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Abstract: The ability of deep convolutional neural networks (deep learning) to learn complex visual
characteristics offers a new method to classify tree species using lower-cost data such as regional
aerial RGB imagery. In this study, we use 10 cm resolution imagery and 4600 trees to develop a deep
learning model to identify Metrosideros excelsa (pōhutukawa)—a culturally important New Zealand
tree that displays distinctive red flowers during summer and is under threat from the invasive
pathogen Austropuccinia psidii (myrtle rust). Our objectives were to compare the accuracy of deep
learning models that could learn the distinctive visual characteristics of the canopies with tree-based
models (XGBoost) that used spectral and textural metrics. We tested whether the phenology of
pōhutukawa could be used to enhance classification by using multitemporal aerial imagery that
showed the same trees with and without widespread flowering. The XGBoost model achieved
an accuracy of 86.7% on the dataset with strong phenology (flowering). Without phenology, the
accuracy fell to 79.4% and the model relied on the blueish hue and texture of the canopies. The
deep learning model achieved 97.4% accuracy with 96.5% sensitivity and 98.3% specificity when
leveraging phenology—even though the intensity of flowering varied substantially. Without strong
phenology, the accuracy of the deep learning model remained high at 92.7% with sensitivity of 91.2%
and specificity of 94.3% despite significant variation in the appearance of non-flowering pōhutukawa.
Pooling time-series imagery did not enhance either approach. The accuracy of XGBoost and deep
learning models were, respectively, 83.2% and 95.2%, which were of intermediate precision between
the separate models.

Keywords: tree species; classification; deep learning; convolutional networks; biosecurity; forest
pathology; myrtle rust; urban forestry; machine learning; aerial imagery

1. Introduction

The early stages of a biosecurity response to a newly arrived plant pathogen can have
a significant bearing on the final outcome and cost [1,2]. Once an unwanted pathogen has
been positively identified, mapping and identification of potential host species become
essential for managing the incursion [3]. Identification of host plants must be carried out
by trained personnel and the hosts may be located across a mixture of public and private
property or in hard to access areas. For these reasons, carrying out large-scale searches for
host plants can be very costly and challenging to resource.

The level of host detection and surveillance required in the face of an incursion is
usually defined by the response objective. Eradication of a pathogen necessitates exhaustive
detection of host species to monitor spread and enable the destruction of infected plants or
even hosts showing no signs of infection to limit future spread. A monitoring objective
may require only the identification of key indicator species to define the infection front and
monitor impacts and host range. Finally, long-term management strategies may require
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large-scale but inexhaustive host identification to locate resistant individuals within a
population for breeding programmes or other approaches to biological control [4,5].

Remote sensing can complement all of these objectives by offering an efficient and scal-
able means of identifying host species [6,7]. Imagery acquired from UAVs, aircraft or even
space-borne optical sensors can be used to identify both potential hosts as well as the symp-
toms of pathogen infection on susceptible host species [6,8]. However, the detection and
classification of species from remotely sensed data comprise a complex sub-discipline. Fass-
nacht et al. [9] carried out a comprehensive review of methods for tree species classification
using remotely sensed data and highlighted clear themes in the literature. Multispectral
and hyperspectral data were identified as being the most useful data sources for accurate
species classification with LiDAR data being highly complementary. Through capturing
reflected light outside the visible spectrum, the use of multi/hyperspectral data sources
increases the chance of observing patterns of reflectance related to structural or biochemical
traits that may be unique or distinctive to species or groups.

Multispectral data (4–12 bands) are relatively easy to capture and have been widely
used in combination with machine learning methods to perform species
classification [10–12]. However, accurate classification is often limited to broad groups
such as conifer vs. deciduous forest types [13]. Hyperspectral data contain many more
(>12) narrow spectral bands—enhancing the ability to observe small differences that may
be present between the spectra of tree species and has been well studied for fine-grained
species classification tasks [14,15]. The idea of unique spectral ‘signatures’ for species
has been present in the literature for several decades; however, [9] concluded that these
signatures appear to be rare in practice and, when present, require observation of a wide
portion of the spectrum using sophisticated sensors [16].

Although hyperspectral data have been successfully used to classify as many as
42 species [6,9,17], large-scale applications of hyperspectral-based species classification
face challenges related to practicality and cost. The increased spectral resolution usually
demands careful acquisition from expensive sensors and is constrained by illumination
and atmospheric requirements. The post-processing of these data can also be complex and
requires careful correction of atmospheric impacts and noise reduction. Finally, the substan-
tial volumes of data must often be subjected to dimensionality reduction before analysis
can proceed [13,18]. Classification is based on patterns in the calibrated reflectance spectra
from the canopy and differences in data sources and quality can reduce the transferability
of the classifiers [19]. Other information content, such as the structure, shape, texture and
other distinctive but hard to quantify characteristics are often neglected or partially utilised.
Efforts to characterise the texture or the shape of the crown or other attributes typically
rely on a small number of engineered features to summarise complex attributes [11,13].

In contrast, the human visual system allows experienced individuals to distinguish
many species by visual inspection alone. Some cryptic species remain hard to tell apart
visually, but trained experts (and even non-experts) can discriminate a surprising number
of species [20]. This has led to the development of sites such as iNaturalist, where members
of the public can upload images of species for experts to identify [21]. Recently, the advent
of deep learning models based on convolutional neural networks (hereafter referred to
as deep learning) has transformed the capability of machines to perform fine-grained
classification of images, often reaching or exceeding human-level accuracy [22,23]. The
architecture of these networks allows these networks to effectively learn the features
important for classification. This is an important contrast with other approaches as the
features are not engineered or pre-selected but rather learned by the network from labelled
training examples with little requirement for image pre-processing.

Deep learning has been used for tree species classification from various combinations
of LiDAR, hyperspectral and multispectral imagery [24–27]. Many studies have also
successfully used simpler RGB imagery for species detection and classification. Importantly,
these approaches have demonstrated a remarkable capacity to perform fine-grained species
classification from consumer-grade camera imagery that is poorly suited to traditional



Remote Sens. 2021, 13, 1789 3 of 16

remote sensing [28,29]. However, these studies have mostly used RGB data collected from
UAV [30–32] and to a lesser extent high-resolution satellites [33,34], which constrains the
ability to scale predictions in the former case or limits the spatial resolution of predictions
in the latter case.

Although RGB imagery is routinely captured at regional levels by fixed-wing aircraft
in many countries, few studies have undertaken large-scale host species identification
using this ubiquitous data source. These data often include only RGB colour channels in
uncalibrated radiance values rather than reflectance. The simplicity of these data means
that large areas can be captured at high-resolution (<10 cm) for lower unit cost. Successful
application of deep learning for large-scale host species identification using aerial imagery
offers a scalable method to support biosecurity responses that bypasses many issues facing
ground-based surveillance such as permissions and safe accessibility.

Classification of tree species is generally enhanced when there is low spectral variabil-
ity within a species and high spectral variability between the target and other species [35].
Often there are times during the year when interspecies spectral variability is greater
because of variation in phenological attributes such as leaf flush, senescence, or flowering.
Little research has examined how phenological variation can be used by deep learning
to improve species classification in trees, although we are aware of one such study for an
invasive weed [36]. Collection of data from a species during a period of distinctive phenol-
ogy could assist the use of deep learning through both enhancing predictive precision and
providing a means to rapidly generate large training datasets.

Myrtle rust, caused by the fungal plant pathogen Austropuccinia psidii (G. Winter)
Beenken (syn. Puccinia psidii), affects a broad range of hosts in the Myrtaceae family, causing
lesions, dieback and, in some cases, mortality [37,38]. The pathogen is airborne and has
spread rapidly around the globe [39–42]. New Zealand is home to at least 37 native
myrtaceous species [43]. Of these, Metrosideros excelsa Sol. Ex Gaertn (pōhutukawa) has
very high cultural value and has been widely planted for amenity purposes. This coastal
evergreen tree has a sprawling habit of up to 20 m and produces dense masses of red
flowers over the Christmas period [44], earning it the name ‘the New Zealand Christmas
tree’. Observations from pōhutukawa growing in other countries where myrtle rust is
present indicate that the species is susceptible to myrtle rust [45,46].

In May 2017, myrtle rust was detected on the New Zealand mainland for the first
time [47]. The disease has spread rapidly and has established on numerous native and
exotic host species [48].

The overarching goal of this research was to test novel methods suitable for large-scale
identification of key Metrosideros host species focussing on pōhutukawa as a test case.
Specifically, the objectives of the research were to (1) test two state-of-the-art classification
methods (XGBoost and deep convolutional neural networks) applied to three-band aerial
imagery leveraging the strong phenology of pōhutukawa, i.e., distinctive flowering in
summer, (2) test classification of the same trees without the assistance of phenology by using
historical aerial imagery (3) test how practical and generally applicable these techniques
are in real-world conditions by creating a combined dataset from objectives 1 and 2 that
contained imagery captured using different sensors in different years and that showed a
mixture of flowering and non-flowering trees.

2. Materials and Methods
2.1. Ground Truth Data

New Zealand maintains an extensive biosecurity surveillance system and an estab-
lished incursion response protocol. During the first months after the incursion of myrtle
rust, sites that were confirmed to contain infected hosts received intensive ground-based
surveys to identify and inspect all potential host species within a fixed radius from the
infected site. New, confirmed infections triggered additional searches around the new site.
A mobile app used by trained inspectors was used to record the genus, GPS location and
infection status for every host inspected during the response. These efforts produced a
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substantial volume of ground surveillance data including GPS locations and positive identi-
fication of Metrosideros spp. by trained inspectors. Many of the trees inspected were present
within the coastal city of Tauranga (Figure 1), and nearly all the records for Metrosideros
spp. in this region were pōhutukawa.

Figure 1. The extent of aerial imagery datasets and location of sample trees around Tauranga in the
Bay of Plenty, New Zealand.

The extensive and distinctive red flowers of pōhutukawa are easily identifiable from
above in the summer which made this species an ideal candidate to test the potential to
utilise phenology to enhance species identification in RGB aerial imagery. For much of
the rest of the year, some degree of buds, flowers, or seed capsules are present but less
distinctive. However, the multi-leader crown shape and blueish hue of the large, waxy and
elliptical leaves are also distinctive and present all year round (Figure 2).

Aerial imagery captured over Tauranga during the 2018–2019 summer period (Table 1)
was overlaid with the ground surveillance locations in a GIS. Locations were collected
using consumer-grade GPS and could only be considered approximate.
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Figure 2. Images of pōhutukawa trees illustrating the distinctive features such as multi-stem form,
leaf colour and texture and extensive buds and flowers usually present in summer. The bottom row
shows aerial views from very high-resolution UAV imagery.

Table 1. Summary of multitemporal imagery used to develop classification models.

Imagery Dataset Phenology Resolution, Colour Channels

Tauranga—summer 2018–2019 Wide-spread flowering 10 cm/pixel, 3-band RGB
Tauranga—March 2017 Limited flowering 10 cm/pixel, 3-band RGB

For each inspection record, a trained analyst examined the GPS point and identified
the corresponding tree in the aerial imagery. If the tree showed at least some evidence
of flowering, then the imagery was annotated by delineating a bounding box around the
canopy extent. The distinctive features of the canopy and strong flowering observed in
the imagery greatly assisted identification and annotation; however, inspection records
were only at the genus level and other species with similar phenological traits such as
Metrosideros robusta (rātā) may occasionally be found within this region. In addition, some
cultivated Metrosideros excelsa ‘Aurea’ (‘yellow’ pōhutukawa) appeared to be present within
the dataset but these were removed due to the small number of samples available.

We assessed the purity of the training dataset by inspecting the majority of trees using
publicly available, street-level imagery followed by on-site inspections for a smaller subset
of trees. The results show that all study trees identified through combining the aerial
imagery and surveillance records were pōhutukawa. After completing this process, we
considered that the assembled training dataset consisted of only pōhutukawa and any
misclassifications would have been very small in number.

Development of the classifiers also required negative examples. The candidate neg-
ative examples were any tree other than Metrosideros spp., hereafter referred to as other
species. We once again leveraged the ground inspection efforts to develop this dataset.
The intensity of the initial surveillance efforts meant that within inspected areas, such as
streets or parks, the locations for nearly every pōhutukawa were recorded. We used these
areas to select negative examples and cross-referenced a substantial portion of the dataset
against other imagery and field inspections. This approach reduced the chances of acci-
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dentally including pōhutukawa or biasing the training set by excluding species that were
visually similar to pōhutukawa due to uncertainty. In addition, this provided a realistic
set of non-target tree canopies that the classifier might encounter in the areas surveyed for
the biosecurity response. Bounding boxes around the canopies were defined against the
aerial imagery and annotation proceeded until the dataset was balanced. Figure 3 shows
examples of typical and atypical pōhutukawa and other tree species as seen in the aerial
imagery.

Figure 3. Examples of canopy images used to train classification models. Pōhutukawa canopies
from the 2019 imagery are shown in panel (a) with strong phenology (flowering and buds) visible.
Panel (b) shows the same canopies in the 2017 imagery with less visible phenology. Examples of
non-Metrosideros spp. seen in the 2019 imagery, including some harder examples, are shown in panel
(c). The same canopies seen in the 2017 imagery are shown in panel (d).

2.2. Imagery Datasets

The aerial imagery datasets consisted of large orthomosaics generated from campaigns
carried out in 2017 and 2019 using different aerial cameras (Table 1). The imagery from
2017 showed lower levels of detail, probably due to poorer image matching, and the trees
had less visual detail (Figure 3). The bounding boxes were used to extract sub-images from
the larger orthomosaics and each image ‘chip’ showing a tree canopy was labelled with
the dataset year and class (pōhutukawa or other spp.). Very small trees (canopy radius
< ~1.5 m) were excluded as these canopies contained too few pixels.

The final datasets included 2300 images of tree canopies evenly split between
pōhutukawa and other spp. with images available for both 2017 and 2019 (Table 2).
Images of pōhutukawa from 2019 and 2017 were used, respectively, to test the classification
with and without the assistance of strong phenological features (Table 2). The imagery from
the 2017 and 2019 datasets was combined to assess how well the model would generalise
under real-world conditions (Table 2). The images of tree canopies were randomly split
into training data (70%) used to fit the models. Validation data (15%) were used to select
hyperparameters and evaluate model performance during training and a test set (15%)
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was used to assess final model performance on completely withheld data (Table 2). Trees
were assigned to the same splits in the 2017 and 2019 datasets for a fair comparison of the
models. For the combined dataset, data were re-shuffled at the tree level and the imagery
from both years was included in the assigned split to prevent data leakage.

Table 2. Summary of dataset splits used to train and validate classification models before testing on
withheld data.

Dataset Purpose Tree Counts
(Pōhutukawa/Other spp.)

Data Splits
Training/Validation/Test

Tauranga 2019 Classification using phenology 2300 (1150/1150) 1610/345/345 (70/15/15%)

Tauranga 2017 Classification without
phenology 2300 (1150/1150) 1610/345/345 (70/15/15%)

Tauranga 2017 and
2019 combined

Combined classification with
and without phenology 4600 (2300/2300) 3220/690/690 (70/15/15%)

2.3. Deep Learning Models

We selected the ResNet model architecture [49] for classification of the tree canopies.
The ResNet model is made up of small building blocks called the residual block. Each
residual block is primarily made up of two to three convolution layers (this is dependent
on the depth of the network) stacked together. The convolution layers are designed to learn
and fit against the residual of the target function. The learned residual is then mapped back
to the learned function through a skip connection that connects the input of the residual
block to the output of the stacked convolution layers. By designing the neural network
to learn and optimise on the residual instead of the original function, ResNet can learn
the unknown original function more easily, thereby improving accuracy. We used the
ResNet-50 architecture, which comprises 49 convolution layers organised into residual
blocks and a fully connected layer for classification (Figure 4).

Figure 4. Overview of the architecture of ResNet-50. Adapted from [49].

A randomly initialized, fully connected layer was trained for 2 epochs to adapt a
model pre-trained on the ImageNet [50] task to the binary classification task in this study.
Thereafter, differential learning rates in the range 1 × 10−3–1 × 10−6 were used to adapt
deeper layers of the network at linearly decreasing learning rates for another 30 epochs. At
this point, the performance validation metrics showed no further benefits from additional
training. All deep learning models and metrics were implemented using the PyTorch
1.4 deep learning library [51] and the Scikit-Learn Python package [52]. Model training
was carried out using a Nvidia Tesla K80 GPU with 12 GB of memory.
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2.4. XGBoost Models

Approaches to species classification frequently use imagery to generate variables
(metrics), such as vegetation indices, to capture features or characteristics useful for dis-
criminating different species [9,13]. This may be done using rule-based methods [53] or
machine learning methods such as decision trees [54]. We chose variables that target the
distinctive properties of pōhutukawa canopies. These included spectral metrics aimed at
capturing the blueish hue of the leathery, elliptical leaves and the strong and distinctive
sprays of red flowers present in summer. The canopies also exhibit distinctive textural
properties arising from the multi-stem structure and leaf and bud arrangements inde-
pendent of the presence or absence of flowers (Figures 2 and 3). Texture analysis using
grey-level co-occurrence matrices (GLCMs) [55] was used to try and capture these char-
acteristics. Computation of the texture images was done using the ‘glcm’ package [56] in
R [57]. The GLCM metric classes and parameters were selected based on the analysis and
recommendations of [58]. The raw digital numbers (pixel radiance values) within each
canopy bounding box were used to generate patch-level mean values for the predictive
variables (Table 3). This was necessary because this type of imagery is optimised for visual
appearance and lacks the information required to calculate reflectance.

We selected the XGBoost algorithm to perform binary classification using the ‘xgboost’
package for R [59]. XGBoost is a tree-based machine learning algorithm that is scalable, fast
and has produced benchmark results on classification tasks [60]. The spectral and textural
variables were used to train the XGBoost classifier for a maximum of 400 iterations, with
early stopping based on validation set metrics used to prevent over-fitting. Subsampling of
variables and observations for individual tree learners was also implemented alongside
fine-tuning of the gamma hyperparameter to further guard against over-fitting.

Table 3. Vegetation indices and metrics computed from 3-band RGB aerial imagery of tree canopies for use in the XGBoost
classification model. All metrics used the raw image digital numbers (DNs) (0–255) from the input pixels.

Variable Name Description Definition Source

Mean red Mean of red channel DNs ∑ Red
Num Red NA

Mean green Mean of green channel DNs ∑ Green
Num green NA

Mean blue Mean of blue channel DNs ∑ Blue
Num blue NA

SD red Standard deviation of red channel DNs
√

∑(Red−Mean red)2

Num red−1
NA

SD green Standard deviation of green channel DNs
√

∑(Green−Mean green)2

Num green−1
NA

SD blue Standard deviation of blue channel DNs
√

∑(Blue−Mean blue)2

Num blue−1
NA

RG ratio Red green ratio index Red
Green [61]

Normdiff RG Normalised difference red/green ratio Red−Green
Red+Green NA

Scaled red Scaled red ratio Red
(Red+Green+Blue) NA

Scaled green (SG) Scaled green ratio Green
(Red+Green+Blue) NA

Scaled blue Scaled blue ratio Blue
(Red+Green+Blue) NA

SD GI Standard deviation of the scaled green index
√

∑(SG−Mean SG)2

Num SG−1
NA

GLCM correlation Textural metric computed on RGB channels Grey-level co-occurrence correlation [55]
GLCM homogeneity Textural metric computed on RGB channels Grey-level co-occurrence homogeneity [55]

GLCM mean Textural metric computed on RGB channels Grey-level co-occurrence mean [55]
GLCM entropy Textural metric computed on RGB channels Grey-level co-occurrence entropy [55]

2.5. Performance Metrics

The predictions made by the final models on the withheld test splits of the three
imagery datasets were used to compute the number of correct classifications (true positives)
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and incorrect classifications (false positives) for the pōhutukawa and ‘other spp.’ classes.
These values were used to compute the classification performance metrics shown in Table 4.

Table 4. Performance metrics used to assess classification models. TP = true positive, FP = false positive, TN = true negative,
FN = false negative.

Metric Description Definition

Accuracy A measure of how often the classifier’s predictions
were correct.

TP+TN
TP+FP+TN+FN

Error A measure of how often the classifier’s predictions
were wrong. 1 − Accuracy

Cohen’s kappa A measure of a classifier’s prediction accuracy that
accounts for chance agreement.

observedAgreement−chanceAgreemeent
1−chanceAgreement

Precision (Positive predictive value) A measure of the proportion of positive
predictions that were correct.

TP
TP+FP

Sensitivity (Recall) The proportion of actual positives (Metrosideros)
that were correctly identified by the classifier.

TP
TP+FN

Specificity The proportion of actual negatives (other species)
that were correctly identified by the classifier.

TN
TN+FP

3. Results
3.1. XGBoost Models

The results from the XGBoost and deep learning models applied to the withheld
portions of the datasets used to test classification with phenology (2019 imagery), without
phenology (2017 imagery) and classification of the combined datasets are shown in Table 5.
The XGBoost classifiers showed moderately high accuracy on all three datasets (Table 5).
The strong phenological traits of the pōhutukawa captured in the 2019 summer imagery
produced the model with the highest accuracy (86.7%). The sensitivity and specificity were
similar, reflecting nearly equal rates of false negatives and false positives. The variable
importance scores extracted from XGBoost are shown in Figure 5. The scaled green pixel
values and the RG ratio metric capturing the ratio of red to green pixels had the highest
importance in the 2019 model utilising phenology. These two metrics most likely captured
differences between the mostly green canopies of other spp. and the extensive showers of
red flowers present on many pōhutukawa. The misclassified pōhutukawa often showed
lower levels of flowering or were very small (Figure 6a). There were several hundred
non-pōhutukawa trees in the dataset with canopies that appeared red in colour. These
trees were often falsely classified as pōhutukawa (Figure 6b). This suggests that variables
capturing the strong flowering patterns drove the high performance of the XGBoost model
but struggled to separate other species with reddish or darker canopies.

Table 5. Classification results obtained by applying the trained models to the test split of the respective dataset.

Classification with
Strong Phenology (2019)

Classification without
Strong Phenology (2017)

Classification of Combined 2017 & 2019
Datasets with and without Phenology

XGBoost

Accuracy 86.7% 79.4% 83.2%
Error 13.3% 20.6% 16.8%
kappa 0.733 0.588 0.664

Precision (PPV) 0.861 0.793 0.831
Sensitivity (recall) 0.871 0.788 0.827

Specificity 0.863 0.800 0.837

Deep Learning

Accuracy 97.4% 92.7% 95.2%
Error 3.6% 7.3% 4.8%
kappa 0.948 0.855 0.904

Precision (PPV) 0.982 0.939 0.973
Sensitivity (recall) 0.965 0.912 0.932

Specificity 0.983 0.943 0.973
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Figure 5. Plots of scaled variable importance metrics from the XGBoost species classification models using 2019 imagery
with strong phenology (a), imagery from 2017 without strong phenology (b), and combined imagery from both years (c).
Variables are clustered into groups with similar importance scores.

Figure 6. Examples of errors from XGBoost models. (a) Pōhutukawa canopies incorrectly classified
as other species (false negatives) and (b) examples of other species canopies incorrectly classified
as pōhutukawa (false positives) using the 2019 imagery with strong phenology. False negatives (c)
and false positives (d) from the 2017 imagery with limited phenology. False negatives (e) and false
positives (f) from the XGBoost classifier trained on imagery from both years.
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3.2. Deep Learning Models

The deep learning models performed substantially better than the XGBoost models on
all three datasets. The classifier developed using the 2019 imagery with strong phenology
achieved an accuracy of 97.4%. The specificity of the model (98.3%) was slightly higher than
the sensitivity (96.5%). The false negatives often showed similarities to pōhutukawa with a
few exceptions (Figure 7a). The few false positives (Figure 7b) included a single relatively
obvious error and some examples with limited or irregular flowering. The classification
performance indicated that the model was highly effective at discriminating flowering
trees from most other species with reddish canopies or other flowering species present in
the data.

Figure 7. Examples of errors from deep learning models. (a) Pōhutukawa canopies incorrectly
classified as other species (false negatives) and (b) examples of other species canopies incorrectly
classified as pōhutukawa (false positives) using the 2019 imagery with strong phenology. False
negatives (c) and false positives (d) from the 2017 imagery with limited phenology. False negatives
(e) and false positives (f) from the deep learning classifier trained on imagery from both years.

Without using the strong flowering, the accuracy of the deep learning classifier
dropped to 92.7% (Table 5). The model appeared to struggle more with the canopies
affected by the lower quality of the imagery—small, blurry canopies without the character-
istic appearance visible in other images frequently appeared in the misclassified images
and the false negatives and false positives were visually similar to each other (Figure 7c,d).

As with the XGBoost models, the deep learning model trained on the combined
imagery from both 2017 and 2019 (with and without strong phenology) did not show
improved performance with a larger dataset. The model achieved 95.2% accuracy and
showed the largest difference between sensitivity (93.2%) and specificity (97.3%), reflecting
additional false negatives. Most of the misclassified canopies were from the 2017 dataset,
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and once again these images often showed blurry and indistinct features relative to other
correctly classified examples (Figure 7e,f).

4. Discussion

This study demonstrated that deep learning algorithms could classify pōhutukawa in
the study area with a very high level of accuracy using only three-band RGB aerial imagery,
with or without the use of phenology to enhance detection. Existing remote sensing
approaches to tree species classification rely extensively on calibrated multi or hyperspectral
data that can be expensive and complex to capture over larger areas [9,13,18,24,26,27]. In
contrast, RGB aerial imagery is routinely captured over large areas. Our results suggest
that combining deep learning with this type of imagery enables large-scale mapping of
visually distinctive species.

Significant gains in deep learning model accuracy were realised through leveraging
the visual distinctiveness of pōhutukawa flowering that was clearly identifiable in 2019
aerial imagery. This distinctive phenological attribute also greatly assisted the collation
of a robust number of samples (1150) that was large in comparison to many other tree
classification studies [9,24,62]. Although we had access to ground-truth data, the character-
istic flowering would have allowed most trees to be readily identified without the ground
inspections. Through linking these clearly visible tree locations to previously collected
imagery of pōhutukawa that were not flowering, it was possible to rapidly assemble data
and train deep learning models that could accurately classify pōhutukawa without the
strong phenology. Through combining these two sets of phenologically contrasting images
we were able to assemble and train a model from a dataset that more closely approximated
a real-world scenario where pōhutukawa exhibited variation in phenological expression.
This workflow highlights how imagery with clear phenological traits can be used to rapidly
assemble a more general dataset and through this approach mitigate a common bottleneck
for training deep learning models.

The phenology of tree species has previously been used to enhance remote sensing
classification [63,64]. However, attempting classification using only three-band imagery—
with or without phenology—is less common [9]. This imagery lacks the spectral bandwidth
required by most traditional methods to discriminate species. The few indices that can be
derived are not widely generalisable, as the imagery represents sensor radiance rather than
reflectance from the canopy and the imagery is manipulated to enhance visual appearance.
To overcome this limitation, we derived features such as textural metrics and simple band
ratios aimed at capturing the bright-red, extensive flowering of these species and the
characteristic blueish hue and textural properties of the canopies.

This approach was successfully used by the XGBoost classifier for classification in
the presence of phenology, and although not as accurate, the model without phenology
was still reasonably robust. The performance of both models was high compared to other
examples in the literature. For example, [62] achieved 68.3% classification accuracy of
pōhutukawa using multispectral satellite data from the Coromandel region in New Zealand.
The addition of LiDAR-derived features improved this result to 81.7% but pōhutukawa
were noted to be more difficult to detect than several other species targeted in that study.
It is likely that having multispectral and LiDAR data would have further improved the
XGBoost results in our study, but this would come with higher costs for data acquisition,
storage and processing.

The deep learning approach differed in fundamental ways to traditional remote
sensing methods. While the models will utilise the colour of the canopies, as demonstrated
by the accurate classification of flowering trees, the deep learning approach is also capable
of learning harder-to-quantify features. For example, the characteristic appearance of the
multi-stem canopy, distinctive canopy texture and extensive budding are relatively easy
for knowledgeable analysts to identify in the aerial imagery and the deep learning models
can ‘learn’ that these or similar features are important. This makes the models harder to
interpret but powerful for complex classification tasks [65].
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One key methodological limitation of our approach was the need to manually de-
lineate individual tree canopies before training and inference could be carried out. This
requirement is present in many traditional remote sensing approaches to species classi-
fication. A common workflow is to use LiDAR-derived elevation data alone [66] or in
combination with multispectral data (especially the vegetation-sensitive NIR band) to delin-
eate tree canopies [15,67]. While effective, this method introduces the need for costly LiDAR
data and substantial analysis to extract canopies. More complex deep learning frameworks
may offer an alternative option to perform both segmentation and classification, although
the training data are more expensive to collect [31,68].

The high classification accuracies observed in this study are likely subject to some
caveats. The models were exposed to the unique characteristics and properties of both
aerial imagery datasets. Deep learning approaches do not expect or require calibrated or
corrected imagery, but it is possible that subtle differences in resolution or other dataset
characteristics may reduce transferability to new, unseen aerial imagery. The level of
flowering seen in the 2019 dataset varied widely and many trees showed limited flowering.
However, the imagery was also sharper and many of the other characteristic features of
pōhutukawa were more easily visible in the imagery (e.g., buds, canopy form and hue,
e.g., Figure 3). This provided additional features for the deep learning models and likely
contributed to the high accuracy above and beyond the distinctiveness of the flowering.
The 2017 imagery had the same nominal resolution (10 cm) but had markedly lower quality
and detail (Figure 3). The pōhutukawa all exhibited a blueish hue in this imagery and some
of the textural attributes were still discernible—both of which are likely to have contributed
to the performance of the deep learning model. For predictions to work in new areas, the
features learned from these datasets would need to be discernible in the new imagery. A
brief test conducted by reducing the resolution of some of the imagery (bilinear resampling)
showed that the accuracy of the combined classifier declined rapidly as the distinctive
features were lost, with simulated 15 cm imagery showing only a 70% accuracy rate.

The resolution of the imagery also placed a limit on the size of the trees that could be
classified. Many canopies fell between 30 and 60 pixels in size. At this size, the characteristic
traits were difficult for a human observer to discern and the models would also have had
limited information to learn from. This problem was reduced when phenology could be
utilised, but smaller canopies were more frequently misclassified. It is very likely that
higher-resolution imagery would have improved the classification accuracy still further
and may enhance the transferability of the models. Outside of this domain, for example,
where only moderate to low resolution imagery is available, traditional multispectral or
hyperspectral methods may be more appropriate as they attempt to recover and utilise
the spectral attributes of the canopy that can persist at coarser resolutions or be retrieved
through unmixing.

Future work should explore expanding these methods to a greater number of species
and validate the transferability of deep learning models across multiple, regional datasets.
An extremely promising area of research is the potential for combined deep learning
architectures that offer localisation and segmentation as well as classification [31,33]. This
work could enable large-scale and repeatable mapping of tree species across a range of
environments from lower-cost RGB datasets. This would be useful for biosecurity as well
as many other applications.

5. Conclusions

In this study, we combined distinctive phenological traits and biosecurity surveil-
lance records to develop a high-quality dataset to train and test novel algorithms to detect
pōhutukawa from simple three-band (RGB) aerial imagery. Both modelling approaches
performed well when the dataset included distinctive phenological traits (extensive, bright
red flowers). However, the deep learning algorithm was able to achieve very high accu-
racies even in the absence of some key traits such as the distinctive flowers. The results
of this study suggest that deep learning-based approaches could be used to rapidly and
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accurately map certain species over large areas using only RGB aerial imagery. Candidate
species include those where classification is achievable by an experienced analyst using the
same input data. The deep learning approach did appear sensitive to image resolution and
quality and higher resolution imagery would likely expand the range of species suitable
for classification using this method.
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12. Krzystek, P.; Serebryanyk, A.; Schnörr, C.; Červenka, J.; Heurich, M. Large-scale mapping of tree species and dead trees in šumava
national park and bavarian forest national park using lidar and multispectral imagery. Remote Sens. 2020, 12, 661. [CrossRef]

13. Ballanti, L.; Blesius, L.; Hines, E.; Kruse, B. Tree species classification using hyperspectral imagery: A comparison of two classifiers.
Remote Sens. 2016, 8, 445. [CrossRef]

https://data.linz.govt.nz/
http://doi.org/10.1080/03036758.2014.1000343
http://doi.org/10.30843/nzpp.2005.58.4245
http://doi.org/10.1002/ps.4347
http://www.ncbi.nlm.nih.gov/pubmed/27353212
http://doi.org/10.1016/j.meegid.2014.01.011
http://www.ncbi.nlm.nih.gov/pubmed/24486735
http://doi.org/10.3390/rs10030404
http://doi.org/10.3390/s90604869
http://www.ncbi.nlm.nih.gov/pubmed/22408558
http://doi.org/10.1016/j.rse.2019.111238
http://doi.org/10.1016/j.rse.2016.08.013
http://doi.org/10.1016/j.isprsjprs.2017.07.007
http://doi.org/10.1016/j.isprsjprs.2019.01.019
http://doi.org/10.3390/rs12040661
http://doi.org/10.3390/rs8060445


Remote Sens. 2021, 13, 1789 15 of 16

14. Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales.
Remote Sens. Environ. 2005, 96, 375–398. [CrossRef]

15. Dalponte, M.; Orka, H.O.; Gobakken, T.; Gianelle, D.; Naesset, E. Tree Species Classification in Boreal Forests With Hyperspectral
Data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2632–2645. [CrossRef]

16. Hesketh, M.; Sánchez-Azofeifa, G.A. The effect of seasonal spectral variation on species classification in the Panamanian tropical
forest. Remote Sens. Environ. 2012, 118, 73–82. [CrossRef]

17. Maschler, J.; Atzberger, C.; Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using airborne
hyperspectral data. Remote Sens. 2018, 10, 1218. [CrossRef]

18. Bioucas-Dias, J.M.; Plaza, A.; Camps-Valls, G.; Scheunders, P.; Nasrabadi, N.; Chanussot, J. Hyperspectral remote sensing data
analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–36. [CrossRef]

19. Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
20. De Lacerda, A.E.B.; Nimmo, E.R. Can we really manage tropical forests without knowing the species within? Getting back to the

basics of forest management through taxonomy. For. Ecol. Manag. 2010, 259, 995–1002. [CrossRef]
21. Van Horn, G.; Mac Aodha, O.; Song, Y.; Cui, Y.; Sun, C.; Shepard, A.; Adam, H.; Perona, P.; Belongie, S. The inaturalist species

classification and detection dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake, UT, USA, 18–23 June 2018; pp. 8769–8778.

22. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350.
[CrossRef]

23. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the
Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105.

24. Fricker, G.A.; Ventura, J.D.; Wolf, J.A.; North, M.P.; Davis, F.W.; Franklin, J. A convolutional neural network classifier identifies
tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [CrossRef]

25. Hartling, S.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Carron, J. Urban tree species classification using a WorldView-2/3 and
LiDAR data fusion approach and deep learning. Sensors 2019, 19, 1284. [CrossRef]

26. Mäyrä, J.; Keski-Saari, S.; Kivinen, S.; Tanhuanpää, T.; Hurskainen, P.; Kullberg, P.; Poikolainen, L.; Viinikka, A.; Tuominen,
S.; Kumpula, T.; et al. Tree species classification from airborne hyperspectral and LiDAR data using 3D convolutional neural
networks. Remote. Sens. Environ. 2021, 256, 112322. [CrossRef]

27. Trier, Ø.D.; Salberg, A.-B.; Kermit, M.; Rudjord, Ø.; Gobakken, T.; Næsset, E.; Aarsten, D. Tree species classification in Norway
from airborne hyperspectral and airborne laser scanning data. Eur. J. Remote. Sens. 2018, 51, 336–351. [CrossRef]

28. Cui, Y.; Song, Y.; Sun, C.; Howard, A.; Belongie, S. Large scale fine-grained categorization and domain-specific transfer learning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, UT, USA, 18–23 June 2018; pp.
4109–4118.

29. Wäldchen, J.; Rzanny, M.; Seeland, M.; Mäder, P. Automated plant species identification—Trends and future directions. PLoS
Comput. Biol. 2018, 14, e1005993. [CrossRef]

30. Onishi, M.; Ise, T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Sci. Rep. 2021,
11, 903. [CrossRef]

31. Schiefer, F.; Kattenborn, T.; Frick, A.; Frey, J.; Schall, P.; Koch, B.; Schmidtlein, S. Mapping forest tree species in high resolution
UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2020, 170, 205–215.
[CrossRef]

32. Egli, S.; Höpke, M. CNN-Based Tree Species Classification Using High Resolution RGB Image Data from Automated UAV
Observations. Remote Sens. 2020, 12, 3892. [CrossRef]

33. Wagner, F.H.; Sanchez, A.; Tarabalka, Y.; Lotte, R.G.; Ferreira, M.P.; Aidar, M.P.M.; Gloor, E.; Phillips, O.L.; Aragão, L.E.O.C. Using
the U-net convolutional network to map forest types and disturbance in the Atlantic rainforest with very high resolution images.
Remote Sens. Ecol. Conserv. 2019, 5, 360–375. [CrossRef]

34. Omer, G.; Mutanga, O.; Abdel-Rahman, E.M.; Adam, E. Performance of support vector machines and artificial neural network for
mapping endangered tree species using WorldView-2 data in dukuduku forest, South Africa. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2015, 8, 4825–4840. [CrossRef]

35. Castro-Esau, K.L.; Sánchez-Azofeifa, G.A.; Rivard, B.; Wright, S.J.; Quesada, M. Variability in leaf optical properties of Mesoamer-
ican trees and the potential for species classification. Am. J. Bot. 2006, 93, 517–530. [CrossRef] [PubMed]

36. Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological
features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [CrossRef]

37. Carnegie, A.J.; Kathuria, A.; Pegg, G.S.; Entwistle, P.; Nagel, M.; Giblin, F.R. Impact of the invasive rust Puccinia psidii (myrtle
rust) on native Myrtaceae in natural ecosystems in Australia. Biol. Invasions 2016, 18, 127–144. [CrossRef]

38. Glen, M.; Alfenas, A.C.; Zauza, E.A.V.; Wingfield, M.J.; Mohammed, C. Puccinia psidii: A threat to the Australian environment
and economy—A review. Australas. Plant Pathol. 2007, 36, 1–16. [CrossRef]

39. Carnegie, A.J.; Cooper, K. Emergency response to the incursion of an exotic myrtaceous rust in Australia. Australas. Plant Pathol.
2001, 40, 346. [CrossRef]

http://doi.org/10.1016/j.rse.2005.03.009
http://doi.org/10.1109/TGRS.2012.2216272
http://doi.org/10.1016/j.rse.2011.11.005
http://doi.org/10.3390/rs10081218
http://doi.org/10.1109/MGRS.2013.2244672
http://doi.org/10.1080/02757259509532298
http://doi.org/10.1016/j.foreco.2009.12.005
http://doi.org/10.1038/s41591-018-0107-6
http://doi.org/10.3390/rs11192326
http://doi.org/10.3390/s19061284
http://doi.org/10.1016/j.rse.2021.112322
http://doi.org/10.1080/22797254.2018.1434424
http://doi.org/10.1371/journal.pcbi.1005993
http://doi.org/10.1038/s41598-020-79653-9
http://doi.org/10.1016/j.isprsjprs.2020.10.015
http://doi.org/10.3390/rs12233892
http://doi.org/10.1002/rse2.111
http://doi.org/10.1109/JSTARS.2015.2461136
http://doi.org/10.3732/ajb.93.4.517
http://www.ncbi.nlm.nih.gov/pubmed/21646212
http://doi.org/10.1016/j.rse.2020.111745
http://doi.org/10.1007/s10530-015-0996-y
http://doi.org/10.1071/AP06088
http://doi.org/10.1007/s13313-011-0066-6


Remote Sens. 2021, 13, 1789 16 of 16

40. Coutinho, T.A.; Wingfield, M.J.; Alfenas, A.C.; Crous, P.W. Eucalyptus Rust: A Disease with the Potential for Serious International
Implications. Plant Dis. 1998, 82, 819–825. [CrossRef]

41. McTaggart, A.R.; Roux, J.; Granados, G.M.; Gafur, A.; Tarrigan, M.; Santhakumar, P.; Wingfield, M.J. Rust (Puccinia psidii)
recorded in Indonesia poses a threat to forests and forestry in South-East Asia. Australas. Plant Pathol. 2015, 45, 83–89. [CrossRef]

42. Roux, J.; Greyling, I.; Coutinho, T.A.; Verleur, M.; Wingfield, M.J. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa.
IMA Fungus 2013, 4, 155–159. [CrossRef]

43. De Lange, P.J.; Rolfe, J.R.; Barkla, J.W.; Courtney, S.P.; Champion, P.D.; Perrie, L.R.; Beadel, S.M.; Ford, K.A.; Breitwieser, I.;
Schoenberger, I.; et al. Conservation Status of New Zealand Indigenous Vascular Plants, 2017; Department of Conservation: Wellington,
New Zealand, 2018; ISBN 978-1-98-85146147-1.

44. Allan, H.H. Flora of New Zealand Volume I Indigenous Tracheophyta-Psilopsida, Lycopsida, Filicopsida, Gymnospermae, Dicotyledones;
Flora of New Zealand-Manaaki Whenua Online Reprint Series; Government Printer Publication: Wellington, New Zealand, 1982;
Volume 1, ISBN 0-477-01056-3.

45. Loope, L. A summary of information on the rust Puccinia psidii Winter (guava rust) with emphasis on means to prevent
introduction of additional strains to Hawaii. In Open-File Report; US Geological Survey: Reston, VA, USA, 2010; pp. 1–31.
Available online: https://pubs.usgs.gov/of/2010/1082/of2010-1082.pdf (accessed on 17 June 2019).

46. Sandhu, K.S.; Park, R.F. Genetic Basis of Pathogenicity in Uredo Rangelii; University of Sydney: Camperdown, Sydney, 2013.
47. Ho, W.H.; Baskarathevan, J.; Griffin, R.L.; Quinn, B.D.; Alexander, B.J.R.; Havell, D.; Ward, N.A.; Pathan, A.K. First Report of

Myrtle Rust Caused by Austropuccinia psidii on Metrosideros kermadecensis on Raoul Island and on M. excelsa in Kerikeri,
New Zealand. Plant Dis. 2019, 103, 2128. [CrossRef]

48. Beresford, R.M.; Turner, R.; Tait, A.; Paul, V.; Macara, G.; Yu, Z.D.; Lima, L.; Martin, R. Predicting the climatic risk of myrtle rust
during its first year in New Zealand. N. Z. Plant Prot. 2018, 71, 332–347. [CrossRef]

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
50. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
51. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing
Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8024–8035.

52. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

53. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [CrossRef]
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