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Abstract: Because of the three-dimensional (3D) imaging scene’s sparsity, compressed sensing
(CS) algorithms can be used for linear array synthetic aperture radar (LASAR) 3D sparse imaging.
CS algorithms usually achieve high-quality sparse imaging at the expense of computational efficiency.
To solve this problem, a fast Bayesian compressed sensing algorithm via relevance vector machine
(FBCS–RVM) is proposed in this paper. The proposed method calculates the maximum marginal
likelihood function under the framework of the RVM to obtain the optimal hyper-parameters;
the scattering units corresponding to the non-zero optimal hyper-parameters are extracted as the
target-areas in the imaging scene. Then, based on the target-areas, we simplify the measurement
matrix and conduct sparse imaging. In addition, under low signal to noise ratio (SNR), low sampling
rate, or high sparsity, the target-areas cannot always be extracted accurately, which probably contain
several elements whose scattering coefficients are too small and closer to 0 compared to other
elements. Those elements probably make the diagonal matrix singular and irreversible; the scattering
coefficients cannot be estimated correctly. To solve this problem, the inverse matrix of the singular
matrix is replaced with the generalized inverse matrix obtained by the truncated singular value
decomposition (TSVD) algorithm to estimate the scattering coefficients correctly. Based on the
rank of the singular matrix, those elements with small scattering coefficients are extracted and
eliminated to obtain more accurate target-areas. Both simulation and experimental results show that
the proposed method can improve the computational efficiency and imaging quality of LASAR 3D
imaging compared with the state-of-the-art CS-based methods.

Keywords: linear array synthetic aperture radar (LASAR); compressed sensing (CS); fast Bayesian
compressed sensing algorithm via relevance vector machine (FBCS–RVM); three-dimensional (3D)
imaging; high computational efficiency

1. Introduction

Synthetic aperture radar (SAR) is a radar imaging technology and has been applied
in different fields such as ocean surface monitoring [1], target identification and classifica-
tion [2,3], resource exploration [4], and natural calamity monitoring [5] successfully because
of its all-day and all-weather working capabilities. Traditional SAR images only reflect
the two-dimensional (2D) information of targets while usually lose targets’ information
in the height direction; they cannot reflect the three-dimensional (3D) structure of targets.
This disadvantage limits the application of SAR seriously, and how to obtain targets’ 3D
imaging results is an important research area in SAR imaging fields.

In recent years, scholars have obtained targets’ 3D information successfully under
different SAR modes such as the tomography SAR (TomoSAR) [6], curvilinear SAR (Cur-
SAR) [7], and linear array SAR (LASAR) [8,9]. The TomoSAR obtains the third-dimension
imaging resolution by synthesizing the parallel baselines into a virtual aperture along the
elevation direction [6]. The CurSAR usually synthesizes a curved array by controlling
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the moving trajectory of a single antenna; it combines the pulse compression technology
to obtain the 3D imaging resolution [7]. The moving trajectories of both TomoSAR and
CurSAR are strictly limited to achieve high-quality imaging, which limits their applications
seriously [8]. In addition, the LASAR synthesizes the 2D equivalent array by the moving of
linear array; it obtains the 3D imaging results of the imaging scene by combining the pulse
compression technology. Compared with both TomoSAR and CurSAR, the LASAR has a
better antenna phase center (APC) control accuracy and a flexible moving trajectory [8,9].
Therefore, the LASAR is studied for 3D imaging in this paper.

When performing the LASAR 3D imaging by the matched filter (MF) [10] algorithms,
the array imaging resolution of LASAR is limited by the length of the linear array [11].
To realize high-quality imaging, the LASAR must satisfy the following two requirements:

• The spacing between adjacent elements in the linear array must satisfy the Nyquist
sampling theorem to avoid the grating lobes [12].

• The echo signals of the whole linear array must be adopted to avoid the sidelobes
interference as much as possible.

The above two requirements make the number of elements in the linear array very
huge; the realization of the LASAR in the real hardware system is very complex and costly.

Compressed sensing (CS) algorithms [13–16] can recover the original sparse signals
by using random sampling signals; they have been introduced into LASAR imaging
successfully according to the sparsity of the LASAR imaging scene. When performing
LASAR sparse imaging by different CS algorithms (e.g., the orthogonal matching pursuit
(OMP) [17], the Bayesian compressed sensing (BCS) [18], the sparsity Bayesian recovery
via iterative minimum (SBRIM) [19], and the iterative shrinkage thresholding (ISTA) [20]
algorithm); those algorithms improve the array imaging resolution of LASAR. The linear
array is usually replaced with the random sampling array to reduce the array elements
used for sparse imaging.

Those CS algorithms must set several parameters (e.g., the sparsity of the imaging
scene, the hyper-parameters in the BCS algorithms, the iteration stepsize in the ISTA al-
gorithm) manually before conducting sparse imaging. Once the preset parameters are set
inappropriately; CS algorithms probably suffer from the sidelobe interferences seriously
and even cannot estimate the scattering coefficients correctly. Their computational com-
plexity probably increase significantly. Those preset parameters cannot always meet the
requirement of high-quality sparse imaging under different LASAR data; they need to be
debugged repeatedly. Since the preset parameters usually do not need to be re-debugged
under different LASAR data, the SBRIM algorithm obtains imaging results with relatively
high quality among CS algorithms. However, its computational complexity is very huge be-
cause of the high-dimensional matrix operations (e.g., the matrix-inversion); the hardware
system must have very strong computational power to complete the high-dimensional
matrix operations. This disadvantage limits the applications of the SBRIM algorithm in 3D
sparse imaging seriously. Therefore, we need to study how to improve the computational
efficiency of the SBRIM algorithm under the premise of ensuring imaging quality.

Due to the strong sparsity of the 3D imaging scene, the target-areas usually only
occupy a small part of the whole imaging scene. The measurement matrix in sparse imaging
usually contains a large number of elements which are not related to the targets. Therefore,
the computational efficiency of sparse imaging can be improved effectively by simplifying
the measurement matrix. In our previous research, the fast sparse recovery algorithm via
resolution approximation (FSRARA) [21] improves the computational efficiency of sparse
imaging successfully through simplifying the measurement matrix according to the target-
areas in the imaging scene. However, once the 3D preliminary imaging results are not
obtained correctly, the FSRARA cannot extract the target-areas accurately and estimate the
scattering coefficients correctly. Its imaging quality and computational efficiency decrease
significantly. Therefore, we need to study a new fast CS algorithm for LASAR 3D imaging.

In this paper, we propose a fast Bayesian compressed sensing (FBCS–RVM) algorithm
via relevance vector machine to achieve LASAR 3D sparse imaging with high efficiency
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and quality. Under the framework of the relevance vector machine (RVM) [22], every
scattering unit in the imaging scene is given an independent hyper-parameter to measure
its scattering coefficient’s estimation accuracy. The optimal hyper-parameters are obtained
successfully by calculating the maximum marginal likelihood function, and the scatter-
ing units corresponding to the non-zero elements in the optimal hyper-parameters are
extracted as the target-areas. Then, the target-areas are used as the prior information to
simplify the measurement matrix and conduct sparse imaging. Under several imaging
conditions (e.g., low signal to noise ratio (SNR) [23], low sampling rate, or high sparsity of
the imaging scene), the target-areas cannot be always extracted accurately. They probably
contain several elements whose scattering coefficients are too small or closer to 0 compared
to other elements. Those elements make the diagonal matrix (which is calculated by the
measurement matrix and the preliminary estimation values of the scattering coefficients;
it is used to obtain the optimal scattering coefficients) singular and irreversible; the scat-
tering coefficients cannot be estimated correctly. To solve this problem, the inverse matrix
of the singular matrix is replaced with the generalized inverse matrix obtained by the
truncated singular value decomposition (TSVD) [24] algorithm to correctly estimate the
scattering coefficients. These elements with small scattering coefficients are extracted and
eliminated to obtain more accurate target-areas. The main contributions of this paper are
summarized as the following content:

1. The FBCS–RVM algorithm is proposed to achieve LASAR 3D sparse imaging with
high imaging quality and computational efficiency.

2. The FBCS–RVM algorithm extracts scattering units corresponding to the non-zero
optimal hyper-parameters in the RVM as the target-areas in the imaging scene.

3. The FBCS–RVM algorithm correctly estimates the scattering coefficients and obtains
more accurate target-areas through eliminating the elements with small scattering
coefficients in the target-areas by the TSVD algorithm.

The remaining sections are arranged as: the sparse imaging model of LASAR is given
in Section 2. The basic principles of the FBCS–RVM algorithm are introduced in Section 3.
Section 4 conducts the simulation and experimental results to illustrate the effectiveness
and evaluate the performance of the FBCS–RVM algorithm. Sections 5 and 6 give the
discussions and conclusions of this paper, respectively.

2. The Sparse Imaging Model of LASAR

According to Figure 1, the linear array is located in the CT direction. LASAR ob-
tains a 2D equivalent array by moving along the AT direction under a constant speed,
and it obtains the 3D imaging results after combining the range compression technology.
When conducting LASAR 3D imaging, the 3D imaging scene is usually considered as com-
posed of discrete scattering units. After performing range compression on the original echo
signals, according to the range information of the sampling points in the range domain,
the 3D imaging scene is divided into NR equidistant planar 2D imaging scene along the
range direction. Every equidistant planar 2D imaging scene is divided into M discrete
scattering units with uniform spacing, where NR is the number of sampling points in the
range domain.

Set the LASAR to transmit the linear frequency modulation (LFM) signal [25]. Af-
ter range compression, the lth APC’s echo signal in the nth equidistant plane is:

sr(n, l) =
M

∑
m=1

αnm χR(rn − Rn,l,m)exp{−j2kRn,l,m} (1)

where n = 1, · · · , NR, l = 1, . . . , NA, and m = 1, · · · , M. NA denotes the total num-
ber of APCs in the 2D equivalent array. r represents the range domain. k represents
the wave-number of LASAR. Rn,l,m = ‖Ql − Pnm‖2 is the distance between Ql and Pnm .
Ql = (xl, yl, zl) is the 3D coordinate of the lth APC in the 2D equivalent array. αnm and
Pnm = (xnm , ynm , znm) represent the scattering coefficient and 3D coordinate of the mth
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scattering unit in the nth equidistant plane. χR(.) represents the ambiguity function in the
range direction.

Figure 1. The geometric model of LASAR. The x, y, and z-axes represent the along-track (AT),
cross-track (CT) direction, and height direction, respectively.

Set ψn(m, l) = χR(rn − Rn,l,m)exp(−j2kRn,l,m) to represent the delay phase between
Pnm and Ql ; the echo signal sr(n, l) can be decomposed as:

sr(n, l) = ψn(l)Tαn (2)

where ψn(l) = Vec[ψn(m, l)] ∈ CM×1. αn = Vec[αnm ] ∈ CM×1. m = 1, · · · , M. Vec[.] is the
vectorized symbol. αn is the nth equidistant planar scattering coefficients.

When considering all APCs in the 2D equivalent array, the linear representation model
of the nth equidistant planar echo signal is defined as:

sn = Θnαn + ξ (3)

where sn = Vec[sr(n, l), l = 1, . . . , NA] ∈ CNA×1 represents the echo signal of the nth equidis-
tant plane after range compression. Θn = Vec[ψn(m, l), l = 1, . . . , NA, m = 1, . . . , M]T ∈
CNA×M represents the measurement matrix corresponding to sn and is composed of the
phase delay between the APCs in the 2D array and the scattering units in the imaging
scene. ξ is the signal noise in sn.

Therefore, based on the CS theory, sparse imaging on the nth equidistant planar
imaging scene is translated into getting the optimal value of the scattering coefficients αn
by solving the L1 norm optimization problem in Equation (4). In addition, the 3D imaging
results are obtained by combining all equidistant planar 2D imaging results according to
their information in the range direction:

α̂n = arg min
αn
‖αn‖1 s.t‖sn −Θnαn‖2 ≤ ε (4)

where ε is the termination threshold of the signal noise.
However, when performing LASAR sparse imaging by CS algorithms, the parameters

(e.g., the termination threshold ε or the sparsity of the imaging scene) should be debugged
carefully and repeatably in most cases; this usually produces extensive computational
complexity. In addition, the high-dimensional matrix operations in the several CS algo-
rithms (e.g., the BCS and SBRIM algorithm) make their computational complexity huge.
The huge computational complexity requires very strong computational power on the
hardware system. Since the measurement matrix Θn in Equation (3) is corresponding to
all scattering units in the imaging scene, Θn usually contains lots of elements that are not
related to the targets because of the sparsity of the imaging scene. Therefore, we propose
the FBCS–RVM algorithm to improve the computational efficiency of sparse imaging,
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which can extract the target-areas in the imaging scene and simplify the measurement
matrix and its corresponding matrix operations.

3. FBCS–RVM

In this section, the FBCS–RVM algorithm is proposed to achieve sparse imaging with
high quality and efficiency, which mainly includes two parts: extracting the target-areas and
sparse imaging on the target-areas. Firstly, based on the sparsity of the 3D imaging scene,
we treat extracting the target-areas as the classification of targets and background in the
imaging scene. Inspired by the relevance vector machine (RVM) [22], we obtain the target-
areas successfully by calculating the maximum marginal likelihood function in the RVM
to classify the scattering units. Secondly, we use the target-areas as the prior information
to simplify the measurement matrix and achieve sparse imaging with high efficiency.
However, when the target-areas contain several elements whose scattering coefficients
are too small or closer to zero compared to other elements, the diagonal matrix in sparse
imaging becomes singular and the scattering coefficients cannot be correctly estimated.
Then, we introduce the truncated singular value decomposition (TSVD) algorithm [24]
to correctly estimate scattering coefficients and eliminate the elements with too small
scattering coefficients in the target-areas.

According to Section 2, the 3D sparse imaging has been translated into 2D sparse
imaging on every equidistant planar 2D imaging scene. We choose 2D sparse imaging on
the nth equidistant planar 2D imaging scene as an example to introduce the basic steps of
the FBCS–RVM algorithm in the following section. In addition, its flowchart is shown in
Figure 2.

Figure 2. The flowchart of the FBCS–RVM algorithm.

3.1. Extract the Target-Areas in the Imaging Scene

In this subsection, we classify the scattering units to extract the target-areas by calcu-
lating the maximum marginal likelihood function in the RVM. In addition, the maximum
marginal likelihood function is obtained by calculating its maximum value correspond-
ing to every scattering unit to improve the computational efficiency. The basic steps of
extracting the target-areas are introduced in the following content.

Step 1: Obtain the real-valued echo signal and measurement matrix.
Since the RVM only can deal with real-valued data and both the echo signal sn

and measurement matrix Θn are complex-valued data, both sn and αn are represented
equivalently by their real and imaginary parts before classifying the scattering units.
The real-valued echo signal snr ∈ C2NA×1 and scattering coefficients αnr ∈ C2M×1 are
obtained by Equation (5):

snr =

{
Re(sr(n, l))
Im(sr(n, l))

}
αnr =

{
Re(αnm)
Im(αnm)

}
(5)

where l = 1, . . . , NA and m = 1, . . . , M. Re(·) and Im(·) are the real and imaginary parts of
the complex-valued data, respectively. Based on the equivalent representation of complex-
valued echo signal and scattering coefficients in Equation (5), the echo signals’ linear
representation model in Equation (3) is equivalently represented as:

snr = Θnr αnr + ξr (6)
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where ξr is the signal noise in snr . Θnr is the real-valued measurement matrix and shown
in Equation (7):

Θnr =

{
Re(Θn(m, l)) −Im(Θn(m, l))
Im(Θn(m, l)) Re(Θn(m, l))

}
(7)

Step 2: Initialize the basic parameters: the nth equidistant planar scattering coefficients
α̂0

nr and their corresponding hyper-parameters λ0
n.

Based on Equation (6) and the matched filter (MF) algorithm, the initial scattering
coefficients α̂0

nr of the nth equidistant planar imaging scene are obtained by Equation (8):

α̂0
nr = {α̂0

nrm
=

∥∥φT
rm snr

∥∥2(
∑ φ2

rm

)T , 1 ≤ m ≤ 2M} (8)

where φrm is the mth column vector in Θnr . M is the total number of the scattering units
in the nth equidistant plane. Then, the independent hyper-parameters are introduced to
evaluate the estimation accuracy and initialized by λ0

n = {λ0
nm = 0, 1 ≤ m ≤ 2M}.

Step 3: Select the maximum element in α̂0
nr as the initial target-areas.

To ensure the extraction of the scattering unit where targets as the initial target-areas
exist, the scattering unit corresponding to the maximum element in α̂0

nr is considered as
the initial target-areas G0

nr , which is the global maximum element and unique in the nth
equidistant planar 2D imaging scene; it is also the local maximum value in the 3D imaging
scene. Its serial number in the imaging scene is Id0. Its hyper-parameter λ0

nId0
is calculated

by Equation (9) to avoid full-zero hyper-parameters λ0
n:

λ0
nId0

=
‖φr0 snr‖2

max(α̂0
nr )− β0

(9)

where φr0 = Θnr (:, Id0). β0 is the variance of the signal noise in snr .
Step 4: Calculate the optimal hyper-parameters to extract the target-areas.
We calculate the maximum marginal likelihood function in the RVM [26] after several

iterations to obtain the optimal hyper-parameters; the scattering units corresponding to the
non-zero optimal hyper-parameters are extracted as the target-areas. In the tth iteration,
the marginal likelihood function L

(
λt

n
)

is shown in Equation (10) and related to the echo
signal, measurement matrix, and hyper-parameter’ estimation value:

L
(
λt

n
)
= −1

2

[
2M log 2π + log |Ct|+ sT

nr C−1
t snr

]
(10)

where Ct = βI + Θnr (Λ
t
λ)
−1ΘT

nr ∈ C2NA×2NA . I is the identity matrix. β is the variance of
signal noise in snr . Λt

λ = diag(λt
ni

, i = 1, · · · , 2M) and λt
n = {λt

ni
, i = 1, · · · , 2M} are the

diagonal matrix and vector of the hyper-parameters in the tth iteration, respectively.
If we calculate the maximum L

(
λt

n
)

directly, the computational complexity is huge
because of the matrix operations on Ct. To solve this problem, L

(
λt

n
)

is decomposed into
two parts corresponding to one and other hyper-parameters, respectively. The maximum
L
(
λt

n
)

can be obtained by calculating its maximum value corresponding to every hyper-
parameter. For example, when only considering the ith hyper-parameter λt

ni
, L
(
λt

n
)

is
decomposed as:

L
(
λt

n
)
= L

(
λt

n−i

)
+ l(λt

ni
) (11)

where l(λt
ni
) is the marginal likelihood function corresponding to λt

ni
and shown in Equa-

tion (12) (its detailed derivation is shown in Appendix A). L
(

λt
n−i

)
is the marginal likeli-
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hood function corresponding to other hyper-parameters. The maximum value of l
(

λt
ni

)
is

obtained by calculating its derivative with Equation (13) to estimate λt
ni

:

l(λt
ni
) =

1
2
[log |λt

ni
| − log |λt

ni
+ f t

i |+
(qt

i)
2

λt
ni
+ f t

i
] (12)

∂l(λt
ni
)

∂λt
ni

=
( f t

i )
2 − (λt

ni
)((qt

i)
2 − f t

i )

λt
ni
(λt

ni
+ f t

i )
2 (13)

where f t
i = φT

ri
C−1

t−i
φri and qt

i = φT
ri

C−1
t−i

snr are calculated by Equation (14) (Their derivation
is shown in Appendix B): If i ∈ Gt−1

nr f t
i =

λt−1
ni

Ft−1
i

λt−1
ni − Ft−1

i

qt
i=

λt−1
ni

Qt−1
i

λt−1
ni − Ft−1

i
Else f t

i =Ft−1
i qt

i=Qt−1
i

(14)

where Ft−1
i = φT

ri
C−1

t−1φri and Qt−1
i = φT

ri
C−1

t−1snr ; λt−1
ni

is the estimation value of the ith
hyper-parameter after t− 1 iterations.

When f t
i and qt

i satisfy (qt
i)

2 − f t
i ≤ 0, l(λt

ni
) increases gradually, and a maximum

value corresponding to λt
ni

does not exist. Under this case, λt
ni

is set as 0, its corresponding
scattering unit does not belong to the target-areas. Otherwise, l(λt

ni
) has a maximum

value when
∂l(λt

ni
)

∂λt
ni

= 0; the estimation value of λt
ni

is λt
ni

=
( f t

i )
2

(qt
i)

2 − f t
i

; its correspond-

ing scattering unit is classified into the target-areas. Similarly, the hyper-parameters
λt

n = {λt
ni

, 1 ≤ i ≤ 2M} and their marginal likelihood function’s increase Et = {et
i =

l(λt
ni
)− l(λt−1

ni
), 1 ≤ i ≤ 2M} are updated by Equation (15):

If (qt
i)

2 − f t
i > 0 λt

ni
=

( f t
i )

2(
qt

i
)2 − f t

i

et
i =

(Qt−1
i )

2−Ft−1
i

Ft−1
i

+ log
(

Ft−1
i

(Qt−1
i )

2

)
Else λt

ni
= 0 et

i =
(Qt−1

i )
2

Ft−1
i −λt−1

ni
+ log

(
λt−1

ni
Ft−1

i −λt−1
ni

) (15)

If Et satisfies

∥∥max
(
Et)−max

(
Et−1)∥∥

‖max(Et)−max(E0)‖ < εe, the marginal likelihood function L
(
λt

n
)

reaches the preset estimation accuracy. λt
n is considered as the optimal hyper-parameters,

where εe is the iteration termination threshold. Under this case, the iteration will be
terminated, and the final target-areas are obtained and recorded as Gnr = Gt−1

nr . Otherwise,
the scattering unit corresponding to the maximum element in Et is extracted and recorded
as Idt. Based on the hyper-parameter λt−1

Idt
, f t

Idt
and qt

Idt
, the Idt scattering unit is judged

whether it belongs to the target-areas.

When
(

qt
Idt

)2
− f t

Idt
> 0, the marginal likelihood function corresponding to the Idt

scattering unit has a maximum value; the Idt scattering unit is added into the target-areas.

Otherwise, when
(

qt
Idt

)2
− f t

Idt
≤ 0 and λt−1

Idt
> 0, the Idt scattering unit is divided into the

target-areas Gt−1
nr in the previous iterations; its corresponding marginal likelihood function

does not have a maximum value after the current iteration. The Idt scattering unit must
be deleted from the target-areas. Therefore, the target-areas are updated by Equation (16).
Meanwhile, the calculation formula of λt

Idt
is shown in Equation (16):
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If (qt

i)
2 − f t

i > 0 Gt
nr = Gt−1

nr ∪ Idt λt
Idt

=
( f t

Idt
)2(

qt
Idt

)2
− f t

Idt

If (qt
Idt
)2 − f t

Idt
≤ 0, λt−1

Idt
> 0 Gt

nr = Gt−1
nr

/
Idt λt

Idt
= 0

(16)

where ∪ and / are the add element and delete element operation, respectively. In addition,
Ft

i and Qt
i are updated by Equation (17); we continue iterations to obtain the optimal

hyper-parameters:
Ft

i = φT
ri

C−1
t φri =

φT
ri

φri

β0
−

φT
ri

ΦtΣt−1
n ΦT

t φri

β2
0

Qt
i = φT

ri
C−1

t snr =
φT

ri
snr

β0
−

φT
ri

ΦtΣt−1
n ΦT

t snr

β2
0

(17)

where Φt = {φrId1
, · · · , φrIdt

} represents the column vectors corresponding to Gt
nr . Σt−1

n is
the estimation variance of the scattering coefficients.

Step 5: Calculate the complex-valued target-areas Gn by Equation (18).
Since the target-areas Gnr are corresponding to the real-valued scattering coefficients

αnr , Gnr cannot be used as the prior information to simplify the measurement matrix and
conduct sparse imaging. Because one element in the complex-valued scattering coefficients
αn is related to two adjacent elements in αnr (e.g., the 2m− 1 and 2m element in αnr are
the real and imaginary part of the m element in αn, respectively); the target-areas Gn
corresponding to αn are obtained by Equation (18):

Gn = {wr = round
(

Gnr (r) + 1
2

)
, 1 ≤ r ≤ Nn} (18)

where Nn is the total number of elements in the target-areas Gn, and wr is the serial number
of the rth element in the target-areas Gn in the imaging scene.

In addition, the main steps of obtaining Gn are summarized in Algorithm 1.

Algorithm 1 Extract the target-areas

Input: Echo signal sn, measurement matrix Θn, εe
Step 1: Obtain the real-valued echo signal and measurement matrix by Equations (5)
and (6), respectively.
Step 2: Initialize the nth equidistant planar scattering coefficients α̂0

nr by Equation (9);
Step 3: Select the maximum element in α̂0

nr as the initial target-areas: G0
n = Id0;

Calculate its hyper-parameter λ0
nId0

by Equation (9);
Step 4: Calculate the optimal hyper-parameters to extract the target-areas.
Calculate the hyper-parameters λt

n and the marginal likelihood function’s increase Et by
Equation (15).

if

∥∥max
(
Et)−max

(
Et−1)∥∥

‖max(Et)−max(E0)‖ > εe then

Continue iteration, update the target-areas Gt
nr and λt

Idt
by Equation (16);

Update Ft
i and Qt

i by Equation (17)
t = t + 1;

else
Terminate iteration;

end if
Step 5: Calculate the complex-valued target-areas Gn by Equation (18).

Output: the target-areas Gn.
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3.2. Sparse Imaging According to the Target-Areas

To achieve sparse imaging with high-efficiency, the key is to avoid or simplify the
high-dimensional matrix-operations corresponding to the measurement matrix. In this
subsection, we use the target-areas as the prior information to simplify the measurement
matrix and scattering coefficients firstly. Then, we estimate the target-areas’ scattering
coefficients with the simplified measurement matrix to obtain imaging results with high
quality and efficiency.

However, when the target-areas probably contain several elements whose scattering
coefficients are too small compared to other elements. Those elements with too small scat-
tering coefficients probably lead to the diagonal matrix become singular and irreversible;
the scattering coefficients cannot be estimated correctly because of the singular matrix.
To solve this problem, the truncated singular value decomposition (TSVD) [24] algorithm
is introduced to eliminate the elements with too small scattering coefficients and estimate
the scattering coefficients correctly. The detailed steps of sparse imaging on the target-areas
are introduced as the following content.

Step 1: Simplify the scattering coefficients and measurement matrix.
Since the target-areas Gn contain part scattering units and the column vectors in the

measurement matrix Θn are corresponding to the scattering units one to one (e.g., the mth
column vector is corresponding to the mth scattering unit), we extract the scattering
coefficients and measurement matrix’s column vectors corresponding to Gn based on
the serial numbers of the scattering units in Gn. The target-areas’ scattering coefficients
αw ∈ CNn×1 and measurement matrix Θw ∈ CNA×Nn are shown in:{

αw = {αw1 , · · · , αwr , · · · , αwNn
}

Θw = {φw1 , · · · , φwr , · · · , φwNn
} (19)

where φwr =
[
Θn(1, wr), . . . , Θn(NA, wr)

]
is the column vector in Θn related to the r

element in the target-areas Gn. NA denotes the total number of APCs in the 2D array.
The linear representation model of the nth equidistant planar echo signal sn is trans-

lated into sn = Θwαw + ξ, where ξ is the signal noise in sn and obeys the Gaussian
distribution. Therefore, sparse imaging on the target-areas is translated into getting the

optimal estimation value of α̂w. In addition, α̂w is initialized by α̂0
w =

ΘH
w sn

NA
to eliminate

the false targets or sidelobes caused by the signal noise preliminarily.
Step 2: Estimate the target-areas’ scattering coefficients.
Since the target-areas’ measurement matrix Θw and scattering coefficients α̂w are

simplified effectively, the optimal target-areas’ scattering coefficients α̂w are obtained by
calculating the minimum cost function in the SBRIM algorithm [19] after several iterations.
In the tth iteration, the cost function is shown in Equation (20):

J(α̂(t)
w , β̂(t)) ,NAlnβ̂(t) +

‖sn −Θwα̂
(t)
w ‖2

2

β̂(t)
+ λ

Nn

∑
r=1

(|α̂(t)wr |2 + η)

p
2 (20)

where λ > 0. η > 0. 0 < p ≤ 1. Nn is the total number of elements in the target-areas Gn.
The estimation values of α̂

(t)
w and β̂(t) are obtained by calculating the partial derivative

of the cost function J(α̂(t)
w , β̂(t)) with respect to α̂

(t)
w and β̂(t), respectively. As a result, α̂

(t)
w

and β̂(t) are updated by Equation (21):
α̂
(t)
w = Θ−1

Λt
ΘH

w sn

β̂(t) =
‖sn −Θwα̂

(t)
w ‖2

2
NA

(21)
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where ΘΛt = diag{ΘΛt(wr, wr), 1 ≤ r ≤ Nn} is the diagonal matrix in the tth iteration and
defined as:

ΘΛt(wr, wr) = φH
wr φwr + λβ̂(t−1) p

2
(|α̂(t−1)

wr |2 + η)

p
2
−1

(22)

where φwr is the rth column vector in Θw. α̂
(t−1)
wr is the rth element in the estimation value

of α̂w after t− 1 iterations.
However, when conducting sparse imaging under low sampling rate, low SNR, or high

sparsity, several false targets in the initial scattering coefficients α̂0
nr usually exist, which

correspond to the hyper-parameters and their corresponding estimation errors according
to Equations (14)∼(17). Those false targets probably are classified into the target-areas
erroneously or lead to the iterations in extracting the target-areas terminating earlier. Those
two cases above will result in the target-areas losing partial targets’ information or suffering
due to the false targets.

Once the target-areas Gn have several elements whose scattering coefficients are
too small or closer to zero compared to the other elements, the diagonal matrix ΘΛt is
singular and irreversible because of the elements with scattering coefficients that are too
small; we cannot estimate α̂

(t)
w correctly by Equation (21). To eliminate the elements with a

scattering coefficient that is too small in Gn, the truncated singular value decomposition
(TSVD) algorithm is introduced in this subsection.

Firstly, the singular matrix ΘΛt is decomposed as Equation (23) by the singular value
decomposition (SVD) [27] method:

ΘΛt = U t
nσt

nV t
n

T
=

Nn

∑
i=1

ut
ni

σt
ni
(vt

ni
)T (23)

where U t
n =

[
ut

n1
, · · · , ut

nNn

]
∈ CNn×Nn and V t

n =
[
vt

n1
, · · · , vt

nNn

]
∈ CNn×Nn are formed by

the singular vectors of ΘΛt . σt
n = diag(σt

ni
, i = 1, · · · , Nn) ∈ CNn×Nn ; σt

ni
is the ith singular

value of ΘΛt and satisfies σt
n1

> σt
n2

> · · · > σt
nNn

.
Once ΘΛt is singular and irreversible, σt

n contains Nn−K elements which are too small
compared to other elements, where K = rank(ΘΛt) is the rank of ΘΛt [28]. To eliminate
the small singular values, the generalized inverse matrix Θt

G ∈ CNn×Nn is obtained by

Θt
G =

K
∑

i=1

vt
ni
(ut

ni
)T

σt
ni

. Then, the inverse matrix of ΘΛt is replaced with the generalized

inverse matrix Θt
G to estimate the α̂

(t)
w correctly:

α̂
(t)
w = Θt

GΘH
w sn (24)

Since the elements with the small scattering coefficients still exist in the target-areas
Gn, we extract the elements in Gn corresponding to the largest K elements in α̂

(t)
w as the

new target-areas by Equation (25) to eliminate those elements:{
If α̂

(t)
wr < α̂

(t)
w0 wr /∈ Gn

If α̂
(t)
wr ≥ α̂

(t)
w0 wr ∈ Gn

(25)

where α̂
(t)
w0 is the Kth largest element in α̂

(t)
w .

Step 3: Determine whether to continue iteration.

If α̂
(t)
w and current iteration t satisfy

‖α̂(t)
w − α̂

(t−1)
w ‖2

‖α̂(t)
w ‖2

≥ ε0 and t ≤ IS. This indicates

that α̂
(t)
w does not meet the preset estimation accuracy; the current iteration is smaller

than the preset maximum iterations; then, continue the iteration, where ε0 represents the
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iteration termination threshold; and IS represents the total number of iterations. Other-
wise, the iterations will be ended; α̂

(t)
w is considered as the optimal target-areas scattering

coefficients.
The nth equidistant planar 2D imaging results αn = {αn(m), m = 1, · · · , M} are

obtained by Equation (26). The main steps of sparse imaging on the target-areas are shown
in Algorithm 2. In addition, the 3D imaging results α = {αn, n = 1, · · · , NR} are obtained
by combining all equidistant planar imaging results:{

If m /∈ Gn αn(m) = 0

If m ∈ Gn αn(m) = α̂
(t)
wm

(26)

where M is the total number of scattering units in the imaging scene.

Algorithm 2 Sparse imaging on the target-areas

Input: Echo signals sn; measurement matrix Θn; target-areas Gn; the total number of the
iterations IS; the termination threshold ε0;
Step 1: Simplify the measurement matrix and scattering coefficients by Equation (19).
Step 2: Estimate the target-areas’ scattering coefficients α̂

(t)
w ;

if K < Nn then
Calculate α̂

(t)
w by Equation (24);

Obtain more accurate target-areas Gn by Equation (25).
else K = Nn

Calculate α̂
(t)
w by Equation (21).

end if
Calculate the noise variance β̂(t) by Equation (21).
Step 3: Determine whether to continue iteration;

if 1 ≤ t ≤ IS and
‖α̂(t)

w − α̂
(t−1)
w ‖2

‖α̂(t)
w ‖2

< ε0 then

Continue iteration: t = t + 1 and return to Step 2.
else

End iteration.
Obtain the nth equidistant planar imaging results α

(t)
n by Equation (26).

end if
Output: The 2D imaging results: αn.

3.3. Computational Complexity of the FBCS–RVM Algorithm

In this subsection, we analyze the computational complexity of the FBCS–RVM algo-
rithm. According to Sections 3.1 and 3.2, the computational complexity of the FBCS–RVM
algorithm is mainly generated by two parts: extracting the target-areas and sparse imaging
on the target-areas.

(1): The computational complexity of extracting the target-areas is
NR
∑

n=1
ϑ(4InNA M), which is

mainly generated by Equation (17); where ϑ(1) is the unit computational complexity;
In is the total number of iterations in extracting the target-areas; NA represents the to-
tal number of APCs in the 2D equivalent array; M is the total number of the scattering
units in the 2D imaging scene.

(2): The computational complexity of sparse imaging on the target-areas is
NR
∑

n=1

IS
∑

n=1
ϑ(NAN2

n),

which is mainly generated in α̂w by Equation (21) or (24), where Nn is the total number
of elements in the target-areas; IS is the total iterations in sparse imaging.

Hence, the total computational complexity of LASAR 3D imaging by the FBCS–RVM

algorithm is
NR
∑

n=1
ϑ(4InNA M) +

NR
∑

n=1

IS
∑

t=1
ϑ(NAN2

n).
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According to the Introduction, CS algorithms must set several parameters manually
before conducting sparse imaging. Most CS algorithms (e.g., the OMP and BCS algo-
rithms) are influenced by the preset parameters greatly; their computational complexity
significantly increases once the preset parameters are set inaccurately. However, the com-
putational complexity of both SBRIM and FBCS–RVM algorithm are not affected by the
preset parameters. Therefore, we only give the comparison results of the computational
complexity between the SBRIM and FBCS–RVM algorithm in Table 1.

Table 1. The computational complexity of the SBRIM and FBCS–RVM algorithm.

Algorithm Computational Complexity

SBRIM ϑ(NR IS NA M2)

FBCS–RVM NR

∑
n=1

ϑ(4In NA M) +
NR

∑
n=1

IS

∑
t=1

ϑ(NA N2
n)

Since the target-areas usually occupy a small part of the imaging scene, M, In, and
Nn satisfy Nn ≤ In < M. The computational complexities of the SBRIM and FBCS–RVM

algorithm satisfy
NR
∑

n=1
(4NA In M +

IS
∑

t=1
NAN2

n) < NR ISNA M2. The FBCS–RVM algorithm

improves the computational efficiency effectively compared to the SBRIM algorithm.

4. Results on Simulation and Experimental Data

To verify the effectiveness of the FBCS–RVM algorithm, the simulation results are
used to quantitatively analyze the imaging quality and estimation accuracy of the FBCS–
RVM algorithm under known targets’ information (such as the scattering coefficients and
geometric distribution) firstly. Secondly, the experimental results are used to certify the
effectiveness of the FBCS–RVM algorithm in the real LASAR data.

In addition, the OMP [17], fast marginalized sparse Bayesian learning (FMSBL) [29,30],
and SBRIM [21] algorithms are used as the comparison algorithms to evaluate the perfor-
mance of the FBCS–RVM algorithm better. The normalized mean square error (NMSE) [31,32]
measures the scattering coefficients’ estimation accuracy; the smaller NMSE indicates that
the estimation results of the scattering coefficients are more accurate. The target background
contrast (TBR) [33] and image entropy (ENT) [34] are used to quantitatively evaluate the
imaging quality. TBR reflects the targets’ characteristics in the imaging results; targets can
be identified from the imaging results more easily under larger TBR. ENT quantifies the
focus quality of the imaging results; targets are focused better under smaller ENT. There-
fore, the larger TBR and smaller ENT indicate higher imaging quality. The running time
speed-up ratio (RTSR) [21] and execution time (ExT) are used to evaluate the computational
efficiency. The higher RTSR indicates that the improvement of the computational efficiency
is larger between the FBCS–RVM and the comparison algorithm. Both simulation and
experimental experiments are carried out on the computer with Intel Core i9 10,900K CPU
at 3.70 GHz, Nvidia GeForce RTX 2060 Super with 8 GB memory, and 32 GB computer
memory space.

4.1. Compared with the Comparison Algorithms
4.1.1. Results on the 2D Point-Target Simulation Data

Since the 3D sparse imaging has been translated into the sparse imaging on every
equidistant planar 2D imaging scene, the point-target simulations on one equidistant planar
2D imaging scene are conducted firstly to illustrate the effectiveness of the FBCS–RVM
algorithm quickly and evaluate its performance accurately. The main parameters and
the original scene of the point-target simulations are shown in Table 2 and Figure 3a,
respectively. After getting the appropriate preset parameters, the imaging results of the
OMP, FMSBL, SBRIM, and FBCS–RVM algorithms are shown in Figure 3b–e.
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Table 2. The basic parameters of the 2D point-target simulations.

Parameters Value

Center frequency/GHz 30
Signal bandwidth/MHz 150

Platform height /m 1000
The size of the 2D array/m 4 × 4

Total number of APCs 1600
Total number of scattering units 101 × 101

Spacing between adjacent scattering unit/m 0.3 m
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Figure 3. The original scene and imaging results of point-target simulations. (a) Original scene; (b)
OMP; (c) FMSBL; (d) SBRIM; (e) FBCS-RVM;

According to Figure 3 (b)∼(e); same as the comparison methods under correct preset
parameters; the FBCS-RVM algorithm can estimate the scattering coefficients accurately
and obtain high-quality imaging results. To evaluate the performance of the above four
algorithms in more detail; we have conducted point-target simulations under different
sampling rates and SNR [23]. The Monte Carlo experiments of the above algorithms are all
set hundreds of times to evaluate their performance more accurately. Tables 3 and 4 give
the evaluation results under different sampling rates and SNR respectively.

Figure 3. The original scene and imaging results of point–target simulations. (a) Original scene;
(b) OMP; (c) FMSBL; (d) SBRIM; (e) FBCS–RVM.

According to Figure 3b–e, the same as the comparison methods under correct preset
parameters, the FBCS–RVM algorithm can estimate the scattering coefficients accurately
and obtain high-quality imaging results. To evaluate the performance of the above four
algorithms in more detail, we have conducted point-target simulations under different
sampling rates and SNR [23]. The Monte Carlo experiments of the above algorithms are all
set hundreds of times to evaluate their performance more accurately. Tables 3 and 4 give
the evaluation results under different sampling rates and SNR, respectively.

Table 3. The evaluation results under different sampling rates.

Sampling Rate Standards OMP FMSBL SBRIM FBCS–RVM

20%

NMSE 0.3884 0.0102 0.0063 0.0035
TBR 78.0341 312.9847 103.6925 313.0533
ENT 0.1495 0.0244 0.0343 0.0238

ExT/s 0.4645 0.4084 84.1898 0.8922
RTSR 0.5206 0.4578 94.3654 1

40%

NMSE 0.0326 0.0051 0.0029 0.0024
TBR 85.9777 313.0286 114.8554 313.0587
ENT 0.1250 0.0233 0.0236 0.0232

ExT/s 0.8680 0.6106 90.6742 0.9839
RTSR 0.8822 0.6207 92.1619 1
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Table 3. Cont.

Sampling Rate Standards OMP FMSBL SBRIM FBCS–RVM

60%

NMSE 0.0093 0.0034 0.0026 0.0019
TBR 88.3392 313.0428 118.3356 313.0610
ENT 0.1205 0.0232 0.0255 0.0232

ExT/s 1.3479 0.8379 102.7153 1.0381
RTSR 1.2984 0.8072 98.9465 1

80%

NMSE 0.0066 0.0026 0.0019 0.0017
TBR 89.8987 313.0514 120.3862 313.0625
ENT 0.1118 0.0232 0.0232 0.0231

ExT/s 1.8296 1.1590 118.8683 1.1151
RTSR 1.6407 1.0394 106.5902 1

100%

NMSE 0.0057 0.0021 0.0016 0.0015
TBR 91.0592 313.0541 121.5146 313.0634
ENT 0.0923 0.0230 0.0232 0.0230

ExT/s 2.2521 1.6765 131.0763 1.1934
RTSR 1.8896 1.4048 109.8315 1

From Table 3, we can get the following conclusions:

• The NMSE of the FBCS–RVM algorithm is the minimum among those four algorithms;
it is smaller than 0.01 under the 20% sampling rate. This shows that the FBCS–RVM
algorithm achieves high-quality sparse imaging; its scattering coefficients’ estimation
accuracy is higher than the other three algorithms.

• The FBCS–RVM algorithm obtains the maximum TBR and minimum ENT among the
above four algorithms. This indicates that the FBCS–RVM algorithm obtains imaging
results with the strongest and best-focused targets; it improves the imaging quality
compared to the other three algorithms.

• The execution time of the FBCS–RVM algorithm belongs to 0.8∼1.2 s, and it achieves
high-efficiency sparse imaging. Its computational efficiency is improved by two orders
of magnitude compared to the SBRIM algorithm at most, and it is the same level as
the OMP and the FMSBL algorithms.

Table 4. The evaluation results under different SNR.

SNR Standards OMP FMSBL SBRIM FBCS–RVM

0

NMSE 1.4546 1.2445 0.6486 0.4202
TBR 70.1586 65.3756 45.0455 61.9777
ENT 0.4355 0.6267 0.7383 0.1245

ExT/s 2.4882 68.6281 100.2196 3.7812
RTSR 0.6581 16.3911 27.8272 1

10

NMSE 0.4229 0.2132 0.2290 0.0911
TBR 44.6720 58.4351 61.8170 76.7137
ENT 0.3944 0.3366 0.3611 0.0836

ExT/s 2.4847 15.5745 100.0990 2.3617
RTSR 1.0521 6.5945 46.2305 1

20

NMSE 0.1328 0.0393 0.0669 0.0216
TBR 60.1341 75.5671 76.4821 228.0255
ENT 0.3461 0.1611 0.1664 0.0592

ExT/s 2.4923 3.2620 99.6250 1.2129
RTSR 2.0548 2.6877 82.1351 1
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Table 4. Cont.

SNR Standards OMP FMSBL SBRIM FBCS–RVM

30

NMSE 0.0415 0.0081 0.0201 0.0067
TBR 70.2377 93.5478 88.6350 313.0359
ENT 0.2950 0.0252 0.0819 0.0252

ExT/s 2.4900 1.5547 99.5041 1.1929
RTSR 2.0873 1.2956 83.4110 1

40

NMSE 0.0133 0.0041 0.0074 0.0018
TBR 80.1339 312.0601 97.4627 313.0600
ENT 0.2020 0.0232 0.0449 0.0232

ExT/s 2.4902 0.7551 99.7141 1.1836
RTSR 2.1004 0.6380 84.1035 1

According to Table 4, we can get the following conclusions:

• The NMSE of the FBCS–RVM algorithm is the minimum among those four algorithms.
This proves that the FBCS–RVM algorithm estimates the scattering coefficients more
accurately than the other three algorithms.

• The FBCS–RVM algorithm obtains the maximum TBR and minimum ENT among
the above four algorithms. Except when the SNR is 0 dB, both the OMP and FMSBL
algorithms obtain slightly larger TBR because of the strong false targets. Therefore,
the FBCS–RVM algorithm suppresses the signal noise better and improves the imaging
quality compared to the other three algorithms.

• The execution time of the FBCS–RVM algorithm belongs to 1∼4 s and is the minimum
among those four algorithms. Except for the two cases, the OMP and FMSBL algorithms
obtain slightly smaller execution time under the 0 dB and 40 dB SNR, respectively.
The computational efficiency of the FBCS–RVM algorithm is improved 27∼84 times
compared to the SBRIM algorithm; it achieves sparse imaging with high efficiency.

4.1.2. Results on the 2D Complex-Target Simulation Data

To evaluate the performance of the FBCS–RVM algorithm under the complex imaging
scene, the 2D complex-target simulations are conducted in this subsection. The main
parameters and the original scene of the 2D complex-target simulation are shown in Table 5
and Figure 4, respectively.

Table 5. The basic parameters of the complex-target simulations.

Parameters Value

Center frequency/GHz 30
Signal bandwidth/MHz 150

Platform height /m 3000
The size of the 2D array/m 10 × 15

Traditional array imaging resolution/m 1.5 × 1
Total number of APCs 4096

Total number of scattering units 64 × 64
Spacing between adjacent scattering unit/m 1.5 m

Figure 4 shows four complex-targets with different sparsity and density. Figure 5 gives
the imaging results of Figure 4c obtained by the OMP, FMSBL, SBRIM, and FBCS–RVM
algorithms under different sampling rates (e.g., 20%, 35%, and 50%).
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(a) (b) (c) (d)

Figure 4. The original scene of the complex–target simulations. (a) airplane model under 210 sparsity;
(b) ship model under 495 sparsity; (c) ship model under 515 sparsity; (d) complex–target model
under 677 sparsity.

(a) OMP (b) FMSBL (c) SBRIM (d) FBCS–RVM

Figure 5. The imaging results of targets in Figure 4c under different sampling rates; first row: 20%
sampling rate, second row: 35% sampling rate, third row: 50% sampling rate.

According to Figure 5, those four algorithms cannot estimate the scattering coefficients
correctly under the 20% sampling rate. They lose the targets’ information and suffer
from the false targets seriously. The OMP algorithm still suffers from some false targets
under the 35% and 50% sampling rate because of its preset sparsity. Meanwhile, the other
three algorithms can eliminate the false targets better; they obtain higher imaging quality.
To quantitatively evaluate the performance of the above four algorithms, the evaluation
results under different sampling rates are shown in Table 6.

From Table 6, we can get the conclusions as follows:

• The NMSE of the FBCS–RVM algorithm is the minimum among those four algorithms
under different sampling rates. This indicates that its scattering coefficients’ estimation
accuracy is higher than the other three algorithms.

• The FBCS–RVM algorithm obtains the minimum ENT and the maximum TBR among
the above four algorithms—except, under the 35% sampling rate, the FMSBL algorithm
obtains the slightly higher TBR. Therefore, the FBCS–RVM algorithm improves the
imaging quality compared to the other three algorithms.

• The execution time of the FBCS–RVM algorithm is the minimum among the above
four algorithms under all sampling rates; its computational efficiency is higher than
the other three algorithms.
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Table 6. The evaluation results under different sampling rates.

Sampling Rate Standards OMP FMSBL SBRIM FBCS–RVM

35%

NMSE 0.1860 0.0343 0.0180 0.0081
TBR 64.8529 356.5519 86.1030 347.7633
ENT 1.5965 1.4042 1.4499 1.3975

ExT/s 9.9206 7.9548 50.0197 4.1410

50%

NMSE 0.1229 0.0191 0.0070 0.0059
TBR 67.5803 356.6352 92.5163 356.7727
ENT 1.5795 1.3999 1.4261 1.3951

ExT/s 13.4775 10.1920 59.2569 5.0914

75%

NMSE 0.0488 0.0118 0.0050 0.0045
TBR 70.9421 356.6923 100.2144 356.7769
ENT 1.5746 1.3982 1.4082 1.3951

ExT/s 19.1810 11.8886 68.7381 7.0756

100%

NMSE 0.0049 0.0087 0.0042 0.0038
TBR 73.3827 356.7177 115.6553 356.7790
ENT 1.5587 1.3959 1.3972 1.3940

ExT/s 25.7976 16.3656 82.4328 9.6135

To evaluate the performance of the FBCS–RVM algorithm under different sparsity, we
have conducted sparse imaging on the four targets in Figure 4 in this subsection. Moreover,
the imaging results of the complex-target in Figure 4a,b,d under 50% sampling rate are
shown in Figure 6.

(a) OMP (b) FMSBL (c) SBRIM (d) FBCS–RVM

Figure 6. The imaging results of targets in Figure 4a,b,d. first row: Figure 4a, second row: Figure 4b,
third row: Figure 4d.

According to Figure 6, the imaging results of the OMP algorithm contain several
false targets and lose partial targets’ information, while the FMSBL, SBRIM, and FBCS–
RVM algorithms eliminate the false targets better and obtain imaging results with higher
imaging quality. Table 7 shows the evaluation results under different sparsity to evaluate
the performance of the above four algorithms better.
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Table 7. The evaluation results under different sparsity.

Sparsity Standards OMP FMSBL SBRIM FBCS–RVM

210

NMSE 0.1719 0.0065 0.0131 0.0039
TBR 80.6241 358.1459 94.6461 358.1873
ENT 0.7115 0.6127 0.6383 0.6122

ExT/s 2.2293 4.0253 51.5601 2.1532
RTSR 1.0353 1.8695 23.9458 1

495

NMSE 0.0454 0.0254 0.0075 0.0062
TBR 67.2429 356.6358 53.6697 356.7732
ENT 1.4737 1.3122 1.3052 1.3050

ExT/s 13.8548 9.4727 52.3047 4.6349
RTSR 2.9892 2.0438 11.2631 1

515

NMSE 0.1229 0.0191 0.0070 0.0059
TBR 67.5803 356.6352 92.5163 356.7727
ENT 1.5795 1.3999 1.4261 1.3951

ExT/s 13.4775 10.1920 59.2569 5.0914
RTSR 2.6431 1.9171 10.8217 1

677

NMSE 0.1716 0.0245 0.0340 0.0136
TBR 65.4404 354.6187 88.7377 253.3289
ENT 2.0640 1.8092 1.8432 1.8043

ExT/s 17.0740 13.6286 53.3612 8.2566
RTSR 2.0671 1.6506 6.4629 1

According to Table 7, we can obtain the following conclusions:

• The NMSE of the FBCS–RVM algorithm is smaller than 0.05 and is the minimum
among the above four algorithms. This shows that the FBCS–RVM estimates the
scattering coefficients more accurately than the other three algorithms, which achieves
high-quality sparse imaging.

• The FBCS–RVM algorithm obtains the maximum TBR and minimum ENT among
those four algorithms. Except under the 677 sparsity, the FMSBL algorithm obtains
the maximum TBR. Therefore, the FBCS–RVM algorithm obtains the imaging results
with the strongest and best-focused targets, and its imaging quality is higher than the
other three algorithms.

• The FBCS–RVM algorithm obtains the minimum execution time among those four
algorithms; its computational efficiency is higher than the other three algorithms.

4.1.3. Results on the 3D Simulation Data

Since the 3D sparse imaging results are obtained by conducting 2D sparse imaging on
every equidistant plane with the fixed preset parameters, we conduct 3D sparse imaging to
analyze the stability of the FBCS–RVM algorithm under different imaging scenes with the
fixed preset parameters better. The main parameters of the 3D simulations are shown in
Table 8. The original scene of the 3D simulations is shown in Figures 7 and 8a, respectively.

Table 8. The main parameters of 3D simulations.

Parameters Airplane Mountain

Center frequency/GHz 37.5 37.5
Signal bandwidth/GHz 0.8 0.3

Platform height /m 1000 3000
Size of the 2D array/m 3 × 3 3 × 3

Number of sampling points in range domain 512 512
Number of APCs in the 2D array 4096 16,384
The sampling rate of echo signal 50% 50%

The size of the 2D imaging scene/m 50 × 70 250 × 250
The number of scattering units in the 2D imaging scene 101 × 101 101 × 101
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Firstly, the airplane model in Figure 7a is used for 3D sparse imaging to certify the
effectiveness of the FBCS–RVM algorithm under the 3D imaging scene; the 3D imaging
results of the airplane model obtained by the OMP, FMSBL, SBRIM, and FBCS–RVM
algorithms are given in Figure 7b–e.
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Figure 7. The original scene and 3D imaging results of the airplane model; (a) original scene; (b) OMP;
(c) FMSBL; (d) SBRIM; (e) FBCS–RVM;

According to Figure 7, because the preset sparsity in the OMP algorithm cannot
meet the requirement of every equidistant planar high-quality sparse imaging, the OMP
algorithm suffers from sidelobes and loses the partial targets’ information. Its imaging
quality is lower than the other three algorithms. Similarly, both FMSBL and SBRIM
algorithms suffer from sidelobes to some extent because of their fixed preset parameters
and measurement matrices corresponding to the whole imaging scene. The FBCS–RVM
algorithm uses the target-areas as the prior information to simplify the measurement matrix
and conduct sparse imaging; its measurement matrix indicates the targets’ characteristics
better. As a result, the FBCS–RVM algorithm eliminates the sidelobes better and improves
the imaging quality compared to the other three algorithms.

To analyze the performance of the FBCS–RVM algorithm under larger imaging scenes,
we conduct 3D sparse imaging on the mountain model shown in Figure 8a. The 3D imaging
results obtained by the OMP, FMSBL, SBRIM, and FBCS–RVM algorithms are shown in
Figure 8b–e.

According to Figure 8, because of the fixed preset parameters and the measurement
matrix corresponding to the whole imaging scene, the OMP, FMSBL, and SBRIM algorithms
suffer from the sidelobe interferences to some extent. The FBCS–RVM algorithm suppresses
the sidelobes better than the other three algorithms by using the target-areas as the prior
information to simplify the measurement matrix and conduct sparse imaging. Since both
airplane and mountain models are composed of several discrete scattering points, which are
not accurately located in the 3D scattering units, their 3D original scattering coefficients are
hardly predefined accurately. The NMSE is not used as the evaluation standard of the 3D
imaging results. Table 9 gives the evaluation results of Figures 7 and 8 to evaluate their
performance of the above four algorithms in 3D sparse imaging quantitatively.
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Figure 8. The original scene and imaging results of the mountain model. (a) original scene; (b) OMP;
(c) FMSBL; (d) SBRIM; (e) FBCS–RVM.

Table 9. The evaluation results under different targets.

Target Standards OMP FMSBL SBRIM FBCS–RVM

Airplane

TBR 65.3520 63.9603 59.3230 68.9073
ENT 0.1924 0.1998 0.3998 0.0615

ExT/s 2628.89 3525.32 53347.14 848.20
RTSR 3.0095 4.1570 62.8955 1

Mountain

TBR 45.6039 43.8738 37.1098 49.3453
ENT 0.7645 0.9574 1.4492 0.4036

ExT/s 60530.26 220966.74 223913.66 18547.83
RTSR 3.2636 11.9139 12.0727 1

According to Tables 9, we can know that the FBCS–RVM algorithm obtains the 3D
imaging results with the minimum ENT, execution time, and maximum TBR among the
above four algorithms. Therefore, the computational efficiency and imaging quality of the
FBCS–RVM algorithm are higher than the other three algorithms.

Therefore, according to the 2D and 3D simulation results, the FBCS–RVM algorithm
achieves sparse imaging with high-quality and efficiency. It improves the imaging qual-
ity, stability, and computational efficiency compared to the OMP, SBRIM, and FMSBL
algorithms successfully.

4.1.4. Results on Experimental Data

To fully certify the effectiveness of the FBCS–RVM algorithm in the real data, the ex-
perimental data obtained by two ground equivalent LASAR (GDLASAR) [32,35] systems
with different aperture lengths and moving trajectories are used for 3D sparse imaging in
this subsection. The main parameters of the two GDLASAR systems are listed in Table 10.
The above two systems and their experimental scene are shown in Figure 9.
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Table 10. The parameters of two GDLASAR systems.

Parameters System 1 System 2

Center frequency /GHz 9.62 10
Signal bandwidth /GHz 0.08 2
Size of the 2D array/m 1.25 × 1.25 1.5 × 1.3

Number of sampling points in range domain 500 801
Number of APCs in the 2D array 8928 8394

Size of 2D imaging scene/m 40× 70 5 × 5
Number of scattering units in the 2D imaging scene 101 × 101 101 × 101
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To improve the computational efficiency of 3D sparse imaging on the experimental
data; the targets’ echo signals are extracted firstly by their locations in the experimental
scene. Moreover, the 3D imaging results of the OMP, FMSBL, SBRIM, and FBCS-RVM
algorithm are shown in Figure 10.

Figure 9. (a) System; (b) experimental scene; first row: wall experiment, second row: Two balls experiment.

To improve the computational efficiency of 3D sparse imaging on the experimental
data, the targets’ echo signals are extracted firstly by their locations in the experimental
scene. Moreover, the 3D imaging results of the OMP, FMSBL, SBRIM, and FBCS–RVM
algorithms are shown in Figure 10.

(a) OMP (b) FMSBL (c) SBRIM (d) FBCS–RVM

Figure 10. The 3D imaging results by the OMP, FMSBL, SBRIM, and FBCS–RVM algorithms. first
row: wall experiment, second row: two balls experiment.

According to Figure 10, the above four algorithms can achieve 3D sparse imaging on
both experimental data. Because of the inevitable signal noise in the experimental data,
the OMP, FMSBL, and SBRIM algorithms suffer from the sidelobe interferences to some
extent. Since the FBCS–RVM algorithm uses the target-areas to simplify the measurement
matrix and conduct sparse imaging, it eliminates the sidelobe interferences more effectively



Remote Sens. 2021, 13, 1751 22 of 28

and improves imaging quality compared to the other three algorithms. To evaluate the
performance of those four algorithms on the experimental data, Tables 11 and 12 show the
evaluation results under different sampling rates.

Table 11. The evaluation results of wall experiment.

Sampling Rate Standards OMP FMSBL SBRIM FBCS–RVM

12.5%

TBR 27.8904 25.8961 30.3913 31.8609
ENT 1.8007 1.8691 2.0098 1.4276

ExT/s 244.7976 913.0925 15,523.19 148.4204
RTSR 1.6525 6.1639 104.7912 1

25%

TBR 29.9577 27.7150 31.5723 33.0056
ENT 1.5790 1.7417 1.9560 1.3140

ExT/s 467.4062 1358.39 21,076.94 301.6024
RTSR 1.5499 4.5043 69.8898 1

50%

TBR 31.1948 28.8495 32.9698 34.1467
ENT 1.4733 1.5387 1.8587 1.2026

ExT/s 950.8605 1950.28 32,152.46 587.49
RTSR 1.6185 3.3196 54.7279 1

75%

TBR 31.7079 29.1247 33.1911 34.4093
ENT 1.4184 1.5000 1.8037 1.1544

ExT/s 1364.31 2623.59 42,886.93 834.57
RTSR 1.6347 3.1436 51.3877 1

100%

TBR 31.8951 25.8961 33.2413 34.3879
ENT 1.4021 1.5150 1.7713 1.1752

ExT/s 1827.54 3876.47 53,749.08 1038.27
RTSR 1.7602 3.7336 51.7677 1

Table 12. The evaluation results of the two balls experiment.

Sampling Rate Standards OMP FMSBL SBRIM FBCS–RVM

12.5%

TBR 45.3686 57.9804 31.3033 59.1770
ENT 1.8858 0.6891 3.7257 0.6068

ExT/s 137.1024 285.7793 11,718.08 55.0775
RTSR 2.4893 5.1887 212.7652 1

25%

TBR 47.2367 59.1535 33.8888 60.6803
ENT 1.6312 0.5383 3.2330 0.4548

ExT/s 257.5522 569.6074 15,654.62 84.1086
RTSR 3.0621 6.7659 186.1239 1

50%

TBR 48.1008 60.2373 36.2445 61.5205
ENT 1.4724 0.4749 2.8011 0.3666

ExT/s 495.9828 1175.66 23,527.45 125.8026
RTSR 3.9425 9.3453 187.0188 1

75%

TBR 48.5975 60.5376 37.4526 61.9171
ENT 1.3887 0.4846 2.6097 0.3449

ExT/s 769.3935 1872.83 31,422.70 175.1862
RTSR 4.3919 10.6905 179.3674 1

100%

TBR 48.5673 61.1714 38.0847 62.8071
ENT 1.3939 0.4783 2.5305 0.3320

ExT/s 1060.19 2361.45 39,405.99 301.1206
RTSR 3.5208 7.8442 130.8645 1

According to Tables 11 and 12, we can get the following conclusions:

• In both pieces of experimental data, the FBCS–RVM algorithm obtains imaging results
with the maximum TBR, minimum ENT, and execution time among those four algo-
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rithms. Therefore, its imaging quality and computational efficiency are higher than
the other three algorithms.

• The RTSR between the FBCS–RVM algorithm and the other three algorithms in the
two balls experiment is larger than the wall experiment. This indicates that the com-
putational efficiency’s improvement of the FBCS–RVM algorithm is higher when the
sparsity of the imaging scene is smaller.

4.2. Ablation Study

According to Sections 3.1 and 3.2, the FBCS–RVM algorithm contains two key steps:
extracting the target-areas under the framework of RVM and eliminating the elements with
small scattering coefficients in the target-areas by the TSVD algorithm. Therefore, we verify
the effectiveness of the above two steps in the following subsections.

4.2.1. Ablation Study on Extracting the Target-Areas under the Framework of RVM

To verify the effectiveness of extracting the target-areas under the framework of RVM,
both fuzzy c-means (FCM) [36] and k-means algorithms [37] are used to extract the target-
areas while the other steps of the FBCS–RVM algorithm remain unchanged. Figure 11 lists
the imaging results of the complex-targets in Figure 4c obtained by the FCM, K-means,
and the FBCS–RVM algorithm. Table 13 gives the evaluation results of the above three
algorithms to evaluate their performance more clearly and accurately.

-40 -20 0 20 40

X (m)

-40

-20

0

20

40

Y
 (

m
)

(a)

-40 -20 0 20 40

X (m)

-40

-20

0

20

40

Y
 (

m
)

(b)

-40 -20 0 20 40

X (m)

-40

-20

0

20

40

Y
 (

m
)

(c)

-40 -20 0 20 40

X (m)

-40

-20

0

20

40

Y
 (

m
)

(d)

Figure 11. The original scene and imaging results of Figure 4c. (a) original scene; (b) the imaging
results corresponding to the FCM algorithm; (c) the imaging results corresponding to the K–Means
algorithm; (d) the imaging results of the FBCS–RVM algorithm.

Table 13. The evaluation results of Figure 11.

Methods NMSE TBR ENT ExT/s

FCM 0.2432 60.3040 1.0713 1.7540
K-Means 0.7264 111.0213 0.8455 3.9616

FBCS–RVM 0.0060 247.0184 1.3961 5.9264

According to Figure 11 and Table 13, we can get the following conclusions:

• Both FCM and K-Means algorithms cannot extract the target-areas accurately and lose
partial targets’ information, and we cannot achieve high-quality sparse imaging with
the above two algorithms.

• The FBCS–RVM algorithm obtains the minimum NMSE, maximum TBR, and execu-
tion time among those three algorithms; its NMSE is smaller than 0.01. This indicates
that the FBCS–RVM algorithm extracts the target-areas more accurately than the FCM
and K-Means algorithm; it achieves high-quality sparse imaging.

4.2.2. Ablation Study on the TSVD Algorithm

In the subsection, when the diagonal matrix is singular due to the elements with
too small scattering coefficients in the target-areas, we obtain two comparative imaging
results to verify the effectiveness of the TSVD algorithm in eliminating those elements.
Figure 12 lists the imaging results of the FBCS–RVM algorithm and without the TSVD
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algorithm. Table 14 gives the evaluation results of the above two imaging results to certify
the effectiveness of the TSVD algorithm better.
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Figure 12. The imaging results of the complex–target in Figure 4. First row: imaging results without
the TSVD algorithm, second row: imaging results of the FBCS–RVM algorithm.

Table 14. The evaluation results of Figure 12.

TSVD NMSE TBR ENT ExT/s

Figure 12a × 2.2746×1012 348.4178 0.6053 3.0735
X 0.0053 356.6006 0.6116 3.0740

Figure 12b × 2.8868× 105 84.7975 1.2917 5.7222
X 0.0061 82.9849 1.3050 5.9755

Figure 12c × 9.9908× 1028 347.4051 1.3722 5.0965
X 0.0088 351.4521 1.3958 5.1139

Figure 12d × 4.7497×1031 346.5817 1.7125 8.7975
X 0.0159 317.3393 1.8043 8.8991

According to Figure 12 and Table 14, we can get the following conclusions:

• Without the TSVD algorithm, the scattering coefficients cannot be estimated correctly
under the singular diagonal matrix, and the imaging results lose too much of the
targets’ effective information. After eliminating the elements with the small scattering
coefficients by the TSVD algorithm, we can obtain the correct imaging results.

• The execution time of the FBCS–RVM algorithm is slightly larger than without the
TSVD algorithm. This indicates that the computational efficiency of the FBCS–RVM
algorithm decreases slightly due to the TSVD algorithm.

5. Discussion

In this section, we use the complex-targets in Figure 4d as the initial target-areas and
increase the sparsity of imaging scene gradually to analyze the application scenes of the
FBCS–RVM algorithm; the total number of scattering units in the whole imaging scene
is fixed and set as 4096. The evaluation results of the OMP, FMSBL, SBRIM, and FBCS–
RVM algorithms under increasing sparsity with fixed total scattering units are shown in
Figure 13.
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Figure 13. The evaluation results under increasing sparsity with fixed total scattering units . (a)
NMSE; (b) TBR; (c) ENT; (d) Execution time.

According to Figure 13; we can get the following conclusions:

• Computational efficiency: The FBCS-RVM algorithm obtains the minimum execution
time among the above four algorithms; its computational efficiency is higher than
other three algorithms.

• Imaging quality: When the sparsity is smaller than 800; the FBCS-RVM algorithm
obtains the minimum NMSE among the above four algorithms; its imaging quality is
higher than other three algorithms. Otherwise, its NMSE is slightly smaller than the
FMSBL algorithm when the sparsity is higher than 800; which indicates that targets
occupy more than 20% of the whole imaging scene; its imaging quality is slightly
lower than the FMSBL algorithm.

Besides, similarly as most CS algorithms; when conducting 3D sparse imaging with
large scale remote sensing data by the FBCS-RVM algorithm; the measurement matrix
usually becomes huge because of the large imaging scene. The huge measurement matrix
and its matrix operations lead to the FBCS-RVM algorithm hardly achieve 3D sparse
imaging with high-efficiency on the large scale remote sensing data. Therefore, the main
limitations of the FBCS-RVM algorithm are summarized as following content:

• The FBCS-RVM algorithm probably lose partial targets’ information under high spar-
sity; it cannot achieve high-quality sparse imaging.

• The FBCS-RVM algorithm cannot always achieve high-efficiency 3D sparse imaging
under large scale remote sensing data.

6. Conclusion

In this paper; we propose the FBCS-RVM algorithm to achieve LASAR 3D sparse
imaging with high quality and efficiency. Firstly, after calculating the maximum marginal
likelihood function under the framework of the relevance vector machine (RVM); the
scattering units corresponding to the non-zero optimal hyper-parameters are extracted as
the target-areas in the imaging scene. Then, we use the target-areas as the prior information
to simplify the measurement matrix and conduct sparse imaging. Besides, when the
target-areas contain several elements whose scattering coefficients are too small or closer

Figure 13. The evaluation results under increasing sparsity with fixed total scattering units. (a) NMSE;
(b) TBR; (c) ENT; (d) execution time.

According to Figure 13, we can get the following conclusions:

• Computational efficiency: The FBCS–RVM algorithm obtains the minimum execution
time among the above four algorithms; its computational efficiency is higher than the
other three algorithms.

• Imaging quality: When the sparsity is smaller than 800, the FBCS–RVM algorithm
obtains the minimum NMSE among the above four algorithms; its imaging quality
is higher than the other three algorithms. Otherwise, its NMSE is slightly smaller
than the FMSBL algorithm when the sparsity is higher than 800, which indicates that
targets occupy more than 20% of the whole imaging scene. Its imaging quality is
slightly lower than the FMSBL algorithm.

In addition, similarly to most CS algorithms, when conducting 3D sparse imaging
with large scale remote sensing data by the FBCS–RVM algorithm, the measurement matrix
usually becomes huge because of the large imaging scene. The huge measurement matrix
and its matrix operations lead to the FBCS–RVM algorithm hardly achieving 3D sparse
imaging with high-efficiency on the large scale remote sensing data. Therefore, the main
limitations of the FBCS–RVM algorithm are summarized as the following content:

• The FBCS–RVM algorithm probably loses partial targets’ information under high
sparsity; it cannot achieve high-quality sparse imaging.

• The FBCS–RVM algorithm cannot always achieve high-efficiency 3D sparse imaging
under large scale remote sensing data.

6. Conclusions

In this paper, we propose the FBCS–RVM algorithm to achieve LASAR 3D sparse
imaging with high quality and efficiency. Firstly, after calculating the maximum marginal
likelihood function under the framework of the relevance vector machine (RVM), the
scattering units corresponding to the non-zero optimal hyper-parameters are extracted as
the target-areas in the imaging scene. Then, we use the target-areas as the prior information
to simplify the measurement matrix and conduct sparse imaging. In addition, when the
target-areas contain several elements whose scattering coefficients are too small or closer
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to 0 compared to other elements, the diagonal matrix becomes singular and irreversible.
Its inverse matrix is replaced with the generalized inverse matrix obtained by the TSVD
algorithm to estimate the scattering coefficients correctly; the elements with small scattering
coefficients are extracted and deleted from the target-areas successfully according to the
rank of the singular diagonal matrix. By taking the target-areas as the prior information
for sparse imaging, the FBCS–RVM simplifies the matrix operations corresponding to the
measurement matrix successfully. As a result, it improves the computational efficiency
and decreases the requirements from the hardware system effectively. Both simulation
and experimental results illustrate that the FBCS–RVM algorithm achieves sparse imaging
with high quality and efficiency successfully. It improves the computational efficiency and
imaging quality compared to the other three comparison algorithms (the OMP, FMSBL, and
SBRIM algorithms). Especially in the computational efficiency, the FBCS–RVM algorithm
can be 100 times higher than the SBRIM algorithm, 10 times higher than the FMSBL
algorithm, and 4 times higher than the OMP algorithm.

Since CS algorithms can obtain higher imaging quality under under-sampling than
traditional remote sensing imaging algorithms and the FBCS–RVM algorithm improves
the computational efficiency compared to most CS algorithms, the FBCS–RVM algorithm
has great application prospects in 3D digital elevation models and urban area imaging.

Our future work is as follows:

• Study the target-areas extraction methods based on the convolution neural network
for the high sparsity imaging scene with higher accuracy and efficiency.

• Achieve 3D sparse imaging in the large scale remote sensing applications by simpli-
fying the measurement matrix by dividing the original imaging scene into several
smaller imaging scenes.
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Appendix A

Since the elements in the hyper-parameters λt
n are independent from each other,

the covariance matrix Ct can be decomposed as Ct = Ct−i +
φri φ

T
ri

λt
ni

, where Ct−i is the

covariance matrix after removing the column vector φri from the measurement matrix
Θnr ; φri =

[
Θnr (1, i), . . . , Θnr (2NA, i)

]
is the ith column vector in the Θnr . Based on the

Woodbury identities [38], Ct and Ct−i satisfy:

|Ct| = |Ct−i ||1 +
φT

ri
C−1

t−i
φri

λt
ni

| C−1
t = C−1

t−i
−

C−1
t−i

φri φ
T
ri

C−1
t−i

λt
ni
+ φT

ri
C−1

t−i
φri

(A1)

Similarly, the marginal likelihood function L
(
λt

n
)

can be decomposed as:
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L
(
λt

n
)
= −1

2

[
2M log 2π + log |Ct−i |+ sT

nr C−1
t−i

snr − log |
λt

ni
+ φT

ri
C−1

t−i
φri

λt
ni

|+
(φT

ri
C−1

t−i
snr )

2

λt
ni
+ φT

ri
C−1

t−i
φri

]

= L
(

λt
n−i

)
+

1
2
[log |λt

ni
| − log |λt

ni
+ φT

ri
C−1

t−i
φri |+

(φT
ri

C−1
t−i

snr )
2

λt
ni
+ φT

ri
C−1

t−i
φri

]

= L
(

λt
n−i

)
+

1
2
[log |λt

ni
| − log |λt

ni
+ f t

i |+
(qt

i)
2

λt
ni
+ f t

i
]

= L
(

λt
n−i

)
+ l(λt

ni
)

(A2)

where f t
i = φT

ri
C−1

t−i
φri and qt

i = φT
ri

C−1
t−i

snr .

Appendix B

Based on Equation (A1), when the ith scattering unit does not belong to the target-
areas Gt−1

nr , this indicates that its corresponding marginal likelihood function does not have
the maximum value in the previous iterations; its corresponding hyper-parameter is 0. f t

i
and qt

i are set as f t
i =Ft−1

i and qt
i=Qt−1

i .
Otherwise, when just considering λt−1

ni
, the other hyper-parameters in λt

n are consid-

ered unchanged in the tth iteration; Ct−1 can be decomposed as Ct−1 = Ct−1−i +
φri φ

T
ri

λt−1
ni

=

Ct−i +
φri φ

T
ri

λt−1
ni

. Therefore, Ft−1
i = φT

ri
C−1

t−1φri is calculated by Equation (A3); f t
i is updated by

f t
i =

λt−1
ni

Ft−1
i

λt−1
ni − Ft−1

i

. Similarly, qt
i is calculated by qt

i =
λt−1

ni
Qt−1

i

λt−1
ni −Qt−1

i

.

Ft−1
i = φT

ri
(C−1

t−i
−

C−1
t−i

φri φ
T
ri

C−1
t−i

λt−1
ni + φT

ri
C−1

t−i
φri

)φri = f t
i −

f t
i

2

λt−1
ni + f t

i

=
λt−1

ni
f t
i

λt−1
ni + f t

i

(A3)
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