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Abstract: Synthetic aperture radar (SAR) image interpretation has long been an important but
challenging task in SAR imaging processing. Generally, SAR image interpretation comprises complex
procedures including filtering, feature extraction, image segmentation, and target recognition, which
greatly reduce the efficiency of data processing. In an era of deep learning, numerous automatic
target recognition methods have been proposed based on convolutional neural networks (CNNs) due
to their strong capabilities for data abstraction and mining. In contrast to general methods, CNNs
own an end-to-end structure where complex data preprocessing is not needed, thus the efficiency
can be improved dramatically once a CNN is well trained. However, the recognition mechanism
of a CNN is unclear, which hinders its application in many scenarios. In this paper, Self-Matching
class activation mapping (CAM) is proposed to visualize what a CNN learns from SAR images to
make a decision. Self-Matching CAM assigns a pixel-wise weight matrix to feature maps of different
channels by matching them with the input SAR image. By using Self-Matching CAM, the detailed
information of the target can be well preserved in an accurate visual explanation heatmap of a CNN
for SAR image interpretation. Numerous experiments on a benchmark dataset (MSTAR) verify the
validity of Self-Matching CAM.

Keywords: synthetic aperture radar (SAR) image interpretation; target recognition; class activation
mapping (CAM); explanation of convolution neural network (CNN)

1. Introduction

Synthetic aperture radar (SAR) can produce high-resolution radar images in various
extreme weather conditions, such as precipitation, dust, mist, etc., which makes it widely
applied in many fields, like topographic mapping, urban planning, traffic monitoring,
electronic reconnaissance, etc. [1–4]. Nowadays, it is increasingly important to obtain high-
performance SAR images and clear interpretation of SAR images. With the application
of various advanced SARs and numerous excellent imaging algorithms, there have been
a larger number of high-performance SAR images, whereas, the interpretation of these
images develops far behind forging them. SAR image interpretation usually includes
image segmentation, target detection, and recognition, among which target recognition
is deemed the most challenging task [1,5,6]. In traditional target recognition, SAR images
first need a series of preprocessing operations, such as filtering, edge detection, region of
interest (ROI) extraction, and feature extraction, and then a classifier like a support vector
machine (SVM), perceptron, decision tree, K-nearest neighbor (KNN), etc., is utilized to
categorize them to a corresponding class [7].

Note that traditional target recognition technology is composed of multiple individual
steps [8–10]. Such complex procedures will reduce processing efficiency and make it
difficult to realize real-time applications. In contrast, deep learning algorithms can allay the
aforementioned limitations greatly because deep networks own an end-to-end structure
without complex preprocessing operations [11,12]. Such an end-to-end structure can
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automatically learn the most discriminative information on a specific target from SAR
images from low-dimension space to further high-dimension space for classification. In this
case, the efficiency will be enhanced dramatically as long as the network is well trained.
The convolutional neural network (CNN) is one of the most successful models in various
computer vision fields [2,13–15]. The key to its superiority lies in the way it uses local
connections and shared weights. Such operations can not only reduce the number of
neurons but also preserve local characteristics of the input images. In SAR image target
recognition, CNN has realized numerous remarkable achievements. Ref. [1] used CNN
to implement target recognition on MSTAR data and obtained better accuracy than a
SVM. Ref. [16] proposed an automatic SAR target recognition method combined with a
CNN and a SVM. Ref. [17] designed a gradually distilled CNN with a small structure
and high calculation efficiency for SAR target recognition. Ref. [18] designed a large-
margin softmax batch-normalization CNN (LM-NB-CMM) for SAR target recognition of
ground vehicles, which possessed better generalization performance, and achieved higher
recognition accuracy and convergence speed compared with traditional CNN structures.

Although the aforementioned CNN-based methods can achieve high recognition
performance and calculation efficiency, a CNN is usually used as a “black box” whose
innate recognition mechanism still lacks analytical or mathematical explanation [19,20].
In this case, the reliability of recognition results is less convincing than traditional target
recognition methods, which is sometimes fatal and unacceptable, particularly in some
special scenarios [21,22]. To obtain a better explanation of a CNN’s mechanism, a number
of methods have been proposed to visualize the internal representations learned by CNNs
in the recent half-decade [23–28]. These methods are developed to highlight the regions
of an image that are responsible for CNN decisions, which can be further divided into
three categories: perturbation-based, propagation-based, and class activation mapping
(CAM) methods. Perturbation-based methods occlude some patches of an image with
black squares and detect whether there is an obvious drop of class score, then a heatmap
can be produced according to the change of class score. Propagation-based methods are
faster. They use gradients to visualize relevant regions for a given class, whereas the
generated heatmaps are usually noisy. In contrast, CAM methods visualize CNN decisions
using feature maps of deep layers, which can provide a mathematically explicable heatmap
with some extent. In this paper, a CAM method is adopted as the visualization tool
rather than perturbation algorithms and propagation algorithms due to the following.
(1) CAM correlates the feature maps in a CNN’s hidden layer with heatmap generation
while perturbation algorithms only occlude or conserve some patches in input images. (2)
Although propagation algorithms can avoid gradient calculation to run faster, they are
difficult to be applied to CNNs since a rather complicated correspondence exists between
weights and elements in feature maps of a certain convolutional layer. Recently, increasing
attention has been drawn to CAM, and numerous novel CAM methods have been proposed,
such as Grad-CAM [24], Grad-CAM++ [25], XGrad-CAM [26], Ablation-CAM [27], Score-
CAM [28], etc. However, these CAM methods show restrained effects on SAR image
target recognition tasks because the SAR images are different from ordinary optical images
including imaging mechanisms and wavelength range. In this paper, a Self-Matching CAM
is proposed to highlight a more precise region of the target for classification than the above
CAM methods. Numerous experimental results are conducted on a benchmark dataset
(MSTAR) to verify the validity of the Self-Matching CAM.

The remainder of this paper is organized as follows. For a better understanding of
CAM, Section 2 reviews several state-of-the-art CAM algorithms. Section 3 introduces
the Self-Matching CAM in detail. Section 4 provides numerous experimental results
from various perspectives to compare the performance of Self-Matching CAM with other
available CAM methods. Section 5 discusses the experimental results and clarifies some
confusion. Finally, Section 6 concludes this paper and discusses future work.
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2. Related Work

CAM was first proposed in [23] by Zhou, B.L., Khosla, A., et al. CAM is specially
designed for CNNs with only global average pooling (GAP) in the last convolutional layer.
This means that each feature map in the last convolutional layer will be compressed to a
single pixel value and then connected to neurons in fully connected layers. In this case,
the final classification score Sc for a specific class c can be formulated as a linear combination
of feature maps Ak of the convolutional layer (without regard to the activation function):

Sc = Σ
k

ωc
k Σ

i
Σ
j

Ak
ij (1)

where ωc
k is the weight corresponding to class c for the unit that is pooled from the feature

map in the k-th channel, and Ak
ij refers to the value of the k-th feature map in coordinates

(i,j). The spatial element of the CAM heatmap for class c is defined by

HCAM
ij = Σ

k
ωc

k Ak
ij (2)

where HCAM
ij denotes the elements of the heatmap in coordinates (i,j).

While CAM is very straightforward since the weights naturally represent the impor-
tance of corresponding feature maps for classification, the limitation of CAM is apparent:
it is unsuitable for CNNs without GAP in the last convolutional layer. To avoid changing
the CNN structure, numerous modified CAM methods have been proposed for CNNs
with any pooling rules. They can mainly be categorized into gradient-based methods and
gradient-free methods.

In the following, we will review three gradient-based CAM methods (Grad-CAM,
Grad-CAM++, and XGrad-CAM) and two gradient-free CAM methods (Ablation-CAM
and Score-CAM). At the end of this section, we will discuss some challenges with which
CAM methods are confronted in SAR image processing.

2.1. Gradient-Based Methods

Equation (2) gives the general definition of CAM. Different definitions of ωc
k lead to

different CAM methods. Gradient-based methods formulate weights ωc
k with the partial

derivative of Sc with respect to Ak. To avoid confusion, in the following, we use αck to
replace ωc

k (ωc
k represents the weights between the GAP layer and the fully connected layer,

while αck only denotes the coefficients of a linear combination of feature maps). Grad-CAM
is one of the most well-known and widely used gradient-based methods [24]. It defines the
weights αck_grad as:

αck_grad =
1
Z Σ

i
Σ
j

∂Sc

∂Ak
ij

(3)

where Z is the number of pixels in the feature map. Therefore, Grad-CAM can be applied
to any deep CNN without any modification of network structure as long as Sc is a differen-
tiable function of feature maps Ak. Grad-CAM is applicable to any CNN structures, which
greatly overcomes the limitations of CAM. However, Grad-CAM is still not a panacea due
to the following: (1) it does not explain clearly why it uses the average of gradients to
weight each feature maps; (2) an unweighted average of the partial derivatives usually
leads to an excessive highlighted region covering the target in the SAR image overlay.

To highlight the target in the heatmap precisely, ref. [25] proposed Grad-CAM++
introducing second and third partial derivative form weights αck_++ formulated as:

αck_++ = Σ
i

Σ
j
[

∂2Sc
(∂Ak

ij)
2

2 ∂2Sc
(∂Ak

ij)
2 + Σ

x
Σ
y

Ak
xy{ ∂3Sc

(∂Ak
ij)

3 }
] · ∂Sc

∂Ak
ij

(4)
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where αck_++ denotes the element of weights to the k-th feature map for class c in coordi-
nates (i,j). It is evident that, if ∀i,j, αck_++ = 1

Z , Grad-CAM++ degenerates into Grad-CAM.
In Grad-CAM++, a weighted partial derivative replaces the unweighted average of the
gradient, thus the highlighted region in the heatmaps is usually narrower than Grad-CAM.

However, Grad-CAM++ still does not explain clearly why such a weighted partial
derivative works in locating the target precisely. Ref. [26] proposed an axiom-based CAM
(XGrad-CAM) with a clear mathematical explanation to achieve better visualization of
the CNN’s decision than Grad-CAM++. XGrad-CAM formulates αck by introducing two
axioms: sensitivity and conservation. They are self-evident properties that visualization
methods are supposed to satisfy [29], defined as follows:

Sensitivity: Sc(A)− Sc(A\Ak) = Σ
i

Σ
j

αck Ak
ij (5)

Conservation: Sc(A) = Σ
i

Σ
j
(Σ

k
αck Ak

ij) (6)

where Sc(A\Ak) is the score of class c when the k-th feature map in the target layer has
been replaced by zero. The meaning of sensitivity is straightforward in that if a large
drop of class score emerges when the k-th feature map is removed, then this feature map
should be assigned a high weight. Conservation is used to ensure that the class score is
mainly dominated by the feature maps rather than other factors. To meet these two axioms,
ref. [26] transforms this into a minimization problem of φ(αck) as below:

φ(αck) = Σ
k

∣∣Sc(A)− Sc(A\Ak)− Σ
i

Σ
j

αck Ak
ij
∣∣+ ∣∣Sc(A)− Σ

i
Σ
j
(Σ

k
αck Ak

ij)
∣∣ . (7)

Ref. [26] proves that for a convolutional layer in a ReLU-CNN, which only has
ReLU activation functions as its non-linearities, the class score is equivalent to the sum
of the element-wise product between feature maps and gradient maps of the target layer,
written as:

Sc(A) = Σ
k

Σ
i

Σ
j
(

∂Sc(A)

∂Ak
ij

Ak
ij) +

L
Σ

t=l+1
Σ
n

∂Sc(A)

∂ut
n

bt
n (8)

where l is the order of the last convolutional layer, L is the number of layers in the CNN,
ut

n denotes the n-th neuron in the t-th layer (t > l), and bt
n is the bias corresponding to ut

n.
Substituting Equation (8) into Equation (7), we can rewrite φ(αck) as:

φ(αck) = Σ
k

∣∣Σ
i

Σ
j
(

∂Sc(F)
∂Ak

ij
− αck Ak

ij) + ξ(A; k)
∣∣+

∣∣Σ
k

Σ
i

Σ
j
(

∂Sc(F)
∂Ak

ij
− αck Ak

ij)) +
L
Σ

t=l+1
(Σ

n

∂Sc(A)

∂ut
n

)
∣∣ . (9)

where ξ(A; k) = Σ
k′ ,k′ 6=k

Σ
i

Σ
j
( ∂Sc(A)

∂Ak
ij

Ak
′

ij −
∂Sc(A\Ak)

∂Ak
ij

Ak
′

ij ) and
L
Σ

t=l+1
Σ
n

∂Sc(A)
∂ut

n
bt

n are two consid-

erably small terms that can be ignored. Without considering these two terms, we can
calculate an approximate optimal solution αck to Equation (7):

αck_Xgrad = Σ
i

Σ
j
(

Ak
ij

Σ
i

Σ
j

Ak
ij

∂Sc(A)

∂Ak
ij

) . (10)

2.2. Gradient-Free Methods

Gradient-free methods abandon forming weights with partial derivatives, because ad-
vocates of gradient-free methods think that it is easy to find samples with false confidence by
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using gradients, i.e., some feature maps with high gradients contribute less to the network
classification. The way that gradient-free methods acquire weights is more intuitive and
straightforward. Here we review two famous methods: Ablation-CAM and Score-CAM.

Ablation-CAM was proposed in [27], where an ablation study was used to determine
the importance of each pixel in the feature map. Specifically, Ablation-CAM calculates the
contribution of each feature map for classification by removing a specific feature map while
retaining the rest. In Ablation-CAM, the slope is used to describe the effect of removing
the k-th feature map, defined as:

slope =
Sc(A)− Sc(A\Ak)

‖Ak‖
(11)

where ‖Ak‖ is the two-norm of Ak. Since calculation of the slope is time-consuming, ref. [27]
proposed an approximate solution as:

αck_Ablation =
Sc(A)− Sc(A\Ak)

Sc(A)
. (12)

The effect of Ablation-CAM is better than Grad-CAM and Grad-CAM++ on optical
images; however, this method is quite time-consuming since it has to run forward propa-
gation hundreds of times per image. Ref. [28] proposed Score-CAM by introducing the
increase of confidence (CIC) as a weight for a feature map, defined as:

C(Ak) = f (X ◦ Υk)− f (Xb), (13)

Υk = s(Up(Ak)), (14)

where Xb refers to a baseline image that is always set to 0, f (·) denotes the nonlinear
function of the well-trained CNN, X is the input image, s(·) is a normalization function
that maps each element into [0, 1], ◦ denotes the Hadamard product, and Up(·) denotes
the operation that upsamples Ak into the input size. Without a special statement, bilinear
interpolation is adopted for both upsampling and downsampling schemes in this paper.
The CIC score C(Ak) for feature map Ak is used for the weights:

αck_Score = C(Ak) . (15)

Score-CAM uses CIC for the weight of each activation map, removes the dependence
on gradients, and has a more reasonable weight representation.

2.3. Some Challenges of CAM Methods in SAR Images

The validity of the aforementioned CAM methods has been demonstrated on various
optical image datasets. However, SAR images are quite different from ordinary images:
(1) the extra-class difference of SAR images is relatively smaller than that of optical im-
ages, e.g., the difference between an armored vehicle and a tank in the MSTAR dataset is
evidently smaller than the difference between a dog and a ship in the CIFRA-1O dataset;
(2) in comparison to optical images, SAR images have low resolution, low signal-to-noise
ratio (SNR), and usually contain a number of interference spots. In this case, the heatmap
generated by the above CAM methods designed for optical images usually cannot pre-
cisely locate the target in SAR images, which exhibits an irregular region overcovering
the target. We randomly selected two SAR images from the MSTAR dataset and calcu-
lated their heatmaps corresponding to different CAM methods. The results are shown in
Figure 1. It is evident that Grad-CAM++ and Ablation-CAM only locate parts of the target,
while Grad-CAM, XGrad-CAM, and Score-CAM all overcover the target. In this case,
class discrimination of the heatmaps will be reduced dramatically, meaning it is difficult
to understand what the CNN learns to make it classify these targets corresponding to
different classes.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 1. Comparison of various CAM heatmaps. (a) SAR image of a BRDM-2 armored reconnaissance vehicle. (g) SAR
image of a BTR-60 wheeled armored carrier. (b,h) Grad-CAM. (c,i) Grad-CAM++. (d,j) XGrad-CAM. (e,k) Ablation-CAM.
(f,l) Score-CAM.

3. Our Methodology
3.1. Inspiration and Motivation

As discussed in Section 2, neither gradient-based nor gradient-free CAM methods can
provide a heatmap that covers the targets in SAR images precisely. As for gradient-based
methods, it is still worth discussing whether using gradients as weights is reasonable.
For gradient-free methods, they may be more suitable for high-resolution optical images
because there usually exists abundant information like edge and texture, thus more sophis-
ticated details can be abstracted in feature maps, whereas SAR images usually have much
lower resolution than optical images. Therefore, it is very important to make full use of the
information in the input image itself.

Except for Score-CAM, the rest of the methods all aim at designing weights αck by
various artful manipulations but ignore the input image, which contains everything the
CNN needs. Score-CAM defines the weights by calculating the similarity between feature
maps and the input image. It is a good idea but it does not appear to be perfect for SAR
images, as shown in Figure 1. Inspired by Score-CAM, we propose a novel CAM method
named Self-Matching CAM, which is especially suitable for SAR images. It should be
noted that Self-Matching CAM is not a modified version of Score-CAM even though the
latter indeed inspired Self-Matching CAM. Specifically, it is not a new design of weight
manipulation anymore, but is a post-processing framework that is implemented after
available CAM methods and produces a high class-discriminative heatmap where the
target is located precisely. The detailed procedures of Self-Matching CAM and the specific
difference between it and Score-CAM will be elucidated in the following.

3.2. Self-Matching CAM

In Score-CAM, the feature maps need to be upsampled to the same shape with the
input image according to Equation (14), and the CIC is calculated to measure the correlation
of the feature map and the input image. No matter what kind of upsampling method
is used, some irrelevant information will be introduced; inevitably, meanwhile, such
an upsampling operation is required for every feature map. In this case, the irrelevant
information will be accumulated many times, especially for a deep CNN with a large
number of channels in a convolutional layer. To alleviate this problem, we downsample
the input image to the same shape with feature maps instead of upsampling the feature
maps. We assume I denotes the input SAR image, and this operation can be written as:

Ĩ = s(Down(I)) (16)
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where Ĩ denotes the downsampled input image in the same shape of the feature maps,
and Down denotes the downsampling operation. Compared with upsampling, down-
sampling can bring two advantages. (1) Downsampling will not introduce any irrelevant
information. This operation only discards some details of the input image. (2) Downsam-
pling needs to implement only once per image. After that, we calculate the Hadamard
product of the input image and each feature map as a new group of modified feature maps.
Then, the Hadamard product of the downsampled input and k-th feature map Ak are used
as a new feature map Âk, formulated as:

Âk = Ak ◦ Ĩ (17)

By substituting Equation (17) into Equation (2), we can obtain a heatmap generated
from Self-Matching CAM as below:

HSel f−Matching_CAM
ij = Σ

k
αckUp(Âk

ij) (18)

where HSel f−Matching_CAM
ij refers to the element of HSel f−Matching_CAM in coordinates (i,j)

and αck is any one of the weights generated by the various CAM methods mentioned above.
However, for some CNNs with deep convolutional layers or a large shape of the

pooling windows, the feature maps in the last convolutional layer are a very compact size.
In this case, the downsampling operation may lose too much information including some
that is relevant to the target, thus here we make a compromise: we downsample the input
image I and upsample the feature map Ak to an intermediate shape between I and Ak. We
set IN in the shape of N × N, Ak

M in the shape of M×M (N > M), and ĨQ and ÃQ in the
shape of Q×Q (M < Q < N), which can be written as:

ĨQ = s(Down(IN)Q) (19)

Ãk
Q = s(Up(Ak

M)Q) (20)

where Down(·)Q and Up(·)Q denote downsampling the shape of the input to Q × Q,
and upsampling the feature map to Q × Q, respectively. Hence, Equation (17) can be
rewritten as follows by substituting Equations (19) and (20):

Âk
Q = Ãk

Q ◦ ĨQ . (21)

In this case, the final heatmap can be formulated as:

HSel f−Matching_CAM
N = Σ

k
αckUp(Âk

Q)N (22)

where Up(·)N denotes upsampling the shape to N × N. The rationale and entire flowchart
for Self-Matching CAM are presented in Figure 2 and Algorithm 1.
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Figure 2. Flowchart of Self-Matching CAM. Here the AlexNet model is taken as an example.

Algorithm 1 Self-Matching CAM
Input: SAR image IN , Model f (·), class c, resize_shape Q
Output: HSel f−Matching_CAM

initialization:
# get feature maps of the last convolutional layer
AM ← f (I)
αck ← AM, f (I)
C ← the number of channels in AM
# Downsample IN to ĨQ, M < Q < N
ĨQ = s(Down(IN)Q)
for k in [0, ..., C− 1] do

# Upsample and normalize Ak
M

Ãk
Q = s(Up(Ak

M)Q)

# Hadamard product
Âk

Q = Ãk
Q ◦ ĨQ

end
# Generate heatmap
HSel f−Matching_CAM

N ← Σ
k

αckUp(Âk
Q)N

In addition, to avoid confusion, we compare the difference between Self-Matching
CAM and Score-CAM in detail. (1) Self-Matching CAM is a post-processing method
implemented on the heatmaps of available CAM methods, while Score-CAM is directly
used to generate a heatmap. (2) Self-Matching CAM aims at producing a group of new
feature maps matching the input image, while Score-CAM aims at manipulating the
weights of feature maps. (3) Self-Matching CAM does not involve the final classification
score Sc, while Score_CAM needs to calculate Sc for each feature map.

4. Experimental Results

In this section, we will compare the effect of Self-Matching CAM with Grad-CAM,
Grad-CAM++, XGrad-CAM, Ablation-CAM, and Score-CAM. We used AlexNet [30] as
the CNN model, as shown in Figure 2 (stochastic gradient descent (SGD) was adopted
as the optimizer, learning rate = 5× 10−4, momentum = 0.9). MSTAR was adopted as
a dataset that contains 2536 SAR images of 10 classes of vehicles for training and 2636
for validation. It is worth noting that the original SAR images are gray-scale; however,
to avoid modification of the parameters of AlexNet, all the SAR images are transformed
into pseudo-RGB images (reduplicate the monochromatic image in three channels). In this
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case, the parameters of AlexNet in Figure 2 are probably not the optimal set, e.g., the input
size of an MSTAR image is 100× 100, while AlexNet is trained with images with a size of
224× 224. Note that the gist of this paper is to probe into this CNN to understand what
information hidden in the input works on correct classification, but not the relationship
between CAM effects and complex parameter tuning. In spite of this, AlexNet still obtains
a high classification accuracy of 98.52% after 270 epochs, which demonstrates that this
set of parameters is effective. Without a special statement, the feature maps used in Self-
Matching CAM are generated from XGrad-CAM due to its good performance compared to
other methods in Figure 1. In addition, we conducted a perturbation analysis to further
demonstrate that Self-Matching CAM can capture the most informative part of the target.
Finally, we further studied how the highlighted region impacts CNN’s classification.

4.1. Qualitative Analysis

Figure 3 shows 10 SAR images of different targets and their corresponding heatmaps
generated by Ablation-CAM, Score-CAM, Grad-CAM, Grad-CAM++, XGrad-CAM, and Self-
Matching CAM. Qualitatively, it is intuitively evident that Self-Matching CAM outperforms
other CAM methods dramatically. Only Self-Matching CAM can delineate the sophisticated
edge of the target, while the other CAM methods can only provide a rough region. Score-
CAM, Grad-CAM, and XGrad-CAM usually highlight a region that excessively covers the
target, while Ablation-CAM and Grad-CAM++ highlight a narrow region that covers the
target incompletely.

It is necessary to point out that the negative performance of other CAM methods does
not mean the ineffectiveness of them. This is mainly because other CAM methods are
designed for high-resolution optical images, particularly of multiple objects with abundant
detailed information. Nonetheless, SAR images are quite different. (1) The resolution of
SAR images is usually lower than that of optical images. (2) In MSTAR data, the target
occupies only a small proportion of the image, whereas the objects usually occupy over half
of optical images, like CIFRA 10 and ImageNet. In this case, the heatmaps generated by
other CAM methods are difficult to locate on the target precisely though they are probably
enough for optical images. In contrast, Self-Matching CAM is particularly designed on the
basis of SAR image characteristics. The Hadamard product of the feature maps and input
SAR image in Equation (21) is for retaining as much information relevant to the target itself
as possible rather than some noise, like interference spots.

4.2. Quantitatively Analysis

To analyze the localization capability of these CAM methods quantitatively, we imple-
mented perturbation [19,26]. The underlying assumption is to occlude relevant/irrelevant
regions in an input image to check the change of recognition accuracy. Specifically, pertur-
bation can be categorized into an “occlusion test” and a “conservation test”. The occlusion
test is used to measure how much of a region relevant to the target is included in the
heatmap. In the occlusion test, we need to occlude the input image I by masking the region
highlighted by the CAM method:

Ǐ =I ◦ (1−MOcclusion) (23)

where Ǐ denotes perturbed image and MCAM denotes a binary-value mask defined as:{
MOcclusion

ij = 0, HCAM
ij ≥ 0.8,

MOcclusion
ij = 1, Hotherwise,

(24)

here HOcclusion
ij has been normalized to [0, 1]. This means that in mask MOcclusion, the ele-

ments corresponding to the top 20% value of the heatmap are set to 0, while the rest are
equal to the heatmap. Figure 4a shows the results of the occluded images.
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Figure 3. Comparison of various CAM methods for MTSTAR SAR images. The ten rows denote vehicles of different
classes: 2S1, BRDM_2, BTR_60, D7, SN_132, SN_9563, SN_C71, T62, ZIL131, and ZSU_23_4. The seven columns denote
Ablation-CAM, Score-CAM, Grad-CAM, Grad-CAM++, XGrad-CAM, and Self-Matching CAM.
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(a) (b)

Figure 4. Results of occlusion and conservation. (a) The occlusion results for a SAR image. The
six rows correspond to Ablation-CAM, Score-CAM, Grad-CAM, Grad-CAM++, XGrad-CAM, and
Self-Matching CAM. The four columns denote the original image, CAM heatmaps, binary mask,
and occluded image. (b) The conservation results of the SAR image. The organization of subfigures
is the same as for (a).

Then, we can calculate the divergence of the class confidence (the output of the softmax
layer) between the original image and the perturbed image:

con f idence_drop(I, Ǐ) =
Sc(I)− Sc( Ǐ)

Sc(I)
(25)

In the occlusion test, a higher value of con f idence_drop means that more parts of the
target are included in the highlighted region in the heatmaps. We computed the average
con f idence_drop for all validation data (2636 SAR images) in MSTAR with the mentioned
CAM heatmaps, which are shown in Table 1.

Table 1. Class_drop for occlusion test.

Ablation Score Grad Grad++ XGrad Self-Matching

0.492 0.998 0.965 0.476 0.963 0.968

From Table 1, Ablation-CAM and Grad-CAM++ obtain very low class_drop compared
with other methods. This indicates that these two methods cannot highlight parts of the
target in the heatmap rather than the entire target region. In contrast, the class_drop values
of the other methods are approximate to 1, which represents an entire coverage of the
target. However, sometimes the highlighted region overcovers the target, like Score-CAM,
Grad-CAM, and XGrad-CAM, as shown in Figure 3, which can also lead to a high value
of class_score in the occlusion test in Table 1. To measure how much of the region that is
irrelevant to the target is included in a heatmap, we also implemented a conservation test.
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The solitary difference between the conservation test and the occlusion test is the mask
MConservation formulation, defined as:

MConservation = U −MOcclusion (26)

where U is a matrix ∀i, j, Uij = 1. The results of the conservation test are shown in Figure 4b.
Evidently, a conservation test is an opposite operation of an occlusion test, which conserves
the highlighted region instead of occluding it. Thus, in a conservation test, a low value of
class_drop implies a more precise localization capability for CAM methods. The average
class_drop of 2636 SAR images in validation dataset is shown in Table 2.

Table 2. Class_drop for conservation test.

Ablation Score Grad Grad++ XGrad Self-Matching

0.581 0.613 0.643 0.417 0.576 0.002

From Table 2, Score-CAM, Grad-CAM, and XGrad-CAM all obtain a high class_drop
in the conservation test. This is probably because although they can cover the entire target,
such an overcovered region may also introduce redundant information like numerous
interference spots that exist in original images, which is negative for classification. In com-
parison, the class_drop for Self-Matching CAM is lower than that of the rest of the methods
dramatically. A high class_drop in the occlusion test and a low class_drop in the conserva-
tion test demonstrate that Self-Matching CAM locates the target precisely in the heatmap.
Such experimental results greatly match the intuition from Figures 3 and 4.

4.3. Classification Analysis

In this section, we will discuss the difference between Self-Matching CAM and other
CAM methods in view of classification mechanism. Here we can obtain a set of masked data
by implementing a conservation test for all MSTAR data under different CAM heatmaps
according to Equation (26). Here we view the heatmaps as filters that only pass the relevant
pixels of the input SAR image, like [31]. Next, we train another AlexNet with the masked
training data. Finally, the original data and the masked data are fed into these two CNNs
for testing.

The classification accuracy is shown in Figure 5. Here, Network 1 denotes the net-
work fed with original data and Network 2 denotes the network fed with masked data.
Interestingly, Network 1 is unable to classify masked data in any case. It manifests that
what Network 1 learned from original data is probably not truly relevant to the target but
is some other “coincident” information. Note that it is not overfitting since Network 1 can
achieve high accuracy for both training data and validation data. This phenomenon may
be due to the fact that Network 1 learned some “coincident” discriminative information
that is irrelevant to the target but exists in a different class. For example, to distinguish
people’s gender, facial features are usually considered as reasonable rather than dress color;
however, sometimes the latter works because of a coincidence that all women are in white
and all men are in red in a specific dataset. In addition, it can be observed from Figure 5
that only the network trained with masked data generated by Self-Matching CAM can
achieve more than 95% accuracy for original data and masked data simultaneously. This
further demonstrates that CNN really learned the most informative parts of the target in
SAR images from masked data generated by Self-Matching CAM.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Comparison of classification accuracy for Network 1 trained with original data and Network 2 trained with masked
data. (a) Ablation-CAM. (b) Score-CAM. (c) Grad-CAM. (d) Grad-CAM++. (e) XGrad-CAM. (f) Self-Matching CAM.

4.4. Generalization Analysis

Although all the above experimental results are based on AlexNet, Self-Matching
CAM actually achieves good generalization on multifarious CNN structures. In this section,
we will perform Self-Matching CAM with another three famous CNN models besides
AlexNet: VGG16, VGG19, and ResNet50. They can achieve a classification accuracy of
98.82%, 97.34%, and 72.84%, respectively. It is interesting that as the depth of the CNN
increases, the accuracy of the CNN reduces gradually (VGG16 has 13 convolutional layers,
VGG19 has 16 convolutional layers, and ResNet50 has 49 convolutional layers). Such results
may mismatch people’s intuition since a deeper CNN usually outperforms a shallower one
in traditional computer vision tasks. This is probably because the properties of SAR images
are quite different from those of ordinary optical images, leading to a CNN’s different
recognition mechanisms for them. However, this phenomenon implies the importance and
necessity of explaining what CNN learns from the input SAR images.

The visualization results for ResNet50 are considered less convincing and reasonable
in view of the low accuracy 72.84%, thus here only the Self-Matching CAM heatmaps based
on AlexNet, VGG16, and VGG19 are shown in Figure 6. In general, Self-Matching CAM
can highlight the target in the heatmap precisely for any one of three CNNs. In detail,
some minor differences still exist: (1) VGG19 is the most robust to noise, AlexNet is in
the middle, and VGG16 is the most sensitive to noise. This is probably because VGG19
has stronger abstraction ability in deeper convolutional layers, thus the feature maps in
the last convolutional layer contain less information relevant to noise. (2) VGG19 does
not highlight the target as completely as the other two CNNs. The reason is that the
feature maps in VGG19 not only eliminate noise interference but also exclude parts of the
information relevant to the target. The specific relationship between Self-Matching CAM
and CNN structures is beyond the gist of this paper but it is worth future research.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Experimental results for AlexNet, VGG16, and VGG19. In the first column (a,e,i) is SAR images for 2S1, BRDM_2,
and SN_132, respectively. The second column (b,f,j) is corresponding CAM heatmaps for AlexNet. The third column (c,g,k)
and fourth column (d,h,l) are corresponding CAM heatmaps for VGG16 and VGG19, respectively.

5. Discussion

In our study, the effectiveness of Self-Matching CAM was verified from qualitative,
quantitative, classification, and generalization analyses. Qualitative analysis provides an in-
tuitive comparison of heatmaps generated by Self-Matching CAM and other CAM methods.
It is clear that Self-Matching CAM can provide the most discriminative information that a
CNN needs to make a classification. Quantitative analysis demonstrates such an intuition
by a quantitative measurement: class_drop and two perturbation operations (occlusion
and conservation). Furthermore, classification analysis indicates that Self-Matching CAM
can enhance the robustness of a CNN and even improve accuracy slightly. Generalization
analysis demonstrates that Self-Matching CAM can be applied to various CNN structures.

It should be also clarified that this paper aims at providing a visual explanation of
CNN classification mechanisms but not designing an object extractor. Although some
simple image processing algorithms, such as edge detection or target location, can probably
profile the target in an SAR image, they are not correlated with a CNN’s inner products
(feature maps) but are based on prior human cognition, such as the correlation between
neighboring pixels, the sharp changes of gradient near an edge, etc. Hence, we have not
compared Self-Matching CAM with them in this paper.

6. Conclusions

A Self-Matching CAM method that can provide a novel and accurate explanation
of CNN for SAR image interpretation was proposed in this paper. Self-Matching CAM
was inspired by Score-CAM originally but aims at generating a set of new feature maps
matching the input image rather than complex manipulation on weights. Therefore, Self-
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Matching CAM is particularly suitable for SAR images whose resolution is low and the
extra-class difference is not vivid as optical images. Besides, Self-Matching CAM is not an
individual method but a framework that can be combined with various CAM methods,
thus for other types of images, it is possible to obtain the optimal collocation by tuning the
basis CAM method in Self-Matching CAM. In comparison to other state-of-the-art CAM
methods, the proposed method can precisely highlight the regions most relevant to the
target in the SAR image rather than a rough coverage. Numerous experimental results
verify the validity of Self-Matching CAM through qualitative and qualitative analyses.
Moreover, generalization analysis demonstrates that Self-Matching CAM can obtain accept-
able results with different CNNs. Classification analysis indicates that a CNN can learn
the information that is really relevant to the target instead of noise, interference, and other
coincident information. This finding may help to understand the inner mechanism of CNN
classification, which is our future research direction.
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