of Raw and Mixed Materials

Figure 6 presents the reflectance spectrum of the three raw materials (powder type).
Consistent with naked-eye observations, TiO2 had the highest level of reflectance among
the three materials and activated carbon had the lowest. A notable reflectance characteristic
of TiO2 is the dramatic reduction in reflectance in the UV spectral range (300–400 nm),
where the reflectance decreases from 80%–95% in the visible range to 10% at around 320 nm.
Cement exhibits gradually increasing reflectance by wavelength with the reflectance reach-
ing almost 30% at the near-infrared range, around 900 nm. Carbon exhibited a reflectance
in the range of 1%–2% across the entire wavelength range tested.
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Figure 7 presents the reflectance curves of the specimens for four carbon levels: (a)
0%, (b) 5%, (c) 10%, and (d) 15%. Furthermore, each subfigure contains several reflectance
curves corresponding to the various TiO2 concentrations (0%, 5%, 10%, 15%, 20%, and 25%).
Each reflectance curve in Figure 7 represents the mean of 15 measurements conducted on a
specific face of the specimen. Across all subfigures, the overall reflectance level increased
as the TiO2 concentration increased, whereas the reflectance decreased as the carbon level
increased. This is unsurprising as the reflectance of pure TiO2 is significantly higher than
that of both the base cementitious material and carbon. Furthermore, as the carbon level
increased (from (a) to (d)), the reflectance level of the highest curve decreased. However, it
is noteworthy that a sharp decrease in reflectance was observed at around 350 nm for all
curves. Here, the depth of the valley was deeper for higher TiO2 concentrations.
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Figure 8 presents scatter plots of TiO2 concentration (%) versus NDTI for different
carbon levels. Given a constant NDTI value, the overall TiO2 concentrations were higher
for higher carbon levels. This is because the overall reflectance level decreases with more
carbon contained in the samples. Therefore, the estimation of TiO2 concentration using
NDTI requires adjustments according to carbon level. A regression with the quadratic
polynomial reveals that a nonlinear relation can be established with a high correlation
between TiO2 concentration and NDTI when the carbon content is fixed or known a priori.
Since the carbon content acts as a reflectance reducer, NDTI—which is the measure of the
reflectance dip—decreases as carbon contents increase. For example, for the same TiO2
concentration of 25%, the NDTI values corresponding to the carbon levels of 0%, 5%, 10%,
and 15% are approximately 0.60, 0.54, 0.46, and 0.40, respectively. The correlation is high,
except in the case of a carbon level of 5%, which was close to one.
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While NDTI serves as an effective indicator of TiO2 concentration, it has limitations
in direct use for the estimation of TiO2 concentration when carbon exists in the sample.
As shown in Figure 8, the NDTI–TiO2 relationship is affected by the level of co-existing
carbon in each sample; thus, it is necessary to identify the carbon level before using this
relationship.

2.4. Normalized Difference TiO2 Index (NDTI)

As a means to quantify the abundance of TiO2 in the specimen, the normalized
difference TiO2 index (NDTI) was suggested based on differences in reflectance between
the UV and blue spectral regions. As shown in Figure 9, the existence of TiO2 results
in absorption in the UV spectrum, which leads to a reduction in UV reflectance. The
reflectance spectrum of the samples, which had varying amounts of TiO2, revealed that the
reduction in UV reflectance became greater as the TiO2 concentration increased, suggesting
a potential linear or nonlinear correlation between UV reflectance reduction and TiO2
abundance. The proposed NDTI is expressed as follows:

NDTI =
ρblue − ρUV
ρblue + ρUV

, (3)

where ρblue and ρUV represent reflectance at the spectral wavelengths of blue and near-
infrared light, respectively. In this study, the wavelengths for the UV and blue spectra were
selected as λUV = 338 nm, and λblue = 400 nm, respectively, based on the second derivative
of the reflectance curve with a TiO2 concentration of 15% (Figure 9). This result indicated
that zero-crossings of the second derivative occur near 338 nm and 400 nm, indicating that
the curve starts to demonstrate reflectance changes by TiO2 at these points.
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Figure 9. Hyperspectral reflectance spectra of a sample with a TiO2 concentration of 15%, displayed
with the second derivative of the spectra. Two inflection points are observed at around 338 nm and
400 nm where the second derivative equals to zero.

2.5. Machine Learning for the Estimation of TiO2 Concentration
2.5.1. Machine Learning Algorithms

In this study, we constructed five machine-learning-based algorithms to directly
estimate TiO2 relationships from radiometric measurements of the surface. The algorithms
were tested with independent samples with varying TiO2 and carbon contents. The five
algorithms included ridge regression (RR), Lasso regression (LR), support vector regression
(SVR), random forest (RF), and extreme gradient boosting (XGBoost).

2.5.2. Dataset for Algorithm Development (Dataset I) and Test (Dataset II)

Algorithm development of all machine learning methods was performed with Dataset I,
which consisted of 360 reflectance data points (Figure 10). The predictors of machine
learning were reflectance data in the wavelength range of 320 to 939 nm, and about 620
were used. To determine the model parameters of each algorithm, we employed the five-
fold bagging scheme. First, Dataset I was randomly divided into five bags, each of which
contained 20% of the entire data. Data samples from four bags are used for the training
data, and the data from the remaining bag are used for validation. This process can be
repeated five times as we have five choices of validation data. The results from the five
runs were used to derive the statistical performance of the algorithms with each validated
parameter set.
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and test (Dataset II).

An optimal parameter set was sought via a greedy grid search for all algorithms. The
search range of each parameter was initially selected based on a trial-and-error approach,
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and the parameter set with the best performance in the validated range was identified as
the optimal parameter set for the corresponding algorithm. The parameter ranges used
for tuning are presented in Table 3, with the optimal parameter values in the right column.
Each machine learning algorithm was then applied with its optimal parameter set to the
independent test dataset (Dataset II) to derive a generalized estimation of the performance
of the algorithm.

Table 3. Parameter values of machine learning algorithms.

Machine Learning
Algorithm Parameters Value Range Value

Ridge regression λ 1~0.00001 0.0001

Lasso regression λ 1~0.00001 0.0005

Support vector
regression

Kernel Linear, Poly, RBF, Sigmoid RBF

gamma 1~0.0001 1

C 1~0.0001 1

Random forest

bootstrap True, False True

max_depth 100~10, None 50

max_features Auto, Sqrt Sqrt

min_samples_leaf 20~1 10

min_samples_split 20~1 10

n_estimators 5000~100 1000

XGBoost

booster gbtree, gblinear gbtree

learning_rate 1~0.001 0.001

max_depth 10~1 8

subsample 1~0.1 1

max_features 1~0.1 0.5

min_child_weight 20~1 15

colsample_bytree 1~0.1 0.6

n_estimators 10,000~1000 5000

Early Stopping 300 300

3. Results and Analysis
3.1. Performance of the Machine Learning Methods
3.1.1. Training Accuracy

Figure 11 presents the root-mean-square-error of the tested methods. Note that the unit
(i.e., percent) is from the unit of the independent variable—namely, the TiO2 concentration
itself—and does not indicate the relative accuracy as a ratio to any other reference value,
such as the mean of the estimates. Among the five methods, XGBoost performed the best,
producing an RMSE of 0.6%, whereas the worst-performing model was Lasso regression,
as shown by its RMSE of approximately 3%. Considering the tested TiO2 concentrations,
which ranged from 0% to 25%, models with an RMSE of less than 1% can be regarded as
having high estimation precision.
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Figure 11. Bar graphs representing the TiO2 estimation performance of the five machine learning
algorithms when applied to the training/validation dataset (Dataset I).

Figure 12 presents scatter plots between the true and estimated TiO2 concentrations,
through which the performance according to the TiO2 range can be further analyzed.
Among the five tested algorithms, XGBoost performed the best with an RMSE of around
0.6%, whereas Lasso regression had the worst performance with an RMSE of around 2.9%.
There is no clear dependency between the accuracy and the TiO2 level in all methods except
for Lasso regression, which exhibited moderate errors for the specimen with 20% TiO2. The
main cause of deviations of data points from the 1:1 line seen in all figures was considered
to be the varying carbon contents of the specimens. Additionally, many other sources of
measurement uncertainty (e.g., inhomogeneity of the surface) exist.

3.1.2. Test Accuracy

To derive more generalized results in terms of the performance of the five machine
learning algorithms, the trained algorithms were applied to the independent test data
(Dataset II). Figure 13 reveals that the results from the test data were generally worse than
those obtained using the validation dataset, regardless of the method. This is typical of the
training and test process of machine learning approaches. In terms of uncertainty, XGBoost
again produced the best RMSE (around 6%), whereas the ridge regression method exhibited
the worst result with an RMSE of approximately 9%. The other methods exhibited RMSE
values of around 6%–8%.

The scatter plot of each method provides additional insights into the performance of
the model that cannot be represented by RMSE (Figure 14). In contrast to the performance
as analyzed by RMSE, where Ridge regression had the lowest performance among the
five methods, in terms of correlation, the Ridge regression exhibited the best R2 (around
0.93). However, this method exhibited large TiO2 biases for concentrations greater than
10. Lasso regression had the most stable performance with an RMSE of around 6% and an
R2 of approximately 0.8, despite the consistent overestimation observed throughout the
entire range. XGBoost exhibited a similar RMSE level to Lasso but, as represented by its
R2 score, the scatter was greater than that of the Lasso regression method. Lastly, support
vector regression produced the lowest R2 (<0.1); however, its RMSE result of around 8% is
not overly poor when compared with the other methods. This indicates that RMSE alone
does not represent the performance of the method.
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4. Discussion: Limitations and Strengths

This study validates the feasibility of TiO2 estimation using the proposed machine
learning model for cementitious specimens. Although the results demonstrate the robust-
ness of the suggested model (Lasso regression), the following limitations apply: A certain
portion of the uncertainty in the estimation is driven by the heterogeneity of specimen
surfaces, which include locational differences on a single specimen surface in addition to
differences between different specimens. Ideally, the specimen surface should be fabricated
and maintained perfectly uniform in terms of both the base cementitious material and
the TiO2 concentration with no locational dependency; however, this is difficult to realize
practically considering the curing process. In addition, downward gravitational pressure is
another factor that increases the heterogeneity of the surface as it causes the cross sections
to vary according to the specimen height. As this study did not perform an analysis of the
quantification of such spatial heterogeneity, it is difficult to calculate the degree to which
specimen heterogeneity contributed to the estimation uncertainty.

One downside of using a machine learning approach for estimation work is that it is
difficult to explain the causes of differences between the training and test results unless a
specific experimental design is not contemplated via, for example, the use of explainable
machine learning approaches. The process of specimen fabrication was maintained strictly
identical for both Dataset I and Dataset II by using the same conditions (e.g., curing
humidity and temperature). However, certain uncontrollable environmental variables
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would have affected the curing process (e.g., an uneven blend distribution of the specimen).
The performance differences between Dataset I and Dataset II were likely to have been
affected by such variations.

The strength of this study is that, unlike a previous study [23], the proposed model can
estimate TiO2 concentration across a very wide concentration range (up to 30%) and in cases
of co-existence with activated carbon, which is often the case in the field. Another important
aspect of the proposed algorithms is its robustness in interpreting the estimation results. A
robust algorithm should have low sensitivity for such uncontrollable and unpredictable,
yet commonly encountered, factors. Our results indicated that Lasso regression has the
highest robustness for TiO2 estimation. Since performance in a training process does not
represent the actual performance on independent data, it is not necessary to explain why
the performance ranking in the training process was inverted compared with that of the
test step.

5. Conclusions and Suggestions

This study explored spectral reflectance characteristics according to the TiO2 and
activated carbon ratios in concrete specimens using a hyperspectral sensor. Based on the
experimental database, this study demonstrates the feasibility of machine learning algo-
rithms to estimate the remaining TiO2 and activated carbon ratios for concrete structures.
The main findings are as follows:

• TiO2 powder has a high level of reflectance (around 80%–95%) that is dramatically
reduced in the UV spectral range (300–400 nm). On the other hand, activated car-
bon powder has very low reflectance, as demonstrated by its approximate 1%–2%
reflectance over the entire wavelength range tested.

• The overall reflectance level increased with increasing TiO2 concentration and decreas-
ing carbon ratio in the concrete specimens. The reflectance curves revealed a common
sharp decrease in reflectance at around 350 nm for all specimens; specifically, the depth
of the valley was deeper for higher TiO2 concentrations.

• The normalized difference TiO2 index (NDTI) was suggested in this study based on
reflectance differences in the UV and blue spectral regions. Based on the experimental
results, the regression with the quadratic polynomial shows a good relationship
between TiO2 concentration and NDTI when the carbon ratio is fixed.

• Performance analysis of the machine learning methods considered in this study re-
vealed that most methods worked well with the training/validation data (Dataset I).
However, when applied to the test data (Dataset II), Lasso regression was the most
robust method; it was possible to estimate the TiO2 concentration with 6% RMSE and
a correlation level of 0.8.

• The suggested robust machine learning approach can be adjusted and expanded to
field applications by, for example, employing camera-type hyperspectral sensors that
can estimate TiO2 using images of wide areas.
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