
remote sensing  

Article

Covariation of Passive–Active Microwave Measurements over
Vegetated Surfaces: Case Studies at L-Band Passive and L-, C-
and X-Band Active

Erica Albanesi 1, Silvia Bernoldi 1, Fabio Dell’Acqua 1,* and Dara Entekhabi 2

����������
�������

Citation: Albanesi, E.; Bernoldi, S.;

Dell’Acqua, F.; Entekhabi, D.

Covariation of Passive-Active

Microwave Measurements over

Vegetated Surfaces: Case Studies at

L-Band Passive and L-, C- and

X-Band Active. Remote Sens. 2021, 13,

1786. https://doi.org/10.3390/

rs13091786

Academic Editor: Magaly Koch

Received: 18 March 2021

Accepted: 29 April 2021

Published: 4 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 CNIT, Pavia Unit, Department of Electrical, Computer, Biomedical Engineering, University of Pavia,
I-27100 Pavia, Italy; erica.albanesi01@universitadipavia.it (E.A.); silvia.bernoldi01@universitadipavia.it (S.B.)

2 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA; darae@mit.edu

* Correspondence: fabio.dellacqua@unipv.it

Abstract: The analysis of soil and land cover scattering properties and their connection with the
parameters of microwave scattering is a longstanding research topic. Recently, the advent of modern
space-borne microwave radiometers like SMAP in addition to the trend towards open data for
scientific use fostered the development of enhanced models based on data fusion from different
platforms permitting more accurate assessments. SMAP was designed to operate on an integrated
combination of a radiometer and a radar, both operating in L-band. Unexpected failure of the radar
component encouraged scientists to experiment various combination of data from the surviving
radiometer with other sources of radar data, notably C-band Sentinel-1 data. In this work, we present
a case study on a possible combination of SMAP radiometer data with X-band radar data from
TerraSAR-X and COSMO-SkyMed, comparing results with those provided by NASA from their
standard production procedures. The study was performed on two test sites, one at an agricultural
site in Germany and one in the Brazilian Amazon, to explore very different vegetation conditions.
This work is a part of a broader research effort addressing the combination of multiple sources of
passive and active microwave sensing data. The research question defining this research effort is
whether the use of data from multiple active sources affords either obtaining more accurate estimates
of active–passive co-variation parameters for a given observation period, or shortening the minimum
observation period by increasing the temporal density of active samples. In this framework, this
paper addresses a preliminary comparison of fresh and past results obtained from C-, X-, and L-band
active sensing data. The observed relations offer interesting clues on the impact of band selection on
soil vegetation analysis.

Keywords: SMAP; active–passive; microwave sensing; spaceborne sensors; vegetation; covariation
parameter

1. Introduction

In the context of active–passive microwave sensing of the Earth, signals derived from
different sensors can be jointly analyzed by means of a covariation model [1]. When ob-
serving a common area of interest, time series of concurrent active and passive microwave
signals manifest a mutual variation according to their respective sensitivities to certain
physical properties of the region under study. By examining the covariation patterns of
data from different sensors observing the same target, a collective data analysis can be
performed, which unlocks information about the target that is not accessible through any
individual sensor. Fusing active and passive microwave sensor data makes deeper insights
accessible about the physical status of the observed surfaces [2]. This is especially appealing
in space-based Earth observation, where generally no single type of sensor is suitable to
extract all of the variables of interest in understanding a certain phenomenon. In this
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context, fusing passive and active microwave sensor data offers the additional advantage
of obtaining output data possessing the highest among the spatial resolution levels of the
fused sources. The cooperative usage of active and passive microwave signals allows an
improved retrieval of specific parameters in an observed region, such as soil moisture or
vegetation water content.

Soil moisture, for example, represents a key piece of information for several applica-
tions concerning environmental observation [3]. Weather forecasting, agricultural produc-
tivity, water resources management, and drought prediction are just some examples among
the applications that require detailed knowledge about the status of soil moisture [4]. In
addition, water contained in the surface layer of the Earth constitutes a linking factor
between water, energy and carbon fluxes through land and atmosphere. Through bare
soil evaporation and plant transpiration (evapotranspiration), around 60% of precipitation
returns to the atmosphere [5]. Moreover, evapotranspiration consumes more than half of
the total solar energy absorbed by land surfaces [6]. Furthermore, a variation in the amount
of water stored in land surfaces, which can be caused by climate warming, may change the
ecosystem carbon fluxes [7]. Thus, the study of soil moisture provides a methodology for
monitoring biosphere conditions and climate equilibrium.

Vegetation water content (VWC) is another important parameter for environmental
studies that can greatly benefit from joint active–passive microwave sensing of the Earth
surface [8,9], along with vegetation roughness [10]. Global maps of soil moisture and
vegetation characteristics are indeed produced relying on data from passive microwave
sensors missions like ESA’s SMOS [11,12] and NASA’s soil moisture active passive (SMAP)
mission [13], each coming with its own specific techniques and algorithms [14,15] for re-
trieval of land cover parameters [16]. In this paper we use data from the SMAP observatory,
which was launched in January 2015 and started operating in April 2015. As the name
of the mission suggests, the satellite carries an active instrument (radar) and a passive
one (radiometer), both operating on the L-band, designed to collectively measure the
land surface soil moisture and the freeze/thaw state of the ground in colder regions. The
radiometer is able to retrieve the data of interest with high accuracy under the presence of
vegetation coverage [17], although only at a coarse spatial resolution (38 km × 49 km). The
radar component can produce data at a higher spatial resolution. By merging the L-band
radiometer and radar retrievals [13], intermediate resolution and intermediate accuracy
soil moisture estimates are achievable. Under the assumption of frequent, concurrent and
co-located active and passive measurements, the covariation between the two measure-
ments can be estimated using a time-series statistical regression approach [18]. The method
relies on the assumption that vegetation cover and terrain roughness parameters do not
change too quickly between adjacent passes, and acquisition from the different sensors
take place at the same time. Frequent acquisitions are a good way to approximately satisfy
these constraints.

Unfortunately, due to a hardware malfunction, in July 2015 the SMAP radar discontin-
ued its operation. The radiometer continued to operate normally, but without its matching
radar acquisition the datasets produced were obviously incomplete. A solution to incor-
porate radar data was then proposed, which consisted of combining active microwave
acquisitions from an independent mission with the stand-alone SMAP radiometer. An
in-depth review of all possible active sources led to selecting the Copernicus Sentinel-
1A/1B as the most suitable one [19]. The decision was largely driven by the mutual orbit
configurations of the Sentinel-1 and SMAP satellites, which offer a minimal time difference
between their respective acquisitions on any given area of interest. The fusion of SMAP
and Sentinel-1 data generates a high-resolution soil moisture product (3 km), validating
the feasibility of merging multifarious sources. Sentinel-1’s SAR presents differences in
configuration and characteristics from SMAP’s, starting from the frequency of operation,
which is C-band for the former and L-band for the latter.

The promising results of this early work proved that the active and passive compo-
nents of the system need not operate in the same microwave band. In addition to this,
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if more sources of active data from different bands can be used, then another interest-
ing development can be envisaged. In particular, a research question can be posed in
terms of whether the use of data from multiple active sources affords either obtaining
more accurate estimates of active–passive co-variation parameters for a given observa-
tion period, or shortening the minimum observation period by increasing the temporal
density of active samples, for a given accuracy. In this framework, this paper addresses
a preliminary comparison of fresh and past results obtained from C-, X-, and L-band
active sensing data. Increasing availability of X-band data thanks to existing satellites and
the forthcoming COSMO 2nd generation constellation suggests that the X-band could be
considered for the active component, as has been done for the C-band. In this regard, the
proposed study presents a first estimate of the covariation parameter concerning surface
soil moisture attained by using X-band radars as the active microwave signal coupled with
SMAP radiometer. The selected X-band sources are the German Earth-observation satellite
TerraSAR-X [20] and the Italian COSMO-SkyMed [21]. The study was conducted upon two
different areas identified as suitable for the analysis, located in Germany (agricultural site)
and Brazil (woody dense vegetation site). The paper presents the context, the analysis, and
discusses results.

2. Context and Models Used

In this work, we first considered the model described in [1], conceived to study soil
moisture behavior as derived from concurrent active and passive microwave signals. The
covariation of the two signals, denoted as β, is retrieved through a single-pass estimation,
meaning that a single pair of active and passive observations is used to calculate the
parameter. Similar results have been obtained by applying a statistical approach based on
time-series regressions [22], albeit at a lower spatial resolution due to the usage of coarser
radiometer and radar data.

Considering a typical scenario consisting of a soil surface covered by a vegetation
layer, for instance spontaneous vegetation, crop fields or forests, the incoming and outgoing
electromagnetic radiation is comprised of a ground contribution (G), i.e., ground emission
or scattering, a contribution consisting of the interactions between ground and vegetated
cover (I), and, ultimately, a vegetation contribution of direct emission or scattering in the
canopy (V). According to this scheme, both the emission and the active backscattered signal
can be decomposed into the three aforementioned contributions.

In particular, the former can be broken down into the following expression:

TBP = fVeGTG + ( fV fGrp)eV TV + eV TV (1)

while the latter can be broken down into:

|SPP|2 = fSrp + fDrp + |SV
PP|

2
(2)

The brightness temperature TBP [K] is the parameter supplied by the radiometer dataset
that provides the emissivity of a radiating body, when divided by its actual temperature.
As shown in Equation (1), it is composed of three additive terms. The first one describes
the upwelling ground emission eG multiplied by the loss caused by vegetation attenuation
fV . TG and TV represent, respectively, the physical temperatures of ground and vegetated
layers, which, at certain observation times (early morning) [23], can be assumed to be in
thermodynamic equilibrium and, therefore, equal to the same temperature T. By grouping
T and dividing TBP for it, the emissivity e is retrieved. The second term summarizes the
reciprocal action of ground and vegetation: the vegetation radiometric emission, eV , directed
towards the ground, is reflected by the coarse surface, as represented by the factor fGrp,
and, then, it undergoes the attenuation loss fV when passing through the vegetated volume
again. Finally, the last term accounts for the pure vegetation emission, eV TV .

In a similar way, the active signal backscattered from the scene consists of the three
components in Equation (2) representing the direct backscatter from the ground ( fSrp), the
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interaction between vegetation and ground ( fDrp), and the direct vegetation contribution

(|SV
PP|

2). fS incorporates the incoherent surface scattering losses, while fD incorporates the
coherent double-bounce scattering.

The key parameter linking active and passive microwave signals is the smooth ground
reflectivity rp. rp provides a quantitative measure of both backscattered radiation from the
surface and upwelling soil emission. By isolating the reflectivity term from Equations (1)
and (2), it becomes possible to unify the two equations into one, expressing the relationship
between radar backscatter and radiometer brightness temperature in linear form, thus
comprising of a slope and an intercept term. The slope term represents the covariation
parameter β, which can be written as:

β =
TBP

T − ( fV + eV)

|SPP|2 − |SV
PP|2

(3)

From (3), the covariation parameter is the ratio between emission and backscatter
after being corrected from the direct vegetation contributions, ( fV + eV) and |SV

PP|2. In
order to calculate β by using radiometer and SAR observations, the vegetation correction
terms are modeled according to suitable models for microwave emission and backscatter
of vegetated soil [24,25]. The radar backscatter part in the denominator of Equation (3) is
modeled considering the Born series truncated at the first-order term, comprehensive of
distorted Born and Foldy–Lax approximations [26], therefore becoming:

|SPP|2 − |SV
PP|2 = |SPP|2 − µPP

PQ|SPQ|2 (4)

In the equation above, the co-polarized vegetation scattering component, |SV
PP|2,

which represents the direct vegetation contribution to the total backscattered radiation,
is expressed as a function of the cross-polarized backscatter, |SPQ|2, given its major role
through the multiple-bounce scattering mechanism within vegetated volumes [27]. µPP

PQ is
calculated by using concurrent co-polarized and cross-polarized backscatter measurements
provided by the employed dataset and by estimating their statistical regression slope as

follows: µPP
PQ = ∂|SPP |2

∂|SPQ |2
.

The parameters needed in order to perform the calculation are recovered from the
radiometer dataset and the radar dataset contributed by the selected satellite mission.
The possibility to combine different microwave wavelengths is the main advantage of the
covariation model just described, other than its single-pass nature, allowing to expand the
original L-band implementation to heterogeneous couples of active–passive instruments
and providing the premises for our work.

In the considered period, however, very little cross-pol data were available from any of
the selected X-band radars. Cross-pol data are needed to compute the parameter µPP

PQ, and
thus it was necessary to get around such a data availability issue. A simplified formulation
was proposed in the past [28], relying on co-pol data only. Since the brightness temperature
and the radar backscatter are negatively correlated when soil moisture variations occur,
their relationship can be expressed in a more compact form as a linear expression, as shown
in Equation (5), where β represents the slope of the regression:

TBP = α + βσPP (5)

α [K] is the intercept term of the linear equation. It depends on the intrinsic charac-
teristics of the observed scene, in particular vegetation coverage type and soil roughness
properties. In practice, the estimated values of TBP and σPP are placed in a graph and
their best fitting line is determined through a least squares approach. Then, α and β are
identified as the intercept and slope coefficients, respectively, of such a line. In our analysis,
both of the formulations presented above have been assessed. The two equations return
covariation estimates that are not directly comparable to each other, given their different
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units of measurement; yet, they basically represent the same information in two different
ways. As will be illustrated in Section 4.2, we have analyzed the relationship between
the parameters computed considering and ignoring cross-polarimetric data, and found
they strongly correlate, which encouraged us to relieve the requirement on availability of
cross-pol data.

3. Study Sites and Data
3.1. Study Sites

The purpose of our work is the combination of multiple sources of passive and active
microwave sensing data, in order to assess feasibility and potential of extending the analysis
of active–passive mutual behavior to X-band data, in addition to the previously established
results achieved with L- and C-bands. The study was conducted over two test sites, selected
after an in-depth search based on a set of specific requirements.

Within the rather large SAR tiles on the earth surface and the even larger radiometer
footprint of the used dataset, a selection of specific areas has been carried out. The definition
of the regions of interest within overlapping stripes was done with a view to ensuring the
vegetation cover within each single area (much smaller than the radiometer pixel, but larger
than the radar pixel) was homogeneous, i.e., crop field or forest. It was important to define
study regions that belonged simultaneously to a single radiometer footprint and to its
overlaid radar strips to avoid introducing spurious variations. This is necessary to ensure
fair comparison with the covariation parameter recovered from the SMAP/SMAP and the
SMAP/Sentinel-1 datasets. In the end, three different areas were defined for Germany and
two for Brazil by selecting distinct vegetation types and multiple couples of radiometer
footprints and radar strips. The regions will be described in more detail when discussing
the results achieved. The first constraint was the temporal period of interest. Global
combinations of SMAP L-band radar and radiometer data, which we intended to use as a
reference, are available only over a limited time interval. The latter corresponds to the life
span of SMAP radar before its permanent failure, i.e., from 13 April 2015 to 7 July 2015.
The second constraint is that the utilized dataset has to be polarimetric. In fact, according
to Equation (3), both co-polarized and cross-polarized radar backscatter parameters are
necessary to estimate the covariation value. This has made the search process particularly
challenging, since typically cross-polarized backscatter data are globally very scarce. In
fact, as already mentioned in Section 2, this requirement could not be satisfied in full, i.e.,
on a sufficient number of time samples along the relevant time interval. As a consequence,
we had to scale back to a simplified β computation (5); however, the decision on the areas
was already taken based on the few polarimetric pieces of data available. Finally, the focus
on mildly vegetated areas further restricted the options. In the end, our selection of sites
based on TerraSAR-X and COSMO-SkyMed availability fell onto the following areas:

1. An agricultural region in southern Germany around coordinates 47◦58′12.0′′N,
11◦55′45.0′′E (see Figure 1 for reference);

2. A partly de-forested region in northern Brazil around coordinates 6◦48′05.63′′S,
55◦24′46.22′′W (see Figure 2 for reference).

3.2. Data

The datasets used in our work are listed in Table 1: L-band SMAP active/passive
products to recover the passive components of the covariation equation and to retrieve
reliable β estimates suitable for performing a comparison; C-band Sentinel-1 data; and,
the base for our contribution to the analysis, X-band TerraSAR-X and COSMO-SkyMed
radar data.
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Figure 1. Picture showing the analyzed zone in RGB colors, regarding the German dataset in the
Bavaria region, captured in GoogleEarth.

Figure 2. Picture showing the analyzed zone in RGB colors, regarding the Brazilian dataset in the
State of Pará, captured in GoogleEarth.

Table 1. Overview of the datasets employed in our analysis.

Mission (Sensor) Dataset Band
(Polarization)

Spatial
Posting

Temporal
Resolution

SMAP (Radiometer)
SMAP Enhanced L2 Radiometer
Half-Orbit 9 km EASE-Grid
Soil Moisture, Version 3

L-band 9 km 2–3 days

SMAP
(radiometer/radar)

SMAP L2
Radiometer/Radar Half-Orbit
9 km EASE-Grid Soil Moisture,
Version 3

L-band 9 km 2–3 days

Sentinel-1 (radar)
SAR Standard L1 Product,
GRD type

C-band
(VV, VH, HH, HV) 9 m <3 days

TerraSAR-X (radar) TSX-1.SAR.L1b-Stripmap X-band
(VV, VH) 3 m 11 days

COSMO-SkyMed
(radar)

COSMO_SkyMed StripMap
HIMAGE mode

X-band
(VV, HH)

5 m 16 days
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The SMAP mission in its initial, fully operational configuration used to generate
24 data products, spanning a total of four levels of data processing. We selected Level-2
(L2) products; the Enhanced L2 Radiometer dataset contains calibrated and geolocated
brightness temperatures at 9 km posting acquired by the SMAP radiometer during 6:00 a.m.
descending and 6:00 p.m. ascending half-orbit passes. The L2 Radiometer/Radar dataset
contains a combination of active and passive products and it provides covariation estimates
at 9 km posting. The grid topology is EASE (equal-area scalable Earth) grid radiome-
ter brightness temperature (36 km) with the EASE grid radar backscatter cross-section
(3 km) [29].

Regarding Sentinel-1 radar data, level-1 ground range detected (GRD) products have
been considered. They consist of SAR data projected from slant to ground range using
the Earth ellipsoid model WGS84. The projection was corrected using the terrain height,
increasing georeferencing precision. At the end, approximately square-shaped pixels were
obtained, with reduced speckle, at the expense of a coarser spatial resolution (9 m) [30].
Moreover, it was possible to retrieve polarimetric data. On the same level of processing,
we selected TerraSAR-X and COSMO-SkyMed products projected onto the ellipsoid model
WGS84 and corrected from the spatial distortions caused by the different terrain heights
through the use of Digital Elevation Models (DEMS).

4. Data Processing and Analysis
4.1. Preparation of Radar Data

Before their usage in covariation estimates, radar data need suitable pre-processing
and calibration. In our work, pre-processing consisted of the following steps: reprojection
and cropping of the dataset, calibration, and local mean filtering. The cropping operation
involved cutting out the selected area of interest from the received radar dataset, oppor-
tunely projected onto the same coordinate system (WGS 84 EPSG 4326). The reason for this
procedure is to ensure spatial consistency among the different datasets used. To reduce
the impact of bright reflective surfaces such as buildings, and also to reduce the impact
of speckle noise, a mean filter was applied to the cropped data. Finally, a radiometric
calibration step was implemented (in QGIS using dedicated plug-ins) in order to derive
the actual backscatter values from the image pixel intensities (or digital numbers). Each
mission features its own, specific radiometric calibration process and calibration factors as
specified in the technical documents [30–32] and in the attached metadata products. In the
case of TerraSAR-X, for example, radiometric calibration produces the σ0 or sigma naught
parameter, the radar reflectivity per unit area in ground range, through the formula [32]:

σ0 = β0 · sin(θloc) (6)

This formula requires information on radar brightness (β0) and the local incidence
angle (θloc) of the sample being calibrated. β0 is obtained by multiplying the second power
of the pixel values (DN) times the calibration factor (Ks):

β0 = Ks · |DN|2 (7)

Ks values are passed in the form of XML files, attached as a satellite data support file;
there exist specific calibration factors for co-polarized and for cross-polarized data. The
local incidence angle is the angle between the radar beam and the normal to the illuminated
surface and the corresponding file can be ordered optionally. In our case we decided to use
the central incidence angle in order to simplify the procedure. A more accurate radiometric
calibration requires detailed knowledge of θloc. The other types of radar data used require
analogous procedures, which we implemented in full using QGIS, specialized plugins
and developing tailored scripts when needed. The interested reader is referred to the
above-cited technical documents for more detailed information.
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4.2. Preliminary Analysis: Full vs. Simplified Model

Our preliminary analysis concerned the implementation of Equation (5) by adopting
both the co- and cross-polarization first, and then co-pol only. Results were compared
with those sourced from NASA’s archived and freely distributed computations of β, which
we considered as a reference. In order to focus on the similarity in information content,
we used mutual correlation to compare the data series. As can be seen from Table 2, the
correlation factor between the covariation estimates computed considering both co- and
cross-polarizations and those computed considering only co-polarizations was almost 1,
meaning that cross-polarization does not impact significantly on the β estimation process
when X-band data are used. In the X-band, penetration into vegetation is much weaker
and this may have a role in making vegetation-activated cross-pol less relevant. Therefore,
in this study on the X-band, we focussed on covariation estimates using co-polarization
only. This simplified the problem and conveys the additional advantage of expanding
the choice of test areas, as rare X-band cross-pol data were no longer necessary. In fact,
given the recorded cross-pol data availability in the concerned timeframe this decision was
unavoidable if experiments were to be completed.

Table 2. Active–passive microwave covariation estimates regarding the first agricultural German
site, computed with the SMAP radiometer plus TerraSAR-X radar combination. βVV

VH were computed
considering both co- and cross-polarizations; βVV were computed considering only co-polarizations.

Sensing Date
(yyyy/MM/dd) βVV

V H [K/dB] βVV [K/dB] Correlation
Factor

2015/06/11 −3.97367 −4.14314

0.99907
2015/06/19 −3.10215 −3.24648
2015/06/22 −3.65805 −3.86859
2015/06/30 −3.98658 −4.14102
2015/07/03 −4.80281 −5.04388

4.3. Covariation Analysis

As already mentioned in Section 3.1, constraints on the time period made it challeng-
ing to retrieve suitable polarimetric radar products: for instance, there were no cross-pol
COSMO-SkyMed products at all in the selected areas of interest within the considered time-
frame. Nevertheless, as discussed in Section 4.2, we were able to get around this problem
using Equation (5) to estimate β, which does not require the cross-polarized backscatter
parameter. The extremely high correlation between the results achieved with Equation (3)
and those achieved with Equation (5) confirmed that turning down the cross-pol data
and using the simplified model did not seriously impair results. A plausible reason can
be sought in the different penetration into the target that comes with the change in the
operational frequency of the instrument: at the X-band, the penetration of the emitted radi-
ation through the vegetation cover is smaller than at the C-band. Since the cross-polarized
backscatter is directly related to the volume scattering caused by the presence of a vegeta-
tion layer over the surface, the impact of the parameter tends to become negligible with
smaller-wavelength signals unable to infiltrate into dense vegetation volumes. Therefore,
it was deemed reasonable to disregard the cross-polarized radar backscatter in exchange
for access to a broader choice of test cases.

5. Results and Discussion

As previously described, three regions were selected on the German test site: two
crop fields and a forest. The two agricultural regions belong to two different radiometer
footprints projected onto the Earth surface, thus building a broader pool of passive sensing
samples and preparing a more solid analysis of the covariation estimates. As already
mentioned, our results were produced using Equation (5), and are represented in the
graphs in Figures 3–5. On their vertical axes, the two corresponding covariation estimates
are traced, i.e., ours and the reference NASA estimate. The analysis was conducted on all of
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the previously mentioned instruments, i.e., Sentinel-1, TerraSAR-X, and COSMO-SkyMed,
for every selected test site. For the sake of conciseness, only the most significant plots are
reported in this paper.

While results were calculated with both the vertical and horizontal polarization, only
the vertical polarization will be shown due to the similarity in outcomes.

(a) (b)

(c)

Figure 3. Active–passive microwave covariation estimates for the German test site: (a) crop field n. 1; (b) crop field n. 2; and
(c) forest site. βLL refers to the SMAP radiometer plus SMAP radar combination; βLX refers to the SMAP radiometer plus
TerraSAR-X radar combination. Acquisition times were all located around 6 a.m. local time.

Visual analysis of the graphs led us to observe that:

• Absolute values showed systematic differences;
• Variations, however, in general appeared to be correlated.

Systematic differences in absolute values may be due to the different radar reflectivity
of the same structures at the different wavelengths of the systems involved. We decided to
further investigate the correlation between the two series, in order to determine whether
the information contribution from X-band data is consistent with information conveyed by
L-band data when active–passive covariation is concerned. We aimed at understanding
whether X-band data may add relevant clues or rather pour noisy data into the process.
We thus computed and analyzed the correlation factor associated with the two covariation
sequences, one from the original data from NASA and the other from our mixed L+X-band
data. Correlation results are shown in Table 3.

The magnitude of β expresses the sensitivity of L-band radiometer signatures to
changes in L-band, C-band, and X-band radar signatures. By observing the high correlation
values between the reference covariation parameters provided by NASA (βLL) and the ones
estimated by means of alternative active sources (βLC, βLX), it appears that changing the
operational band of the active microwave signal did not result in substantial modifications
to the overall behavior of the sensed variables. Further analyzing the results, one can
notice that the correlation factor for the second German crop field shows an unexpectedly
small value in comparison with the one calculated for the first field, despite featuring
basically the same land cover type. However, the recurrence of a low correlation across
all combinations of active sources suggests that the error may reside in the radiometric
datum acquired on the specific footprint under test, possibly due to local radio frequency
interference (RFI), a well-known problem for passive microwave sensing [31].
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(a) (b)

(c)

Figure 4. Active–passive microwave covariation estimates for the German test site: (a) crop field n. 1; (b) crop field n. 2; and
(c) forest site. βLL refers to the SMAP radiometer plus SMAP radar combination; βLC refers to the SMAP radiometer plus
Sentinel-1 radar combination.

(a) (b)

(c)

Figure 5. Active–passive microwave covariation estimates for the German test site: (a) crop field n. 1; (b) crop field n. 2; and
(c) forest site. βLL refers to the SMAP radiometer plus SMAP radar combination; βLX refers to the SMAP radiometer plus
Cosmo-SkyMed radar combination.

If one excludes the (likely RFI corrupted) results for the “Crop field #2” test site, the
correlation factors for X-band data always exceed 0.82. This suggests a good agreement
between the L-band and X-band active data contributions, which is even greater than
with C-band active data, whose correlation averaged around 0.76 on the two remaining
test sites.
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Table 3. Active–passive microwave covariation estimates regarding the German sites. βLL refers to the SMAP radiometer
plus SMAP radar combination; βLX refers to the SMAP radiometer plus TerraSAR-X (TSX) or COSMO-SkyMed (C/S) radar
combination; βLC refers to the SMAP radiometer plus Sentinel-1 radar combination.

Test Site Covariation Series Computed on Corr. Factor between the Two Considered Series

Crop field n.1 βLL and βLX (TSX) 0.82328
Crop field n.2 βLL and βLX (TSX) 0.31269

Forest βLL and βLX (TSX) 0.95762

Crop field n.1 βLL and βLX (C/S) 0.89894
Crop field n.2 βLL and βLX (C/S) −0.44025

Forest βLL and βLX (C/S) 0.87690

Crop field n.1 βLL and βLC 0.70064
Crop field n.2 βLL and βLC 0.00305

Forest βLL and βLC 0.82348

The second test area is a partly deforested Amazon area in NE Brazil, where two
fields have been identified with similar, mixed land cover including rainforest and low
vegetation. No suitable COSMO-SkyMed data were found in the reference timeframe
either, so the experiment was conducted on TerraSAR-X data only. Similarly, no Sentinel-1
data with the same features as the previous experiments could be retrieved in the targeted
time frame, so a comparison with C-band data could not be performed. Numerical results
are reported in Table 4. The outcome of the analysis on the Brazilian test area seems to
support the conclusions from the German test area. In particular:

• The difference in average β values from L-band and from X-band data was nearly
constant across the two test fields, i.e., the same systematic displacement was observed
between the L-based and X-based estimation of β;

• Correlation factors between L-based and X-based β values were high to extremely high.

These data are naturally to be taken with caution, as the statistical basis is very nar-
row, due to the limiting factors discussed in Section 2. Having warned the reader about
this, however, some interesting similarities may be noticed between results from the Ger-
man and the Brazilian test areas. One interesting point to note is that the correlation
holds also on land cover types such as forest, where backscatter mechanisms for active
X-band data are expected to be substantially different from those for L-band data [32].
This might reflect the fact that forests are more homogeneous in their interaction with mi-
crowaves with respect to agricultural areas, which may include plants with different heights
and shapes.

Table 4. Active–passive microwave covariation estimates regarding the Brazilian sites. βLL refers
to the SMAP radiometer plus SMAP radar combination; βLX refers to the SMAP radiometer plus
TerraSAR-X radar combination.

Test Site Sensing Date βLL [K/dB] βLX [K/dB] Correlation Factor

Field n. 1
2015/05/04 −3.83956 −5.57806

0.999552015/05/26 −3.85407 −5.84327
2015/06/17 −3.84065 −5.60636

Field n. 2
2015/05/04 −3.61885 −5.07345

0.763292015/05/26 −3.63109 −5.53964
2015/06/17 −3.61960 −5.40265

6. Conclusions

In this paper, we have presented an analysis of the features of estimated active–
passive covariation when applied to X-band data rather than to the traditionally used
L-band and C-band data. The aim of our investigation was to asses whether X-band
radar data, which are now becoming increasingly available, are suitable to contribute to
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mapping of land cover parameters such as soil moisture or vegetation water content in the
framework of an active–passive covariation analysis. This is important in order to assess
whether incorporating data from multiple missions in the covariation analysis leads to
improvements in parameter retrieval. The question is not trivial, as X-band waves penetrate
much less into vegetation than C-band and L-band waves; yet a significant contribution
from the ground may still be collected. This is especially true in the case of a shallow
layer of vegetation as was characteristic of some of the considered test sites. Our analysis
revealed very high degrees of correlation between the β values computed using X-band, L-
band, and C-band data (around 0.7 to 0.8 as seen in Tables 3 and 4), suggesting that X-band
active data can contribute to the estimation of co-variation, effectively taking the place of
other C-band elements in a time series; this should enable computation of β on shorter time
series. Only one exception was observed, which was attributed to local disturbance factors
because of the complete lack of connection of its results with any others. The correlation of
results across different radar bands, however, comes with a significant offset in estimated
values, which probably depends on the different typical responses of vegetated land cover
at the different wavelengths considered. This offset needs to be determined and removed
to make the results usable for the intended purpose. Unfortunately, the need to use original
SMAP data as a reference proved a limiting constraint that resulted in scarce availability of
suitable X-band data from both TerraSAR-X and COSMO-SkyMed sources. This means
that the hypothesis should be further tested to prove its robustness in a more general
case. Given the extreme scarcity of suitable spaceborne test data, however, this may only
be achieved by leveraging other independent sources for the reference β value on the
test sites. Another key issue that must be mentioned here is the availability of X-band
SAR data, which has significantly constrained our capacity to deepen the investigation.
Currently, there exist very few X-band spaceborne missions run by national space agencies.
New actors from the private sector are, however, entering into business, such as ICEYE
[33] and Capella Space [34], who offer high spatial resolution and frequent revisit times,
such that an almost perfect time agreement can be achieved among the passive and the
active sensing operations. Despite their data not being distributed for free, possible future
commercial services for vegetation and soil moisture monitoring will be in a position to
rely on abundant and ubiquitous X-band data sources.

Future directions of investigation include:

• Comparing X-band-derived estimates and the standard estimates provided by NASA
using a combination of passive SMAP and Sentinel-1 data, on a geographically broader
set of test areas;

• Incorporating active L-band data from the JAXA sensor ALOS.

The long-term goal of our research is to devise an algorithm for co-variation compu-
tation that does not require long time series of C-band data, because part of the required
information is provided by active X-band and active L-band data acquired at similar times
to the other contributions.
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