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Abstract: Quantification of the impacts of climate change on streamflow and other hydrological
parameters is of high importance and remains a challenge in arid areas. This study applied a modified
distributed hydrological model (HEC-HMS) to the Yarkant River basin, China to assess hydrological
changes under future climate change scenarios. Climate change was assessed based on six CMIP6
general circulation models (GCMs), three shared socio-economic pathways (SSP126, SSP245, SSP370),
and several bias correction methods, whereas hydrological regime changes were assessed over
two timeframes, referred to as the near future (2021–2049) and the far future (2071–2099). Results
demonstrate that the DM (distribution mapping) and LOCI (local intensity scaling) bias correction
methods most closely fit the projections of temperature and precipitation, respectively. The climate
projections predicted a rise in temperature of 1.72–1.79 ◦C under the three SSP scenarios for the near
future, and 3.76–6.22 ◦C under the three SSPs for the far future. Precipitation increased by 10.79–12%
in the near future, and by 14.82–29.07% during the far future. It is very likely that streamflow
will increase during both the near future (10.62–19.2%) and far future (36.69–70.4%) under all three
scenarios. The increase in direct flow will be greater than baseflow. Summer and winter streamflow
will increase the most, while the increase in streamflow was projected to reach a maximum during
June and July over the near future. Over the far future, runoff reached a peak in May and June. The
timing of peak streamflow will change from August to July in comparison to historical records. Both
high- and low-flow magnitudes during March, April, and May (MAM) as well as June, July, and
August (JJA) will increase by varying degrees, whereas the frequency of low flows will decrease
during both MAM and JJA. High flow frequency in JJA was projected to decrease. Overall, our results
reveal that the hydrological regime of the Yarkant River is likely to change and will be characterized
by larger seasonal uncertainty and more frequent extreme events due to significant warming over the
two periods. These changes should be seriously considered during policy development.

Keywords: climate change; CMIP6 global climate models; hydrology modeling; shared socioeco-
nomic pathways; extreme flow

1. Introduction

Observed climate change has altered the global hydrological cycle and is expected to
have a considerable impact on multi-scale freshwater availability [1]. Therefore, streamflow
predictions associated with a changing climate are critically needed, especially in arid areas,
for strategic and effective water resources planning and management.
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The Yarkant River, located in the northwestern arid region of China, is the longest
tributary of the Tarim River, which is the largest inland river in China. The Yarkant River
Basin Irrigation District is the fourth largest agricultural irrigation district in China and
provides water resources for a population of 1.3 million [2]. The region is characterized by
a typical temperate continental arid climate and is the most important region in Xinjiang
in particular, and China in general, for the production of high-quality grain, cotton, and
fruits [3,4]. River runoff is a major water resource in arid basins, and often supports the
development of agriculture. As an important tributary of the Tarim River, the Yarkant
River provides water resources for agricultural activity and ecologically important oasis
ecosystems located along the lower reaches. However, because of an increase in water
consumption, the Yarkant River has not discharged water into the Tarim River since 1986.
Consequently, it no longer serves as a surface water source for the Tarim River [5].

Hydrologic cycle of a basin is a complex process, which is affected by local climate,
topography, soil, vegetation conditions and human activities [6]. Currently, due to the
impact of global warming, glacier and snow ablation in the basin accelerates, runoff in
the downstream replenishment increases, and hydrological events, such as floods and
droughts, occur. These changes have a huge impact on the regional water cycle [7–9].
Global warming speeds up the process of water circulation and for those snow and glacier
melt dominated basins, glacier and snow melt discharge increase at the same time, resulting
in increased runoff downstream supplies [10]. However, for ice and snow meltwater
accounting for the proportion of annual runoff in terms of small watershed, the glacier and
snow “solid reservoir” reserves is limited. As a result, under the background of climate
warming, the downstream river runoff is limited by its recharge, and is largely influenced
by precipitation and evapotranspiration, resulting in enhanced runoff volatility [11,12].
Glacier and snow-melt water account for more than 70% of the total runoff in the Yarkant
River basin. Glaciers in the Yarkant basin play a significant role in the basin’s hydrological
system and are particularly sensitive to temperature changes [6]. With continuing climate
change, increasing water management challenges are anticipated for the Yarkant River
basin [13], and projections of future changes in temperature and water availability are of
key significance.

Recently, efforts have been made to evaluate and project the impact of climate change
on the hydrologic regime of the Yarkant River basin. These studies have focused on
(1) the relationships between meteorological variables and streamflow using historical
measurements [5,14,15]; (2) the estimation of potential changes in glacier area, mass balance,
and runoff in the Yarkant River basin for the period of 2011–2050 on the basis of 17 General
GCMs [16]; and (3) the estimation of changes in future glacial runoff of all rivers originating
from the Tien Shan–Pamir–North Karakoram region, including the Yarkant River on the
basis of hydrological and CMIP5 models. These studies found that the climatic impacts
on the hydrological regime of the different watersheds are quite variable [17]. However,
because of a lack of observational data, analyses have rarely analyzed the specific changes in
runoff, nor have they addressed the implications of climate change on the hydrological cycle
and specific hydrological components (e.g., direct runoff and baseflow) of a basin in detail.
Moreover, there is a lack of prediction and analysis of the complete hydrological system in
the Yarkant River under the latest climate change scenarios. This paper complements these
earlier studies, which are aimed at understanding the future hydrological system of the
Yarkant River basin and assesses the response of the hydrologic system to the latest climate
change scenarios.

Streamflow simulations and projections represent a fundamental approach to the as-
sessment of future water resources as needed for strategic planning and management [18].
Moreover, hydrological models serve as an important tool for studying streamflow pro-
cesses at the watershed scale. Normally, physical models, which are based on mass energy
balance, need detailed observation data and a wide range of model parameters [19]. The
distribution of meteorological and hydrological stations in mountainous basins is, how-
ever, generally limited, making it difficult to obtain the detailed information needed for
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model operation [20]. HEC-HMS is a distributed hydrological model with certain physical
significance that was designed to simulate precipitation–snow–runoff processes for a wide
range of geographic areas, and the generated results have been used to solve a broad range
of problems [21]. A snowmelt module was added to the latest version of HEC-HMS 4.2,
thereby increasing the applicability of the HEC-HMS model. For example, Azmat et al. ap-
plied the model to the high-altitude Jhelum River watershed in the western Himalayas [22],
which is recharged by ice and snowmelt, and predicted changes of runoff under future
climate change scenarios. The default parameter values are normally used in the snowmelt
module. Fazel [23] compared the runoff results simulated by using the default ATIMR
function and the calculated ATIMR function, and their results showed that the application
of the ATIMR function that utilized observation data significantly improved the simulation.
Although the application of the HEC-HMS model has been relatively broad, the applica-
tion of the model to ice and snow meltwater replenishment in basins has been limited.
Thus, its application here to a mountainous watershed with complex composition runoff
sources is noteworthy. The approach is also novel in providing an effective simulation
method for runoff simulation of ice and snowmelt recharged watersheds in arid areas with
insufficient data.

The prediction of future runoff is mainly based on a validated hydrological model
that uses data from future climate change scenarios obtained through general circulation
models (GCMs) as input [24–26]. In the fall of 2012, the Sixth International Coupled Model
Comparison Program (CMIP6), organized by the World Climate Research Program “Work-
ing Group of Climate Modeling” began. The new socio-economic climate change scenario
with SSPs (shared socio-economic pathways) as the core reflects the relationship between
radiative forcing and socio-economic development. It will serve as an important evidence
basis for the latest IPCC report [27,28] and has been applied to different scales [19,29–31].
Therefore, to more accurately predict the changes in runoff in the study area under future
scenarios, newly released ensemble downscaled CMIP6 outputs were used to model the
impact of climate change on the water balance and hydrological regime of the glacier- and
snow-dominated Yarkant River basin. The hydrologic modelling effort was based on a mod-
ified HEC-HMS model. More specifically, the approach combined the use of the distributed
hydrological model HEC-HMS (including the snowmelt module) with climate predictions
developed using the six latest CMIP6 GCMs applied to three shared socioeconomic path-
way (SSP) scenarios (i.e., SSP126, SSP245, SSP370) to project the impact of climate change
on the hydrologic regime of the Yarkant River basin. Different SSP respect different paths
of social and economic development. Specifically, SSP126 is the road of sustainability, a
low radiative forcing SSP with low vulnerability and low mitigation challenges. SSP245 is
the middle of the road and entails medium radiative forcing SSP since the land use and
aerosol pathways of SSP2 are not extreme and represent only a combination of a medium
social vulnerability and medium radiative forcing SSP. SSP370 is the road of regional rivalry
whereby unmitigated emissions are high due to moderate economic growth, a rapidly
growing population, and slow technological change in the energy sector, making mitigation
difficult [32]. The analysis was conducted over both the near future (2021–2049) and far
future (2071–2099). The CMIP6 GCMs contain a significant amount of uncertainty. Thus,
several bias correction approaches were applied and compared to select the most suitable
approach(es) for bias corrections of the future temperature and precipitation data series.
The specific objective of this study is to quantify the annual and seasonal change in climate
variables (precipitation and temperature) and in major hydrological components, such as
annual and seasonal streamflow, streamflow components, and extreme flows, in response
to potential climate change scenarios in Yarkant River basin. The study results are useful
for formulating future development policies in the sector of water resources in the Yarkant
River basin and other arid area basins as needed to adapt to future climate change.
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2. Materials
2.1. Study Area

The Yarkant River basin, located on the north slope of the Karakoram Mountains,
possesses a drainage area of 46,704 km2 upstream of the Kaqun hydrological station. It is
the longest tributary to the largest continental river—the Tarim River of northwestern China
(Figure 1). Elevation in the basin ranges from 1450 to 8611 m above sea level (a.s.l.). The
average elevation is 4400 m. Due to the influence of topographic and location conditions,
the climate of the basin varies significantly in time and space. Precipitation mostly occurs
in May–September (67%), and temperature has large seasonal and vertical variations.
Many permanent glaciers, along with seasonal snow, occur in the mountains. The glaciers
encompass a total area of 5582 km2 in the basin, or about 11.95% of the basin area. Annual
average snow cover accounts for about 15% of the basin area. In combination, glaciers
and snow meltwater constitute about 70% of the river runoff [16,33]. Due to the seasonal
influence of glacier and snow meltwater, runoff varies greatly both annually and inter-
annually. Runoff during June–September accounts for 80% of the total annual runoff [34]
and is particularly sensitive to climate change. Downstream areas of the basin contain the
largest oasis irrigation area in Xinjiang. The variability in runoff from upstream basin areas
plays an important role in the sustainable development and ecological maintenance of the
irrigation area.
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Figure 1. (a) Location of research area; (b) monthly distribution of temperature and precipitation in
the Yarkant River basin from 1986 to 2014; (c) annual variations in temperature and precipitation from
1986 to 2015. (d) monthly distribution of streamflow in the Yarkant River basin from 1986 to 2014.
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2.2. Datasets

A detailed characterization of hydrological conditions, including daily observed pre-
cipitation, temperature, and wind speed, was obtained from three meteorological sta-
tions, while daily observed streamflow was obtained at the Kaqun hydrologic station
(1450 m a.s.l.) between 1986 and 2014 (Figure 1). These data were collected by the National
Meteorological Information Center (http://www.nmic.cn/ accessed on 18 November 2021)
and the Kashi Hydrology Management Bureau, respectively. Before meteorological and
hydrological data were used, data quality control and a homogeneity assessment were
performed using ClimDex Software Version 1.3 (http://etccdi.pacificclimate.org/software.
shtml accessed on 18 November 2021) [35].

Daily snow water equivalent (SWE) data also represented an important input to the
model, as it reflects changes in hydrological elements better than the area of snow cover.
The daily snow depth data were derived from a long-term series of daily snow depths.
Empirical formulas were applied to calculate the SWE data. Daily snow depth during
1986–2014 was extracted from the Long-Term Series of Daily Snow Depth Dataset in China
(1979–2019) provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn
accessed on 18 November 2021). The integrity and application of this dataset has already
been evaluated by several researchers [36–38]. Data pertaining to the area of glaciers in the
basin were extracted from the First and Second Glacier Inventory Dataset of China and
the Randolph Glacier Inventory (RGI 6.0) (https://doi.org/10.7265/N5-RGI-60 accessed
on 18 November 2021). Soils data were obtained using the Chinese 1:1 million soil dataset
based on the World Soil Database HWSD published by the Cold and Arid Region Scientific
Data Center (http://www.bdc.ac.cn/portal/ accessed on 18 November 2021), along with
land-use data from the GlobeLand30 data results (2010) at a 30 m resolution.

To simulate future hydrological conditions, shared socio-economic pathways (SSPs)
were utilized in this study under the CMIP6 repository [27,39]. SSPs contain specific
descriptions of future population, economy, technological development, lifestyle, poli-
cies, and other social factors. In general, they provide five different possibilities through
which the future world may address climate change challenges in terms of adaptation and
mitigation [40] and provide a means to consider the possible challenges associated with
adaptation to climate change and its mitigation [41]. Since model datasets are still being
released in succession, we choose six CMIP6 model datasets that have been completely
released. These datasets provide information on precipitation and near-surface temperature
at a daily timescale for the Yarkant River basin as needed for the future climate change
analysis (Table 1). For the future projections (2015–2100), we selected three SSP scenarios,
SSP126, SSP245, and SSP370, of CMIP6, which represent sustainable, middle, and regional
rivalry development routes, respectively [42]. Six daily-scale climate models incorporating
the above three SSP scenarios were selected to assess possible future climate changes under
different development scenarios in the arid area of northwest China.

Table 1. Summary of selected CMIP6 models used in this study.

ID Model Name Country Institution Resolution

1 BCC-CSM2 China Beijing Climate Center 100 km

2 CNRM-CM6-1 France Centre National de Recherches
Météorologiques 100 km

3 CNRM-ESM2-1 France Centre National de Recherches
Météorologiques 250 km

4 GFDL-ESM4 America Geophysical Fluid Dynamics
Laboratory 250 km

5 MPI-ESM1-2-HR Germany Max Planck Institute for
Meteorology 100 km

6 MRI-ESM2-0 Japan Meteorological Research Institute 100 km

http://www.nmic.cn/
http://etccdi.pacificclimate.org/software.shtml
http://etccdi.pacificclimate.org/software.shtml
http://data.tpdc.ac.cn
https://doi.org/10.7265/N5-RGI-60
http://www.bdc.ac.cn/portal/


Remote Sens. 2022, 14, 115 6 of 25

2.3. The Hydrological Model

The Hydrological Modelling System (HEC-HMS), which was developed by the United
States Army Corps of Engineers, was used to simulate the historical and future daily runoff
in the study basin [43,44]. Earlier versions of the HEC-HMS model were mainly used
to simulate rainfall runoff and flooding and have been extensively applied to rainfall-
dominated watersheds around the world [43,45]. However, the model has rarely been used
for dryland rivers where runoff is dominated by snow and glacier meltwater. The new
version of the HEC-HMS modelling system incorporates a snowmelt module, making it
possible to apply a modified model to glacier- and snowmelt-dominated basins, and to
check the performance of the model’s modifications.

Snowmelt models based on temperature metrics are often required to characterize the
rate of snow melt. The snowmelt component of the HEC-HMS model uses the temperature
index method to estimate the accumulation and melting of snow. Specifically, rain and
snow are separated based on temperature data for specific elevation zones, and the melting
and accumulation of snow depends on the meteorological conditions in the study area. The
melting rate is established by the ATIMR function (antecedent temperature index-melt rate),
which specifies the melt rate for a given prior temperature index. In this study, a snowmelt
calculation model based on the improved ATIMR equation proposed by Fazel [23] was
used and the melting rate was calculated using the following equation:

Melt Rate =

{
0 , ∆SWE = SWEt+1 ≥ 0 or 1

24 ∑24
t=1 Tt − Tbase ≤ 0

|SWEt+1−SWEt |
1
24 ∑24

t=1 Tt−Tbase
, otherwise (1)

where melt rate is given in cm/◦C·day, SWE is the snow water equivalent (cm), Tt is
the observed air temperature, and Tbase is the critical temperature for distinguishing rain
from snow, typically 0 ◦C. The antecedent temperate index was determined by the follow-
ing equation:

ATI = ATIt−1 × ATI Decay Factor∆t + (Tt − Tbase)× ∆t, SWE > 0 (2)

where the ATI Decay Factor = 0.98 [15], and the time step ∆t = 1 day. The initial value of ATI
was assumed to be 0, which assumes that the accumulation of any warming degree-days
prior to the initiation of the accumulation season is 0.

In this study, the basin was divided into 6 subbasins (Figure 1), and every subbasin
was then divided into several elevation bands. Since glacier and snowmelt are driven by
temperature in the ablation module, the study interpolates the single-station measured
air temperature to the elevation bands of the basin by the lapse rate of air temperature,
as follows:

TZ = T0 − γ× Z− Z0

100
(3)

where Tz is the temperature (◦C) at elevation band Z (m); T0 is the measured temper-
ature (◦C) of the base station at Z0 (m); and is the temperature lapse rate between Z
and Z0 (◦C/100 m). Here, the monthly temperature lapse rate was calculated following
Kan et al. [33], which is based on the measured temperature.

Similar to the air temperature, the study interpolated the daily measured precipitation
from a single station to the elevation bands of the basin based on the total precipitation
gradient during the observation period using the following equation:

PZ = P0 × [1 + k(Z− Z0)] (4)

where PZ is the daily precipitation (mm) at Z (m), the elevation to be sought; P0 is the daily
precipitation (mm) at the precipitation base station at the Z0 elevation band; and K is the
rate of increase in the difference between the maximum and minimum precipitation totals
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in the basin relative to the total precipitation at the base station over the entire observation
period [46]. K was calculated as:

K =
Ptotal_max − Ptotal_min

Ptotal0
/(elemax − elemin) (5)

2.4. Model Performance Evaluation

The Nash–Sutcliffe efficiency (NSE) and coefficient of determination (R2) were used to
measure the goodness of fit, and the percent bias (PBIAS) was used to assess the offset of
simulated flow to measured flow.

NSE = 1− ∑n
i=1
(
Qi −Q′i

)2

∑n
i=1
(
Qi −Q

)2 (6)

PBIAS =
∑n

i=1
(
Qi −Q′i

)
∑n

i=1 Q′i
(7)

where Qi and Q′i are the ith observed and simulated daily streamflow, respectively; Q is the
mean observed streamflow; n is the days of simulations. NSE represents the correspondence
between simulated flow and observed flow, PBIAS measures the offset of simulated flow
to measured flow, where a positive value indicates overestimation and a negative value
indicates underestimation. The smaller the absoluteness of PBIAS is, the smaller the
deviation of simulated flow to observed value is. R2 describes the correlation between
simulated and observed flows.

In general, NS > 0.50, |PBIAS| < 25% and R2 > 0.6 are used as criteria for satisfactory
simulations in hydrological modelling. When NS > 0.75, |PBIAS| < 10%, and R2 > 0.75,
the simulation is considered very good [47].

2.5. Bias-Correction Methods and Performance Evaluation

Climate change impact studies can be highly influenced by uncertainty in both the
climate and impact models. In dry regions, the sensitivity to climate model uncertainty
becomes greater than hydrological model uncertainty [48]. The CMIP6 GCMs contain a
significant amount of uncertainty. Thus, bias correction approaches have been applied
to correct the bias in CMIP6 scenarios with reference to observed precipitation (Table 2).
In this study, two bias correction methods (linear scaling (LS) and distribution mapping
(DM)) for temperature and three bias correction methods (power transformation (PT), local
intensity scaling (LOCI), and distribution mapping (DM)) for precipitation were used.
The most effective methods were then applied to generate time series of future climate
as represented by precipitation and temperature during two periods, the near future of
2021–2049 and the far future of 2071–2099, under the SSP126, SSP245, and SSP370 scenarios.
The used bias-correction methods are shown in Table 2 and explained in the Supplement
Materials section in detail.

Table 2. Bias-correction methods for GCM-simulated temperature and precipitation.

Bias Correction for Temperature Bias Correction for Precipitation

Linear scaling (LS) Power transformation (PT)
Distribution mapping for temperature using

Gaussian distribution (DM) Local intensity scaling (LOCI)

Distribution mapping for precipitation using
gamma distribution (DM)

The performance of each bias correction was analyzed by comparing several statistical
parameters between the observed data, raw data, and the corrected data from the historical
period (1986–2014). The proper correction methods were selected based on their ability to
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simulate precipitation and air temperature. The evaluation indexes of precipitation and air
temperature are as follows:

a. For air temperature, the performance of corrected air temperature was evaluated
using frequency-based and time-series-based metrics compared to observation data.
The frequency-based metrics included the mean, median, and 10% and 99% deciles,
while the time-series-based metrics included the root mean square error RMSE, R2,
and MAE, where:

RMSE =

√
∑n

i=1
(
Yobs

i −Ysim
i
)2

n
(8)

MAE =
∑n

i=1

∣∣∣Yobs
i −Ysim

i

∣∣∣
n

(9)

The smaller the root mean square error (RMSE), R2, and mean absolute error (MAE)
values, the more reliable the model is in comparison to the observed data.

b. For precipitation, the performance of corrected precipitation was evaluated using
frequency-based and time-series-based indicators. The frequency-based indicators
included the mean, median, standard deviation, wet day frequency, and wet day
precipitation intensity, while the time-series-based indicators included the RMSE and
MAE.

2.6. Extreme Flows

We quantify the changes in the magnitude of extreme flows using the changes in the
Q95 and Q5 flows, which were derived from the flow duration curve (FDC). The FDC was
estimated from the daily streamflow simulations. The Q95 value (high flow) indicates a
flow magnitude that exceeded 95% of the daily streamflow in a time series (e.g., historical
period, near future), the Q95 days represents the sum of days of high flow, the Q5 value
(low flow) is exceeded only 5% of the time series, and the Q5 days represents the sum of
days of low flow. The low and high flows were calculated from the mean streamflow from
six GCM models.

3. Results
3.1. Model Setup

The HEC-HMS model was constructed based on the daily meteorological and dis-
charge data. There are three meteorological observation stations in the basin of the Yarkant
River: Tashkurgan (3090.9 m a.s.l.), Pishan (1231.2 m a.s.l.), and Shache (1375.4 m a.s.l.).
Tashkurgan station was selected as the base station, according to previous studies, the maxi-
mum and minimum precipitation totals in the basin are at elevations of 5500 m and 4000 m,
respectively. The value of K (0.00143) and the daily precipitation at each altitude band were
calculated using the methods outlined in Section 2.3 and the precipitation lapse rate of each
month (Table S1). The temperature lapse rate utilized the mean monthly temperature lapse
rates calculated by Kan, which were derived from Tashkurgan, 11 temperature sensors,
and three automatic weather stations (AWSs) [33].

The HEC-HMS model consists of two modules, a rainfall runoff module and a snow
and glacier melt module. In the rainfall runoff module, the soil moisture accounting
(SMA) loss method, Clark unit hydrograph method, simple canopy method, simple sur-
face method, and the recession method were selected. Monthly evaporation data and the
temperature index method based on the ATI-Melt rate function were adopted for evapo-
transpiration and snowmelt simulations, respectively. In terms of model calibration and
validation, an optimization trial and uncertainty simulations were applied in HEC-HMS
version 4.2.1 (the latest version), and parameters for runoff, evapotranspiration, snowmelt,
groundwater, and soil were optimized accordingly. In this study, the HEC-HMS model was
calibrated using data from 2005 to 2010 and validated using data from 1986 to 2004 and
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2011–2014 at the outlet of the Yarkant River basin. The results of the optimization of the
main parameters in the model are presented in Supplementary Table S2.

The time series of simulated daily streamflow was compared to the observed stream-
flow using several key statistics, including NSE, R2, and PBIAS (Figure 2, Table 3). These
statistics show that the model performed well on a daily time scale during both the calibra-
tion and validation periods. NSE for the calibration and validation periods were 0.80, 0.72,
and 0.83, respectively, whereas the R2 values for the calibration and validation periods were
0.81, 0.70, and 0.85, respectively. Therefore, model performances over the calibration and
validation periods were highly acceptable and can be used in the hydrological simulations.
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Table 3. Assessment of simulation results of the HEC-HMS model during the calibration and
validation periods.

Time Periods NSE PBIAS (%) R2

Calibration period (2005–2010) 0.80 5.86 0.81
Validation period (1986–2004) 0.72 16.56 0.70
Validation period (2011–2014) 0.83 9.74 0.85

3.2. Evaluation of Bias Correction Approaches

Figure 3 shows the cumulative probability curves for observed, raw, and corrected
precipitation and the temperature of six GCMs models listed in Table 1. For temperature,
the raw GCM model data underestimates high temperature events (>0 ◦C) with frequencies
above 0.2. The two temperature correction methods applied in this study were able to
correct bias for all data, with small differences in effect. For precipitation, all raw GCM
model output was overestimated. Regarding the bias correction method, the DM method
underestimated precipitation to differing degrees, whereas the LOCI and PT methods
overestimated small precipitation events with probabilities less than 0.95. The correction
for other precipitation events was better.

The performance of different bias correction approaches in correcting precipitation
and temperature was evaluated using both frequency-based statistics and time-series-based
metrics over the historical period (1986–2014) (Tables 4 and 5). In term of temperature,
the results show that the mean and standard deviation of temperature at the station were
3.98 ◦C and 10.06 ◦C, respectively, whereas the 10% and 90% percentiles were −10.77 ◦C
and 16.70 ◦C, respectively. The LS and DM methods performed equally well in correcting
temperature. Specifically, the LS method provided good estimates of the mean, but slightly
overestimated the median and standard deviation, while the DM method provided good
estimates of both the frequency-based and time-series-based indicators. These results
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suggest that the DM method is better at correcting the simulated temperature from the
climate model.
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Figure 3. Cumulative probabilities of observed (obs), raw, and bias-corrected temperature (a) and
precipitation (b) at the Tashkuergan station. Obs, raw and different bias-corrected methods were
showed by different type of lines.

Table 4. Frequency-based statistics and time-series-based metrics of daily observed (obs), raw GCMs-
simulated (raw) and bias-corrected temperature at the Tashkuergan station.

CMIP6 Models

Frequency-Based Statistics Time-Series-Based Metrics

Mean
(◦C)

Median
(◦C)

Standard
Deviation

(◦C)

10th
Percentile

(◦C)

99th
Percentile

(◦C)
R2 RMSE MAE

BCC

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 4.84 4.21 10.43 −18.96 18.60 0.84 10.62 9.28
LS 3.98 5.85 10.72 −11.37 16.73 0.87 5.54 4.22

DM 3.98 5.77 10.60 −11.13 16.47 0.87 5.38 4.01

NERM-CM6-1

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 2.93 1.45 6.85 −12.25 14.55 0.51 11.58 9.86
LS 3.98 6.06 10.99 −11.25 16.41 0.82 6.51 4.79

DM 3.98 5.43 10.60 −10.53 16.62 0.85 5.80 4.34

CNRM-ESM2-1

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 1.15 0.35 6.44 −9.55 16.55 0.51 10.49 8.78
LS 3.98 5.66 10.69 −10.80 16.51 0.85 5.83 4.31

DM 3.98 5.45 10.60 −10.34 16.62 0.86 5.62 4.20

GFDL-ESM4

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 7.12 3.85 11.06 −20.95 11.45 0.47 15.76 12.53
LS 3.98 6.53 13.35 −12.96 16.12 0.68 9.86 5.51

DM 3.98 5.57 10.60 −10.07 16.11 0.86 5.62 4.16

MPI-ESM1-2-HR

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 4.00 2.25 6.92 −13.15 13.05 0.53 12.10 10.39
LS 3.98 6.29 11.05 −11.35 16.32 0.82 6.45 4.64

DM 3.98 5.47 10.60 −10.35 16.70 0.86 5.62 4.19

MRI-ESM2-0

Obs 3.98 5.60 10.60 −10.77 16.70
Raw 3.41 0.85 8.25 −15.55 14.25 0.52 12.01 10.15
LS 3.98 6.69 11.56 −11.56 16.08 0.81 6.89 4.99

DM 3.98 5.57 10.60 −9.89 16.32 0.87 5.33 4.04
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Table 5. Frequency-based statistics and time-series-based metrics of daily observed (obs), raw GCMs-
simulated (raw) and bias-corrected precipitation at the Tashkuergan station.

CMIP6 Models

Frequency-Based Statistics Time-Series-Based
Metrics

Mean
(mm)

Median
(mm)

Standard
Deviation

(mm)

10th
Percentile

(mm)

Fre-
Quency
of Wet

Days (%)

Intensity
of Wet
Days
(mm)

RMSE MAE

BCC

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.52 0.53 2.50 4.24 0.39 3.54 3.00 1.59
PT 0.23 0.00 1.09 0.39 0.05 3.25 1.53 0.41

LOCI 0.23 0.00 0.76 1.04 0.10 2.08 1.32 0.41
DM 0.11 0.00 0.57 0.22 0.03 2.47 1.24 0.31

CNRM-CM6-1

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.52 0.53 2.19 4.24 0.40 3.14 2.80 1.60
PT 0.23 0.01 1.13 0.30 0.05 3.73 1.59 0.42

LOCI 0.20 0.00 0.67 0.92 0.09 1.94 1.31 0.40
DM 0.21 0.00 1.29 0.17 0.04 4.11 1.71 0.42

CNRM-ESM2-1

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.60 0.80 2.38 3.90 0.42 3.28 2.98 1.69
PT 0.23 0.01 1.15 0.29 0.05 3.73 1.59 0.42

LOCI 0.19 0.00 0.70 0.87 0.09 2.08 1.32 0.40
DM 0.23 0.00 1.54 0.13 0.04 4.80 1.90 0.44

GFDL-ESM4

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.35 0.70 1.94 3.30 0.35 3.04 2.51 1.44
PT 0.23 0.01 1.19 0.30 0.05 4.61 1.60 0.41

LOCI 0.23 0.00 0.68 0.96 0.10 1.92 1.30 0.40
DM 0.20 0.00 1.35 0.14 0.04 4.13 1.74 0.41

MPI-ESM1-2-HR

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.51 0.70 2.19 3.70 0.40 3.14 2.80 1.60
PT 0.23 0.01 1.13 0.30 0.05 3.65 1.58 0.42

LOCI 0.23 0.00 0.67 0.92 0.09 1.94 1.31 0.40
DM 0.21 0.00 1.29 0.17 0.04 4.11 1.71 0.42

MRI-ESM2-0

Obs 0.23 0.00 1.12 0.20 0.05 1.17
Raw 1.59 0.80 2.19 3.80 0.42 3.12 2.82 1.67
PT 0.23 0.01 1.17 0.30 0.05 3.65 1.58 0.42

LOCI 0.17 0.00 0.67 0.90 0.09 1.95 1.29 0.40
DM 0.23 0.00 1.65 0.12 0.04 4.99 1.96 0.44

In term of precipitation, the average daily precipitation at the meteorological station
was 0.23 mm, the annual number of wet days accounted for 5%, and the intensity of wet
days was 1.17 mm. All the bias correction methods were effective at improving the simula-
tion efficiency of raw output data, but there was varying degrees of over estimation in both
wet day frequency and wet day intensity. Specifically, PT and DM methods overestimated
the wet day intensity, and LOCI methods overestimated the wet day frequency, mainly
due to the high number of rainfall days in the raw data. The correction methods did not
directly eliminate rainfall events. The mean, standard deviation, and wet day frequency
of the PT method were similar to the observed values. The RMSE and MAE of the LOCI
method were the lowest, but slightly overestimated the wet day frequency, while the RMSE
and MAE of the LOCI method were better than other two methods. In general, the LOCI
method provided the best correction for precipitation.
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3.3. Climate Projections and Climate Change Analysis
3.3.1. Temperature Projection

Based on the evaluation results of the correction methods in the previous section,
this study chose the DM method and the LOCI method to correct the raw temperature
and precipitation from climate model output of the near future and the far future under
the SSP126, SSP245 and SSP370 scenarios. The analysis of changes in climate and hydro-
logic response was carried out by comparing the near future (2021–2049) and far future
(2071–2099) conditions to the control period, 1986–2014. Increased air temperatures were
obtained by all climate models under all SSPs (Figure 4a, Table 6). It is clear from the
projected results that a basin-wide temperature increase was predicted for both future
periods, while the variation trends of temperature during 2015 and 2100 under SSP126,
SSP245, and SSP370 were 0.43 ◦C/10a, 0.49 ◦C/10a, and 0.73 ◦C/10a, respectively, with a
95% significance level. However, the uncertainty of the different climate models was large,
especially under SSP370. From the perspective of a temperature increase, the difference in
the temperature increase between the three pathways was relatively small. The temperature
rise for SSP245 (1.79 ◦C) is expected to be more significant than for SSP126 and SSP370
(1.72 ◦C, 1.75 ◦C, respectively). Temperature increased at a similar rate for the three SSPs
during the mid-century, while the rate of temperature increase was projected to be rapid
during the far future under the three SSPs. The magnitude of the temperature rise under
SSP370 was the largest, followed by SSP245 and SSP126 (4.29 ◦C and 3.76 ◦C, respectively)
(Table 6).
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Table 6. Projected changes in mean temperature, total precipitation, mm (%) and streamflow under
future scenarios of SSP126, SSP245 and SSP370 during the near term (2021–2049) and far term
(2071–2099) compared with the historic period (1986–2014).

Variables SSPs Near Term (2021–2049) Far Term (2071–2099)

Temperature (◦C)
SSP126 1.72 3.76
SSP245 1.79 4.29
SSP370 1.75 6.22

Precipitation (mm (%))
SSP126 9.90 (11.95) 11.52 (14.82)
SSP245 9.94 (12.00) 13.33 (16.09)
SSP370 8.95 (10.79) 24.09 (29.07)

Streamflow (%)
SSP126 19.20 36.69
SSP245 10.62 46.11
SSP370 14.01 70.40

Figure 5a,b show the mean month temperature change under the three SSPs for both
near future and far future simulations. Differences in the monthly projected temperature
increase between the different SSPs were negligible for the near future period (expect for
SSP370) but were substantial for the far future. A comparison of the monthly warming rates
shows that both the near- and far-future periods have the highest warming rates during the
winter and summer (1.78–6.5 ◦C and 1.67–7.62 ◦C, respectively) with greater uncertainty.
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3.3.2. Precipitation Projection

Future precipitation is predicted to increase, but the increase differs from the rising
trend exhibited by temperature. In contrast to temperature, increases in precipitation do
not appear to possess a significant trend, with the rates of at rates of 0.01 mm/10a (p > 0.05),



Remote Sens. 2022, 14, 115 14 of 25

1.92 mm/10a, and 0.73 mm/10a (p > 0.05), respectively (Figure 4b). In addition, there
is more uncertainty in the change in precipitation in the future. In the near future, the
increases in precipitation are expected to be 11.95%, 12.00%, and 10.79% under SSP126,
SSP245, and SSP370, respectively. For the far future, there was a large difference in the
change in precipitation between the three scenarios. The order of increase (from largest to
smallest) was SSP370 (29.07%), SSP245 (16.09%), and SSP126 (14.82%).

Seasonally, there will be larger variations in the future, and both the near and far fu-
tures will have widespread uncertainty (Figure 5c,d). A significant increase in precipitation
was found in autumn and winter (15–113%), while a slight increase or even a decrease in
precipitation will occur during the summer (15–113%). It should be noted that the relative
increase in precipitation in the dry season was higher than during the wet season, which
is similar to climate change scenarios in other arid and semi-arid regions, such as the
Kaidu River basin, which originates in the Tien Shan Mountains. Collectively, the findings
presented above show that both the annual and monthly average precipitation change in
the future will be more uncertain than temperature.

3.4. Streamflow Change Predictions to Changing Climate
3.4.1. Annual and Monthly Streamflow to Changing Climate

Discharge and other hydrological components, such as baseflow and direct flow, ob-
tained from the simulated HEC-HMS model were treated as baseline data for the reference
period of 1986 to 2014. The hydrological components obtained from the reference period
were compared with the predicted future changes from the six GCMs under the three
SSP scenarios.

Changes in precipitation and temperature that led to changes in potential streamflow
are shown in Table 6. There is a consistent trend in the projected hydrological changes for
all the scenarios. Although there are large variations in seasonality and magnitude, the
variation trends of streamflow during 2015 and 2100 under SSP126, SSP245, and SSP370
were 4.89 × 108 m3/10a, 4.76 × 108 m3/10a, 8.07 × 108 m3/10a, respectively, with a 95%
significance level. Specifically, compared to the control period (1986–2014), the increase in
streamflow under SSP126, SSP245, and SSP370 during the near future period was 19.20%,
10.62%, and 14.01%, respectively. The increase in streamflow during the far future period
varied greatly among the three scenarios. Ordered from largest to smallest, the results were
SSP370 (70.40%), SSP245 (46.11%), and SSP126 (36.69%). It is worth noting that under the
scenarios of SSP126 and SSP370, streamflow exhibited a slight decreasing trend at the end of
this century (−2.26 × 108 m3/a, −0.17 × 108 m3/a under SSP245 and SSP370, respectively)
(Figure 6a), which is consistent with the research findings of Sorg et al. [49], indicating
that if the temperature continues to rise, the water shortage in this region is most likely
to increase.

The average monthly streamflow change rates under the three different SSP scenarios
for the different time periods are shown in Figure 6. Overall, there was an increasing
trend in streamflow for all future months, but the increase varies significantly from month
to month. In general, the greatest increase in the near- and far futures under the three
scenarios are during summer, followed by winter. On a monthly scale, the increase in
streamflow was projected to be maximal during June and July during the near future, and
during May and June during the far future. In addition, the peak value of streamflow
changed from August in the historical period to July in both the near- and far futures
(Figure 7).
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The range of uncertainty for the change in future projected streamflow is presented
in Figure 6. A higher range of uncertainty is associated with a larger difference in the 5th
percentile and 95th percentile of the change in streamflow. The winter and summer seasons
show the highest certainty. It is particularly high in summer. An analysis of the annual
changes in streamflow in the Yarkant River basin during the historical period shows that,
due to the seasonal influence of snow and ice meltwater, the monthly flow at the Kaqun
station was unevenly distributed during the year. The streamflow from June to September
accounted for 80% of the year’s total streamflow. Therefore, the increase in streamflow,
combined with the high uncertainty during future floods, will have a significant impact on
the ecological and hydrological processes in the basin, causing the hydrological resource
system to become more fragile.

3.4.2. Changes in Streamflow Components to Changing Climate

Changes in the contribution of different hydrological components of the hydrological
system to changes in climate within the river basin are of high importance. Streamflow
can be separated into direct streamflow and baseflow. Baseflow is generally defined
as that part of river streamflow coming from groundwater storage and other delayed
water inflows [50]. Baseflow is the main source of streamflow during the dry season
and is affected by the change of snow and ice meltwater supply [51]. Direct flow means
the part of streamflow which enters a stream channel promptly after rainfall or snow
melting. This study attempted to simulate changes in major hydrological components
(direct streamflow and baseflow) for the future scenario-periods compared to the reference
simulated streamflow components (1986–2014) obtained from the HEC-HMS model.

Since observed data for the different hydrological components in the basin were
not available, output from the model was used as the baseline or reference data, thereby
allowing a comparison of the streamflow components for the future scenarios to the
simulated historic values [52]. The simulated baseflow fraction during the simulated
historical period is consistent with the research results of Fan et al., suggesting that the
streamflow component analysis was reliable [51]. Figure 8 shows that during the near
future, direct flow increases by 17.87%, 5.73%, and 6.76% under SSP126, SSP245, and SSP370,
respectively, compared with the control period (1986–2014). The change in baseflow was
−2.08%, 60.11%, and −23.86%, respectively. During the far future, the increase of direct
flow was 22.73%, 29.41%, and 54.97%, and the increase in baseflow was 12.8%, 125.68%, and
26.76%, respectively. The changes and magnitudes of the changes in direct and baseflow
are quite different. The changes of direct flow and streamflow are consistent across the
different scenarios during the near future period, while baseflow decreases to varying
degrees during both scenarios SSP126 and SSP370 over the near future. The magnitudes
of the decrease in direct flow and baseflow varied during the far future. The increase of
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baseflow in the two future periods under both the SSP126 and SSP370 scenarios is much
lower than under the SSP245 scenario.
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3.4.3. Extreme Flows

Both upstream streamflow generation in Yarkant River basin and ecological and
domestic water consumption in downstream areas of the basin are concentrated during the
spring and summer months [3,17]. Thus, extreme flows, including the low flow (Q5) and
high flow (Q95) magnitudes (Figure 9), as well as the number of days of low and high flow
occurrence (Figure 10) during the spring (March–May, MAM) and summer (June-August,
JJA) of the historical period and the two future periods, were analyzed. Q95 and Q5 were
computed herein based on mean streamflow for the six simulations. Figure 9 shows that
low flows (Q5) for JJA and MAM increased during both the near future and the far future
periods under the three SSP scenarios. However, there was a more dramatic increase during
the far future period. High flows (Q95) exhibited an increasing pattern under all but the
SSP126 scenario. The JJA and MAM seasons for all three periods of the scenario also show
a consistent increasing trend. In contrast, the SSP126 scenario shows a trend of increasing
and then decreasing high flows (Q95) from the historical period to the near future period,
and then to the far future period. Overall, both low flows and high flows will increase in
the future to varying degrees during the spring and summer.
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Figure 9. Low flow (Q5) and high flow (Q95) in JJA (a,b) and MAM (c,d) in the Yarkant River during
the historical period, and near future and far future under the SSP126, SSP245, and SSP370 scenarios.

The frequency of consecutive days below Q5 is expected to decrease under the in-
fluence of climate change in JJA. Figure 10 demonstrates this concept by showing the
cumulative distribution functions (CDFs) of the consecutive days below Q5 for the Yarkant
catchment over the MAM and JJA seasons. A threshold of about 15 days exists for calculat-
ing changes in streamflow for the historical and two future periods, where the probability
of low flow occurring for less than 15 days in the summer will be higher than that in the
historical period. The probability of greater than 15 days will be lower than during the his-
torical period. For high flows, the opposite is true. The probability of high flows occurring
for less than 15 days during the summer in the future will be lower than in the historical
period, and the probability of greater than 15 days will be higher than during the historical
period. In other words, in regard to extreme summer hydrologic events in the future, there
are relatively fewer extended periods of low flow, and relatively more extended periods of
high flow in JJA. As such, there will be fewer prolonged drought events triggered by low
flows and more flood events triggered by high flows. The future CDFs for low flow days
in MAM will not change significantly. The probability of the occurrence of low flow days
greater than 15 days will be slightly higher than that in the historical period. The change in
high flow days will be relatively complex during the far future. The probability of high
flow occurring for more than 15 days will be higher in the far future, while in the near
future lower than during the historical period. Put differently, there will be more extended
periods of low spring flows, and the frequency of drought events triggered by low flow
will increase during the spring in the future. In general, the frequency of spring droughts
and summer floods will increase in the future, and the risk of extreme hydrological events
in spring and summer will also increase. These changes will pose greater challenges to
agricultural water allocation and water resources management in the oasis of the lower
Yarkant River basin.
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4. Discussion
4.1. Application of Hydrological Model

In arid areas where there is a lack of observational data, a distributed hydrological
model with certain physical significance based on the degree-day factor is more suit-
able [53,54]. Therefore, this study used the HEC-HMS model combined with the improved
ATIMR parameters. The approach comprehensively considers glacier or snow degree-day
factors, melt temperature, glacier area, and snow water equivalent, among other parameters,
to effectively improve the efficiency and accuracy of model calibration.

Remote sensing re-analysis data are limited by spatial resolution and were thus dif-
ficult to use in this study. Accordingly, we used lapse rate interpolation to differentiate
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elevation zones. The use of a constant lapse rate often does not describe mountainous
watersheds well [55]. In this study, we thus used monthly temperature decline rate when
simulating runoff.

In addition, the study selected the utilized temperature and precipitation data because
the snow and glacier melting module in HEC-HMS is mainly based on temperature,
and the change of runoff is sensitive to both temperature and precipitation [56]. In the
currently published CMIP6 climate model, snow water equivalent, relative humidity, and
other data are still scarce. In future studies, additional climate data and variables can be
used to predict future changes in multiple climate elements and the resulting changes in
hydrological processes.

4.2. The Applicability of CMIP6 Models and Bias Correction Methods in the Arid Area of
Northwest China

The CMIP6 model maintains a good interface with CMIP5 and considers more complex
processes. Many of its component models achieve bidirectional coupling of atmospheric
chemical processes, and the resolution of atmospheric and oceanic models is significantly
higher, which is an improvement and extension of the CMIP5 model [42,57,58]. In this
study, three SSP scenarios and six climate models incorporating these three scenarios were
selected and applied to the Yarkant River basin located in the arid area of northwest China.
An evaluation of the corrected model data shows that these models simulate watershed
temperatures well, which is consistent with the evaluations of the CMIP6 model by other
investigators [59]. While there is some error in the low precipitation events and precipitation
intensities, which is a common feature of global climate models [60,61]. In general, the six
CMIP6 models used in this study have relatively reliable applicability in the arid area of
northwest China.

It is also worth noting that bias correction methods are usually considered to be
another contributor of uncertainty in climate change impact studies [48,62]. This study
chose bias correction methods by comparing the effectiveness of two temperature bias
correction methods and three precipitation bias correction methods to reduce uncertainty.
The different bias correction methods, shown in Section 3.3.1, worked well for temperature
but not as well for precipitation. For arid regions, the errors in the precipitation model are
mainly in the frequency of precipitation. The LOCI method applied in this study performed
the best, and therefore is recommended for use as the method for correcting precipitation
bias from climate models in arid regions.

The IPCC Fifth Assessment Report (AR5) (IPCC, 2018) shows that the range in tem-
perature rise of the different emission scenarios (RCP2.6, RCP 4.5, RCP 8.5) from 2046 to
2065 is within about 2 ◦C, while that between 2081 and 2100 is different. This is especially
true for RCP8.5, in which increases in temperature reach 3.7 ± 7 ◦C, which is consistent
with the change in temperature projected in this study. Future changes in climate are
thought to be strongly spatially heterogeneous. The arid region of northwest China, located
in the hinterland of Eurasia in the middle latitude of the northern hemisphere, is highly
sensitive to global climate change [63,64]. The results of the CMIP5 multimodal projection
of future temperature in China show that larger relative increases are projected for inland
regions, especially the northwest [65]. Taking RCP8.5 as an example, by the end of the
21st century (2081–2100), the annual mean SAT averaged over northwest China increased
by 5.5 ◦C [66]. The results of the latest CMIP6 climate model also show that there is a
tendency for an increase in both temperature and precipitation in the future. The annual
mean temperature is projected to increase at rates of 0.06 ◦C, 0.26 ◦C, and 0.59 ◦C per
decade under SSP126, SSP245, and SSP585, respectively [67]. In this study, the range of
predicted future warming is consistent with research results mentioned above. Future
climate change and its impact on hydrological and ecological issues in this climatically
sensitive area requires more attention.
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4.3. Climate Change Impacts on Runoff

The effects of climate change on runoff during historical periods have been extensively
studied, especially in climate-sensitive regions, including: (1) central Asia and the arid
regions of northwest China, where runoff is highly sensitive to changes in temperature and
precipitation, and (2) in mountainous watersheds where the proportion of glacial snowmelt
in runoff varies, leading to greater differences in hydrological characteristics [68–70]. In
this study, a simple correlation analysis between temperature, precipitation, and runoff
under different SSP scenarios showed that the correlation coefficient of runoff with pre-
cipitation under SSP126 (0.50) was higher than that with temperature (0.49). In contrast,
the correlation coefficient of runoff with temperature under SSP245 and SSP370 (0.74, 0.87)
was higher than that with precipitation (0.63, 0.76), which mainly results from the higher
temperature under the higher carbon emissions scenario, resulting in more glacial and
snow meltwater and increased runoff.

The study also found that there are obvious seasonal differences in the predicted
future runoff changes, with the greatest increase in runoff occurring in summer followed
by winter. Unlike precipitation-replenished watershed runoff, runoff in the Yarkant River
basin is mainly recharged by glacier and snow meltwater, which is concentrated in summer.
Changes in runoff are most significantly influenced by temperature. A predicted future
temperature increase of 1.67–7.62 ◦C would result in a 6.02–51.72% increase in summer
runoff. Basins with headwaters originating in the Himalayas, Karakoram, and the Tien Shan
region also showed a similar relationship [71–73]. Summer precipitation did not increase
or decrease in the Yarkant River basin. Runoff was less affected by changes in precipitation,
a finding that differs from other dryland snowmelt-rainfall recharge watersheds [74]. The
winter flows seem to vary under the dual effect of temperature and precipitation. From
the analysis of estimated future monthly runoff changes, it was found that the incremental
maximum of the near-future runoff was in June–July, while the incremental maximum of
the far-future runoff was in May–June. The peak runoff period changed from August to
July, which may be because rising temperatures lead to earlier snow- and ice-melt, which
in turn leads to earlier peak runoff. The spring droughts and summer floods that currently
exist in the watershed are likely to become more pronounced and severe in the future, thus
requiring more attention to water resources planning and management in the watershed.

5. Conclusions

The hydrological regimes of basins in arid areas are vulnerable to climatic variations,
especially precipitation and temperature. In our study, we examined the impact of climate
change on climate variables (temperature and precipitation), runoff, and major runoff
components (direct flow and baseflow) in a typical arid inland river (Yarkant River basin)
using data from the latest CMIP6 models. The HEC-HMS model was used to predict
future changes in the hydrological regime of the Yarkant Basin based on three SSPs (SSP126,
SSP245, and SSP370) of the downscaled latest Coupled Model Intercomparison Project’s
(CMIP6) General Circulation Model outputs.

The DM and LOCI bias correction approaches performed the best in the projections
of temperature and precipitation, respectively. Temperature was predicted to increase by
1.72–1.79 ◦C during the near future and by 3.76–6.22 ◦C during the far future. Precipitation
will increase by 10.79–12% and 14.82–29.07% during the near future and far future, respec-
tively, in comparison to 1986–2014. Future changes in precipitation are more complex, with
less significant changes than temperature but greater uncertainties, especially in summer
and winter.

Changes in temperature and precipitation lead to changes in hydrological regimes.
Runoff was projected to have a consistent trend for all the scenarios, although there are
large variabilities regarding seasonality and magnitude. Moreover, the increase in direct
flow was projected to be greater than baseflow, except under SSP245 conditions. Seasonally,
the increase in runoff was the greatest in summer and winter, as was the uncertainty. An
increase in runoff was projected to be maximal in June and July during the near future,
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while occurring in May and June during the far future. Peak runoff will also change
from August during the historical period to July. Both high- and low-flow magnitude in
MAM and JJA will increase by varying degrees. There are likely to be relatively fewer
extended periods of low flow and relatively more extended periods of high flow in JJA.
While there are relatively more extended periods of low flow in MAM, the frequency of
spring droughts and summer floods will further increase in the future, which will increase
the risk of extreme hydrological events in spring and summer.

In general, future warming and precipitation changes in the study basin are evident, as
is an increase in mountain runoff due to climate change. However, the increase in extreme
climatic and hydrological events due to climatic and hydrological uncertainties will be hard
to ignore, which poses new challenges for water resources management in the basin.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14010115/s1, Table S1: Precipitation lapse rate of each month in
Yarkant River basin; Table S2: Estimated and calibrated Parameters for the calibration and validation
of streamflow, for the six sub-basins of Yarkant River basin. References [33,75–77] are cited in the
supplementary materials.
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