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Abstract: Timely and accurate monitoring of tree crop extent and productivities are necessary for
informing policy-making and investments. However, except for a very few tree species (e.g., oil
palms) with obvious canopy and extensive planting, most small-crown tree crops are understudied in
the remote sensing domain. To conduct large-scale small-crown tree mapping, several key questions
remain to be answered, such as the choice of satellite imagery with different spatial and temporal
resolution and model generalizability. In this study, we use olive trees in Morocco as an example
to explore the two abovementioned questions in mapping small-crown orchard trees using 0.5 m
DigitalGlobe (DG) and 3 m Planet imagery and deep learning (DL) techniques. Results show that
compared to DG imagery whose mean overall accuracy (OA) can reach 0.94 and 0.92 in two climatic
regions, Planet imagery has limited capacity to detect olive orchards even with multi-temporal
information. The temporal information of Planet only helps when enough spatial features can be
captured, e.g., when olives are with large crown sizes (e.g., >3 m) and small tree spacings (e.g., <3 m).
Regarding model generalizability, experiments with DG imagery show a decrease in F1 score up to
5% and OA to 4% when transferring models to new regions with distribution shift in the feature
space. Findings from this study can serve as a practical reference for many other similar mapping
tasks (e.g., nuts and citrus) around the world.

Keywords: remote sensing; deep learning; land cover; tree crop; high-resolution imagery

1. Introduction

Producing more food for a growing population and meanwhile reducing poverty,
remains two major challenges in many places of the world [1–4]. Since poor households in
developing countries often depend heavily on agriculture for their livelihoods, investing
in agricultural productivity has long been used as an important vehicle of pro-poor devel-
opment [5,6]. Compared to the traditional investment focus of annual staple crops such as
cereals, maize, and pulses, recent development programs often favor perennial tree crops
for both socio-economic and environmental considerations [7–9]. The reasons are multiple.
First, tree crops often produce goods with high cash value. Second, investment in tree crops
can generate more predictable revenue since a well-maintained orchard may provide stable
productions for up to several decades [10]. Third, tree crops often have better adaptability
to growth conditions than the annual crops, thus reducing the cost of land clearing [8].
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Finally, cultivating tree crops requires fewer management efforts thus allowing farmers to
increase incomes through off-farm activities [11]. Examples that tree crops have delivered
socioeconomic benefits include but are not limited to coffee in Brazil [12], oil palm in West
Africa [13] and Southeast Asia [14], and olives in the Mediterranean [15].

Timely and accurate monitoring of the extent and productivities of tree crops are
necessary for enhancing their management [16]. With the increasing accessibility of remote
sensing data and the progress in algorithms, there is a surge of studies focusing on mapping
different tree crops, e.g., oil palm [17–22], rubber [23–25], and coffee [26–29], with multi-
source satellite imagery. Despite the varying level of success, these studies mainly fall into
two categories. The first group focuses on the identification of individual trees, usually at
small scales [30–33]. Relevant studies largely rely on sophisticatedly designed workflows
and independent data sources, e.g., unmanned aerial vehicles (UAV), to finely delineate
the shape of individual trees. For example, ref [30] estimated the number, height, diameter,
and area of all 117 trees in a pine clonal orchard with UAV images and statistical methods.
The second group favors more about mapping the extent and distribution of tree plantation
than single tree detection. Studies in this group either feeds hand-crafted spectral, textural,
temporal features, and auxiliary data, into traditional classifiers to identify tree crops, or
rely on very high resolution (VHR) imagery and more advanced deep learning algorithms
such as convolutional neural network (CNN) for automatic feature learning. Typical studies
from this group include [24], which applied an ensemble learning approach to map the
rubber trees in China based on features including backscatter ratio and difference and time
series vegetation indexes extracted from PALSAR and Landsat 5/7 images, respectively,
and [18,19], which detected oil palm trees using QuickBird images and two shallow CNN
structures, i.e., LeNet [34] and AlexNet [35].

Comparatively, tree species with obvious spatial or spectral features on medium to
coarse resolution imagery are much better studied than the small crown trees. For instance,
in southeast Asia, mature oil palm trees can have a crown diameter around 10 meters and
are often cultivated regularly in plantations that span a few kilometers, thus even coarse-
resolution imagery, e.g., MODIS (250 m), can be used to map oil palm plantations [17,22].
In contrast, olive trees in the Mediterranean usually have crown sizes less than 5 m and are
more sparsely planted in orchards, therefore are hardly detectable from MODIS imagery or
even moderate resolution products like Landsat and Sentinel-2. The same applies to many
other fruit trees like almond and citrus. Existing studies for small crown tree crops thus
mostly focused on tree counting, statistical relationships, or single crown reconstruction
using VHR imagery in a relatively small region (e.g., 90 km2) [36–38]. While being useful
from the perspective of algorithm development, studies at such a local scale are less relevant
to large-scale, policy-oriented applications, such as program evaluation, yield gap analysis,
and environmental impact assessment.

Toward mapping tree crops orchards across large regions, several fundamental ques-
tions remain to be answered and the two being described below are often of particular
concern. First, how effective is high resolution (HR) imagery compared to VHR imagery?
Although studies have highlighted the needs for VHR imagery such as the submeter Digi-
talGlobe (DG) data to detect intra-field tree crop features [39], high acquisition cost and
heavy computation loads often prohibit its application to a larger scale. An alternative
option is to use multi-temporal HR imagery, such as the PlanetScope constellation that
provides near-daily observations of ~3 m yet at a considerably lower price. However, the
effectiveness of compensating for the loss of spatial resolution using multi-temporal HR
imagery in tree crops mapping remains an open question. Second, how transferable is
the classifier trained from one place to another even within the same county (i.e., model
generalizability)? This question is less concerning in existing literature when using the
medium to coarse resolution imagery partly because it is relatively easy to cover a large
area at once. Consequently, the one-time-use model has thus unintentionally reduced
the need for transferring. In addition, the widely adopted random sampling protocol for
generating training and testing dataset from the same region also helps erase the variation.
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When it comes to DG-alike VHR imagery, however, the higher bar of data acquisition often
means that the mapping tasks are achieved sequentially, i.e., train the model using the first
batch of data and extend to data coming after. In these cases, model generalizability is
becoming ever more important.

In this study, we used olives in Morocco as a representative case to explore the two
fundamental questions in large-scale tree crop mapping. We chose Morocco because it is an
especially relevant context to study these questions given the large-scale land conversion
programs involved (see Section 2 for details). With the potential to expand to the national-
scale or beyond, we conducted two experiments in both semi-arid and sub-humid regions
in Morocco:

1. Conducting olive orchard mapping using DG imagery and different sampling ap-
proaches, i.e., grid sampling and region sampling to explore the model generalizability
under different levels of spatial variability;

2. Conducting olive orchard mapping using DG satellite imagery and multi-temporal
Planet imagery to explore the effectiveness of HR imagery compared to VHR imagery.

While we used olives in Morocco as a context to investigate the fundamental questions
in mapping tree crops, our findings can serve as a practical reference for many other similar
mapping tasks (e.g., nuts and citrus orchards) relevant in many locations around the world.

2. Material and Methods
2.1. Study Area
2.1.1. Overview of the Olive Cultivation in Morocco

Mediterranean countries produce over 90% of the world olive, among which Morocco
is a rising star that ranks 5th regarding olive oil production. Morocco has a long history of
olive cultivation dating back to the 11th century BCE [40], with almost all olive groves owned
by individual farmers at a very small scale [41]. In 1961, a French project called “DERRO,”
aiming at combating erosion in Rif Mountain areas, introduced large-scale olive cultivation
in modern Morocco history [42]. Further, in 2008, the well-known Green Morocco Plan
(GMP) has set a goal of converting 1.1 million ha of cereals and marginal lands to high-value,
drought-tolerant tree crops, largely olives, by 2020 [43]. Official statistics report that olive
production and export volumes have increased by 65% and 540% since then, respectively,
largely because of a 35% increase in the cultivated area [44]. To date, the Moroccan olive
orchards have a balanced age distribution, with nearly 21% of olives younger than 10 years
old, 57% are between 10 and 50 years, and the rest are older than 50 years [40]. However,
procedures to generate these statistics are often elusive and the resulting maps are hard
to verify. Therefore, a more objective estimation, e.g., mapping based on satellite imagery,
is needed.

2.1.2. Experiment Sites

Olive orchards in Morocco are planted in diverse landscapes, varying from semi-arid to
humid hilly areas from southwest to northeast. Such gradients result in differences in olive
size and spacing both across and within different regions. To represent the spatial variability,
we selected nine sites with areas ranging from 1100 to 2500 ha from two contrasting regions
that have received investments for olive orchard plantings by the Green Morocco Plan
(Figure 1). The sub-humid northern region, Taza-Al Hoceima-Taounate (hereafter, the sub-
humid region), has a long history of olive cultivation and exhibits diversified production
techniques. The southwestern region, crossing Al Haouz and Azilal, is drier and hillier
(hereafter, the semi-arid region) where irrigation systems are more common than in the
northern region. Based on the Climate Hazards Group InfraRed Precipitation with Station
data (CHIRPS), mean annual precipitation (1980–2018) is approximately 609 mm and
416 mm in the sub-humid and semi-arid regions, respectively, but high inter-annual
variability in precipitation has been observed in both regions. Among the nine sites, five
are in the semi-arid region and four are in the sub-humid region. To capture the texture
variations caused by olive age, the nine sites include both young olive orchards planted
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through the GMP between 2008 and 2013 and older and larger trees planted between the
1960s and 2000s. All olives were typically planted in systematic rows, either parallel or
perpendicular to topographic contours or in rows and columns. Details of the nine sites
are displayed in Table 1. Percentages of olive orchards reveal that olives are more widely
planted in places where there is ample precipitation. Elevation information of each site is
provided in Table S1. Overall, the four sub-humid sites have more topographical variation
than the five semi-arid sites.
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Error in Figure

In the original article [1], there was a mistake in Figure 1 as published. The Kingdom
of Morocco considers its Southern Provinces (what used to be referred to as Western Sahara)
as an integral part of the country with total sovereignty. The USA is among the countries
that have recognized this sovereignty with a proclamation signed in December 2020 [2].
The authors used a solid line in the map that may infer the non-sovereignty of Morocco
over its Sahara and have updated the map. The corrected Figure 1 appears below. The
authors apologize for any inconvenience caused and state that the scientific conclusions are
unaffected. The original article has been updated.
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Figure 1. Map of the Northern part of Morocco and study sites. Subfigures show representative
precipitation relative to the average from 1980–2018 (CHIRPS) and example images from DigitalGlobe
(spatial resolution of 0.5 m). Red dots show nine sites of olive orchards from paper-based maps
available from the Green Morocco Plan.
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Figure 1. Map of the Northern part of Morocco and study sites. Subfigures show representative precipitation relative to the
average from 1980–2018 (CHIRPS) and example images from DigitalGlobe (spatial resolution of 0.5 m). Red dots show nine
sites of olive orchards from paper-based maps available from the Green Morocco Plan.

Table 1. Site-specific information. Non-olive includes all other land cover types except for olives,
such as other vegetation, barren lands, and croplands etc. Olive percentages are derived from visual
interpretation of DG imagery (see Section 3.1.2).

Sites
(Semi-Arid)

Olive
Percentage Projects Sites

(Sub-Humid)
Olive

Percentage Projects

1 18.95% GMP 6 42.89% GMP, DERRO
2 9.59% GMP 7 26.58% GMP, DERRO
3 20.58% GMP 8 51.48% GMP, DERRO
4 12.85% GMP 9 40.15% GMP, DERRO
5 26.46% GMP

2.2. Satellite Data
2.2.1. DigitalGlobe Imagery

DigitalGlobe (DG) is the owner and operator of several VHR commercial satellites,
including WorldView (1–3), QuickBird, and IKONOS etc., [45]. In this study, nine analysis-
ready images consisting of WorldView-2 and WorldView-3 acquired between 2018 and 2019,
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were obtained through DG. These products embody a high level of image preprocessing,
including radiation correction, inter-sensor calibration and orthorectification, and finally,
generation of 8-bit Top of Atmosphere (TOA) radiance with Universal Transverse Mercator
(UTM) projection coordinates [46]. All images were pan-sharpened, with 3 bands in nature
colors (RGB) and 0.5/0.3-m resolution for WorldView−2/3. To match the spatial resolution,
imagery from WorldView-3 was resampled to 0.5 m using the bilinear resampling technique
in ArcGIS. The DG imagery of nine study sites is displayed in Figure S1.

2.2.2. Planet Imagery

Planet Lab’s PlanetScope constellation operates more than 135 CubeSats in 2020,
which provides consistent global observation daily at a 3-m resolution [47]. In this study,
one Planet image was obtained for each site in each month (hereafter as the “time step”)
from September 2018 to August 2019 and was cropped to the study area [48]. All images
are at level 3B, meaning products with radiation correction, atmospheric correction and
orthorectification, and projection to the UTM coordinate system. We used the 16-bit, four-
band (Red, Green, Blue and NIR) surface reflectance (SR) data for all image analysis. Note
that the original ground sample distance (GSD) of Planet imagery is about 3.7 m and the
pixel size is resampled to 3 m after orthorectification [49,50].

To match imagery from DG and Planet, image registration was performed and all three
bands of DG imagery (i.e., RGB) and all four bands of Planet imagery (i.e., RGB + NIR)
were normalized to −1 and 1 before applying deep learning models. Details of imagery
characteristics can be found in Table 2 and acquisition dates of all imagery are shown in
Table S2.

Table 2. Remote sensing imagery characteristics

Platform Spectral Bands Spatial Resolution Data Processing No. of Imagery

Worldview-2
Red (630–690 nm),

Green (510–580 nm),
Blue (450–510 nm)

0.5 m
Radiometric Correction;

Sensor Correction;
Orthorectification

7

Worldview-3
Red (630–690 nm),

Green (510–580 nm),
Blue (450–510 nm)

0.3m
Radiometric Correction;

Sensor Correction;
Orthorectification

2

Planet

Red (590–670 nm),
Green (500–590 nm),
Blue (455–515 nm),

Near Infrared
(780–860 nm)

3 m

Radiometric Correction;
Sensor Correction;

Atmospheric
Correction;

Orthorectification

108
(one imagery for each
month for each site)

2.3. Methodology Overview

Before diving deep into the details, we briefly overview our methodology in Figure 2.
For DG imagery, satellite imagery and ground truth were first divided into training,
validation, and testing using different sampling approaches. Next, for each sampling
approach, CNN models were trained and optimized using training and validation datasets
and evaluated using a testing dataset. These experiments aim to explore the question
that how transferable is the model under different levels of spatial variability. For Planet
imagery, two different ways of leveraging its multi-temporal information were used. First,
CNN models were applied to single time imagery of each time step to find the time
step with the best mapping performance for each site. Second, a long-term recurrent
convolutional network (LRCN) model was applied to the multi-temporal imagery to utilize
the spatiotemporal information simultaneously. The comparison between results of DG
and Planet imagery will answer the question that how effective multi-temporal HR imagery
is compared to VHR imagery?
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2.4. Data Preparation and Pre-Processing
2.4.1. The Logic Behind Patch-Based Classification

Pixel-based and patch-based classification are two mainstream strategies in image classi-
fication tasks [51,52]. Pixel-based classification focuses on labelling individual pixels, which is
popular in applications with coarse resolution satellite imagery but shows limitations with
VHR images [53–56]. Specifically, in VHR images, target objects are bigger than the spatial
resolution and are thus composed of many pixels [55]. In this case, pixel-based classification
becomes problematic because all pixels composing the target collectively contribute to the spa-
tial and spectral characteristics of the object and single pixels lack interpretability for the object.
Figure 3a illustrates how pixel-based classification loses efficiency in the high-resolution case.
The class “olive” contains olive trees and soil and the uniformly distributed olive trees and
soil between each tree together form the unique texture feature of olive orchards. When
pixel-based classification is performed, it is challenging to distinguish two soil pixels (i.e.,
point 1 and 2) belonging to two classes as the two pixels have similar spectral features and
possibly similar spatial feature because point 1 is close to the olive orchard. In contrast,
patch-based classifications circumvent this issue by assigning labels based on features of an
image patch instead of a single pixel, in which case all pixels in the patch together represent
the target object. For example, olive orchards can present stronger texture features at the patch
level, e.g., they are typically planted in systematic rows. Therefore, we use a patch-based
classification in this study. Considering that a good patch size should balance the tradeoff
between over-segmentation (i.e., with too limited spatial information to represent the target
object) and under-segmentation (i.e., with too much information that will obscure the target
object) (Figure 3b) [57], we used 192× 192 (9216 m2) and 32× 32 (9216 m2) pixels as the input
image size for DG and Planet after testing different sizes, respectively. The two patch sizes
also make DG and Planet patches have the same area, increasing the fairness and effectiveness
of the comparison between the two.

2.4.2. Ground Truthing and Labelling

To label olives at the patch level, we used paper-based planning maps of GMP that
show locations planted to olive orchards (personal communication, David Mulla) as ground
truth. Based on the paper map, electronic ground truth maps for all sites were produced
by visual interpretation of DG imagery, which is binary and indicates olive and non-olive
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pixels. Subsequently, for each site, the DG-derived ground truth map along with the DG
imagery were split into non-overlapped 192 × 192 pixel patches. Thus, each 192 × 192 DG
image patch has its corresponding 192 × 192 ground truth patch.
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As the patch-based classification requires only one label for the entire patch whereas
the 192 × 192 ground truth patch provides pixel-wise labels, to meet this requirement, one
unique label was then determined for the DG image patch based on its corresponding
ground truth patch. Specifically, for each DG image patch, if the fraction of olive pixels
in the ground truth patch was larger than 30%, the image patch was labelled as olive. A
threshold of 30% was used because we wanted to keep more patches located at the edge of
olive orchards and maintain sufficient texture features at the same time.

Afterwards, a double visual check was performed for all labelled image patches in
the previous step. In a few cases, changes were made if there was a conflict between the
label generated from the previous step and the human visual check. For example, a patch
with very few or even no olives may be labelled as olives based on the 30% threshold,
due to the difficulty of excluding all regions with only sparsely planted olives inside an
extensive olive orchard during the visual interpretation. Some examples of olive patches
and non-olive patches are shown in Figure 3c. Because each 192 × 192 pixel DG patch and
32 × 32 pixel Planet patch are geographically registered, the label for each DG image patch
was assigned for the corresponding Planet image patch.

2.4.3. Sampling Approach: Different Ways of Allocating Training, Validation, and
Testing Dataset

For image classification, training and validation datasets work together to optimize
the model and the testing set evaluates the performance of it [58]. The rule of thumb for
dataset partitioning is to keep datasets coming from identical distributions [59]. However,
due to the spatial variability, ground objects at different geographical locations are prone to
have distribution shifts. Consequently, spatial variability has long been concerned to impair
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model generalizability [60–62]. In our case, spatial variability is two-fold: interregional
variability and intraregional variability. The former indicates the variability between the
sub-humid region and semi-arid region and the latter represents the variability within
the sub-humid region or semi-arid region. Ref [61] argued that interregional variability
was the main cause for poor model generalizability, and suggested building separate
models for regions that are homogenous in certain features. Following this, we built
models for two climatic regions separately. However, the impact of intraregional variability
remains underexplored. This is largely due to the wide use of the simple random sampling
approach that draws samples with equal opportunity regardless of their spatial locations.
This complete randomness can significantly reduce the spatial variability. For example,
a training sample can be exactly next to a testing sample and the two samples can have
high spatial autocorrelation. As spatial variability is not quantitatively measurable, the
challenge of evaluating the influence of intraregional spatial variability is how to control
the degree of it. To address that, we employed two variants of the random sampling
approach with different spatial constraints, i.e., grid random sampling (hereafter as the
“grid sampling”) and region random sampling (hereafter as the “region sampling”). The
underlying assumption is that the degree of spatial variability should be proportional to
the distance, i.e., the first law of geography [63].

Figure 4a illustrates how grid sampling works using the four sub-humid sites as an
example. We split each of the four sites into nine equal-sized grids from the upper left
corner to the lower right corner. Among the nine, four are used for training (blue grids),
two for validation (orange grids) and three for testing (red grids). Compared to the simple
random sampling approach that draws samples with equal opportunity regardless of their
spatial locations, using separated grids as the spatial constraint helps reduced adjacency
and preserves spatial variability among training, validation, and testing dataset. However,
even though we confine the sampling using grids, grids inevitably will have adjacencies.
For example, testing grids 1, 4, 6 in Figure 4 have connections with training grids 2, 3,
5, and 7. Therefore, the grid sampling approach will only retain weak spatial variability
because it helps reduce spatial autocorrelation among samples compared to the simple
random sampling but cannot eliminate all spatial autocorrelation.

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 4. Frameworks of two sampling approaches (see Figure 7 for details of the CNN architecture). (a) Grid sampling; 
(b) region sampling. 

Detailed information about grid-sampling partitioning is shown in Table 3. Note that 
grids assigned for training, validation, and testing have comparable olive and non-olive 
ratios. 

Table 3. Index of training, validation, and testing grids in each site. 

Site 
(Semi-Arid) 

Training 
Grids 

Validation 
Grids 

Testing 
Grids 

Site 
(Sub-Humid) 

Training 
Grids 

Validation 
Grids 

Testing 
Grids 

1 1, 3, 5, 7 8, 9 2, 4, 6 6 4, 6, 7, 8 5, 9 1, 2, 3 
2 2, 4, 8, 9 1, 7 3, 5, 6 7 2, 5, 6, 7 8, 9 1, 3, 4 
3 3, 4, 6, 8 1, 2 5, 7, 9 8 1, 3, 6, 7 8, 9 2, 4, 5 
4 4, 7, 8, 9 2, 5 1, 3, 6 9 1, 5, 7, 9 3, 6 2, 4, 8 
5 4, 7, 8, 9 3, 6 1, 2, 5     

For the region sampling (Figure 4b), all but one of the four sites were used as training 
and validation every time, while the excluded site was used for testing. Thus, each site 
has its individual model. This is different from the grid-sampling approach where all sites 
in each climate region contribute to training one model. As different sites are isolated from 
each other (Figure 1), the spatial autocorrelation becomes negligible. Thus, the region sam-
pling approach can generate training, validation, and testing dataset with stronger spatial 
variability compared to the grid-sampling approach.  

2.5. Olive Orchard Mapping with Deep Learning 
2.5.1. Difference between Olive Orchards in DG and Planet Imagery 

As illustrated by Figure 5, the gap in the spatial resolution (0.5 m for DG versus 3 m 
for Planet) leads to a large difference in spatial information contained in the image. All six 
DG patches show sufficient information to distinguish between olives and non-olives 
whereas Planet patches have limited capacity to accurately represent the two categories 
due to the reduction of spatial resolution. The first row of Figure 5 is selected from the 

Figure 4. Frameworks of two sampling approaches (see Figure 7 for details of the CNN architecture). (a) Grid sampling;
(b) region sampling.



Remote Sens. 2021, 13, 1740 9 of 25

Detailed information about grid-sampling partitioning is shown in Table 3. Note
that grids assigned for training, validation, and testing have comparable olive and
non-olive ratios.

Table 3. Index of training, validation, and testing grids in each site.

Site
(Semi-Arid)

Training
Grids

Validation
Grids

Testing
Grids

Site
(Sub-Humid)

Training
Grids

Validation
Grids

Testing
Grids

1 1, 3, 5, 7 8, 9 2, 4, 6 6 4, 6, 7, 8 5, 9 1, 2, 3
2 2, 4, 8, 9 1, 7 3, 5, 6 7 2, 5, 6, 7 8, 9 1, 3, 4
3 3, 4, 6, 8 1, 2 5, 7, 9 8 1, 3, 6, 7 8, 9 2, 4, 5
4 4, 7, 8, 9 2, 5 1, 3, 6 9 1, 5, 7, 9 3, 6 2, 4, 8
5 4, 7, 8, 9 3, 6 1, 2, 5

For the region sampling (Figure 4b), all but one of the four sites were used as training
and validation every time, while the excluded site was used for testing. Thus, each site
has its individual model. This is different from the grid-sampling approach where all
sites in each climate region contribute to training one model. As different sites are isolated
from each other (Figure 1), the spatial autocorrelation becomes negligible. Thus, the region
sampling approach can generate training, validation, and testing dataset with stronger
spatial variability compared to the grid-sampling approach.

2.5. Olive Orchard Mapping with Deep Learning
2.5.1. Difference between Olive Orchards in DG and Planet Imagery

As illustrated by Figure 5, the gap in the spatial resolution (0.5 m for DG versus 3 m for
Planet) leads to a large difference in spatial information contained in the image. All six DG
patches show sufficient information to distinguish between olives and non-olives whereas
Planet patches have limited capacity to accurately represent the two categories due to the
reduction of spatial resolution. The first row of Figure 5 is selected from the semi-arid region
where most olives become invisible on Planet imagery because of the small canopy size
relative to the spacing between adjacent olive trees. In some cases, Planet imagery shows
detectable features of olives (Figure 5c) and in others, it does not (Figure 5a,b). The second
row is from the sub-humid region. While small size olives remain a challenge (Figure 5d),
a larger portion of olives in this area have larger sizes and can be captured by the Planet
imagery (Figure 5e). Additionally, due to sufficient precipitation, lush natural vegetation
occasionally presents features similar to olives (Figure 5f).
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where olives are visible both on DG imagery and on Planet imagery; (f) shows the case where non-olive vegetation shows
similar features as olives on Planet imagery.
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Comparison in Figure 5 indicates that DG imagery contains sufficient spatial fea-
tures to detect olive orchards whereas Planet imagery show varying capacities in dif-
ferent cases. However, benefiting from the high temporal resolution of Planet imagery,
one image was obtained for each site in each month of the growing season of 2019, i.e.,
from September 2018 to August 2019. Figure 6 displays temporal changes of an olive
and a non-olive patch. Olives do not show significant temporal variation (Figure 6a) but
some non-olives, such as annual plants, shows periodical changes over time (Figure 6b).
The difference between Figure 6a,b suggests that introducing temporal information can
potentially help differentiate annual plants from olives and offset the loss of spatial
information of Planet imagery.
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Due to the different characteristics of DG and Planet imagery, the experiment-designing
is different for the two data. For DG imagery, only CNN models were used to take advan-
tage of its high spatial resolution. For Planet imagery, not only were CNN models trained
for each time step to find the time step with the best performance for each site, but also the
LRCN models were applied using multi-temporal imagery to utilize the spatiotemporal
information at the same time.

Note that since developing more advanced algorithms is not a focus of this study,
we selected existing CNN and LRCN models for the mapping the tasks as those types
of architecture have proven to be powerful tools in discriminating spatial and temporal
features for land classification and avoid huge feature engineering work required by
traditional algorithms such as random forest and support vector machine.

2.5.2. CNN Model

CNN is a group of deep learning architectures that are quite popular in image classifi-
cation and segmentation due to its powerful capacity for learning features with a series
of operations like convolution and pooling. Since the appearance of the first CNN in
1998 [34], CNN has been undergoing drastic changes in terms of the layer depth, width,
and addition of functional components [35,64–66] and has progressively substituted for
traditional machine learning algorithms, e.g., random forest, to be the main tool for remote
sensing image classification.

Although CNN models with increasingly deeper and ingenious architectures have
been proposed for addressing more complex classification, segmentation, or identification
problems, they may not necessarily perform better [19]. After testing different CNN archi-
tectures from simple to complex, we built a VGG-alike network for the relatively simple
binary classification task (i.e., olive versus non-olive) in this study [64]. The reasons are
two-fold. First, compared to simpler architectures, e.g., LeNet and AlexNet, this VGG-
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alike network showed more powerful capacity in mapping olive orchards. Second, it is
computationally efficient in terms of the number of parameters, e.g., 30,591 vs. 11,177,025
(ResNet-18 [66]) and employing complex architectures (ResNet and DenseNet [67]) did not
show any improvement to the result. Hyperparameters, e.g., learning rate and batch size
etc., were adjusted continuously until they achieved the best performance (Table S3). The
detailed architecture of the CNN model is given in Figure 7. Components 1 to 5 indicate two
convolutional blocks with each containing a BatchNorm-Conv-LeakyRelu sequence. The
filter size of the convolutional layer is 3 × 3. Component 6 and 7 are two fully connected
layers. For components 1 to 5, a 2 × 2 MaxPooling layer is used between any of the two
components and an AveragePooling layer is used between component 5 and 6.
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component 5 and 6. Two fully connected layers and one sigmoid layer are followed after convolutional layers.

2.5.3. LRCN Model

To fully take advantage of the temporal information provided by Planet imagery, a
LRCN model was applied to the multi-temporal data [68]. LRCN is a variant of the long
short-term memory (LSTM) network, which is a widely used recurrent neural network
(RNN) to address sequence learning problems and existing studies have already shown
its outperformance in processing time-series imagery over CNN and traditional machine
learning algorithms [69–71].

A LRCN consists of a CNN component and a LSTM component. A CNN encoder is
applied to extract the spatial information before inputting to the LSTM. Therefore, a LRCN
model can capture spatiotemporal information of Planet imagery simultaneously. To make
a fair comparison with results using CNN and single time step Planet imagery, the same
VGG13-alike model was used as the CNN encoder. A LSTM component was inserted
between components 5 and 6 in Figure 7 to extract temporal information of the input vector
that contains spatial information of multi-temporal Planet imagery.

Note that due to the number of olive patches being unequal to that of non-olives,
different weights were assigned to the loss function during training. Minority class thus
has a higher weight, indicating a higher penalty when misclassifying it. When training the
network, we applied the Adam optimizer to minimize the weighted binary cross-entropy
loss [72,73], the equation of which is defined as:

li = wi(−yilogxi − (1 − yi)loglog(1 − xi)) (1)

where li, yi, xi, and wi were the loss, label, model output, and weight for the batch i. The
average loss of all batches was finally used to optimize the model:

L =
1
n

n

∑
i

li (2)

where n is the number of batches, L is the total loss for all batches.
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All experiments were conducted with PyTorch on a Dell workstation with 64 GiB
Intel(R) Xeon(R) W-3250 CPU @ 4.00 GHz, 11 GiB RTX 2080 Ti GPU, and 64-bit Windows
10 OS.

2.6. Accuracy Assessment

Accuracy evaluation was performed using three metrics, precision, recall, F1 score,
and overall accuracy (OA) [74–76]. The definitions are:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × Precision × Recall

Precision + Recall
(5)

OA =
TP + TN

TP + FP + TN + FN
(6)

where TP, FP, TN, and FN indicate true positive, false positive, true negative, and false
negative, respectively. In this study, true positive represents the case where both the
prediction and label are olives, false positive represents the case where the prediction is
olive but the label is non-olive. The same logic can apply to true negative and false negative.

Among the four metrics, precision and recall reflect the portion of correctly identified
olives and the portion of actual olives that are correctly identified; F1 score is the harmonic
mean of precision and recall; OA indicates an overall performance of the classification result.

3. Results
3.1. Mapping Olive Orchards Using 0.5 m DG Imagery
3.1.1. Results Using DG Imagery and Grid Sampling

Table 4 shows the accuracy evaluation for the grid sampling approach. In the semi-arid
region, the mean precision, recall, and F1 score are 0.87, 0.89, and 0.88. In the sub-humid
region, both mean precision and recall have higher values than the semi-arid region and
correspondingly, higher F1 score. In terms of the OA, the semi-arid region has a higher
mean OA than the sub-humid region because non-olives account for a larger percentage.
Therefore, the OA can reach a high value when most non-olives are correctly identified.

Table 4. Evaluation metrics for olive orchard mapping using grid sampling with DG imagery (TP: true positive, FP:
false positive, TN: true negative, FN: false negative).

Site TP FP TN FN Precision Recall F1 OA

Semi-arid

1 197 26 765 38 0.883 0.838 0.860 0.938
2 95 7 387 21 0.931 0.819 0.872 0.945
3 198 28 592 14 0.876 0.934 0.904 0.950
4 188 36 613 18 0.839 0.913 0.874 0.937
5 104 22 459 9 0.825 0.920 0.870 0.948

Overall 782 119 2816 100 0.868 0.887 0.877 0.943

Sub-humid

6 156 21 341 10 0.881 0.940 0.910 0.941
7 178 20 311 24 0.899 0.881 0.89 0.917
8 129 27 186 18 0.827 0.878 0.851 0.875
9 247 30 341 6 0.892 0.976 0.932 0.942

Overall 710 98 1179 58 0.879 0.924 0.901 0.924

Figure 8 gives a visualization of misclassifications between olives and non-olives.
Figure 8e,g displays the raw classification map without pointing out the locations with false
positive/negative and true positive/negative. Patches 1 and 3 in Figure 8f show cases where
non-olives with similar texture features as olives in the semi-arid region were classified
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as olives. Patch 2 in Figure 8f indicates that olives located at the edge are more likely to
be omitted and be classified as non-olives. Patches 4, 5, and 6 in the sub-humid region
(Figure 8h) present the same problem shown in patches 1 and 3, which is misclassification
caused by other vegetation that presents olive-like texture features.
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(a) RGB imagery in grid 5, semi-arid site 5; (b) classification map showing TP/TN/FP/FN in grid 5, semi-arid site 5;
(c) RGB imagery in grid 4, sub-humid site 9; (d) classification map showing TP/TN/FP/FN in grid 4, sub-humid site 9;
(e) classification map in grid 5, semi-arid site 5; (f) examples for false positive and false negative values in grid 5, semi-arid
site 5; (g) classification map in grid 4, sub-humid site 9; (h) examples of false positive and false negative values in grid 4,
sub-humid site 9.

3.1.2. Results Using DG Imagery and Region Sampling

Two evaluations were used for models based on the region sampling approach. The
first evaluation only used the three testing grids (displayed in Table 3) in each site to make a
direct comparison with the result of grid-sampling (Table 4). Results in Table 5 show that
models trained with grid-sampling outperform models trained with region-sampling. F1
scores and OA of two regions drop from 0.88 to 0.84, 0.90 to 0.88, 0.94 to 0.93, and 0.92
to 0.91, respectively. For the second evaluation, testing sets are enlarged from three grids
to the entire site, which will introduce more spatial variability. Table 6 shows a further
performance reduction compared to Table 5. F1 scores and OA of two regions change from
0.84 to 0.83, 0.88 to 0.85, 0.93 to 0.92, and 0.91 to 0.88.

Table 5. Evaluation metrics for olive orchard mapping using region sampling with DG imagery (1st evaluation).

Site TP FP TN FN Precision Recall F1 OA

Semi-arid

1 182 35 756 53 0.839 0.774 0.805 0.914
2 91 11 383 25 0.892 0.784 0.835 0.930
3 197 36 584 15 0.845 0.930 0.885 0.939
4 183 38 611 23 0.828 0.888 0.857 0.927
5 95 23 458 18 0.805 0.841 0.823 0.931

Overall 748 143 2792 134 0.840 0.848 0.844 0.927

Sub-humid

6 154 21 341 12 0.88 0.928 0.903 0.938
7 172 28 303 30 0.86 0.851 0.856 0.891
8 126 28 185 21 0.818 0.857 0.837 0.864
9 240 33 338 13 0.879 0.949 0.913 0.926

Overall 692 110 1167 76 0.863 0.901 0.882 0.909



Remote Sens. 2021, 13, 1740 14 of 25

Table 6. Evaluation metrics for olive orchard mapping using region sampling with DG imagery (2nd evaluation).

Site TP FP TN FN Precision Recall F1 OA

Semi-arid

1 574 91 2331 139 0.863 0.805 0.833 0.927
2 161 50 1239 54 0.763 0.749 0.756 0.931
3 474 115 1750 79 0.805 0.857 0.830 0.920
4 502 121 1910 77 0.806 0.867 0.835 0.924
5 503 103 1097 79 0.830 0.864 0.847 0.898

Overall 2214 480 8327 428 0.822 0.838 0.830 0.921

Sub-humid

6 522 83 919 60 0.863 0.897 0.880 0.910
7 483 92 1027 79 0.84 0.859 0.850 0.898
8 497 106 500 93 0.824 0.842 0.833 0.834
9 658 139 1074 105 0.826 0.862 0.844 0.877

Overall 2160 420 3520 337 0.837 0.865 0.851 0.882

Figure 9 shows an example of olive orchard maps using the region sampling approach.
Figure 9d,h shows the same grids as in Figure 8b,d that uses the grid-sampling approach.
Compared with the results in Figure 8, Figure 9d,h shows more false positive (red) and
more false negative (blue) values, which coincide with lower precision and recall values
when using the region-sampling approach.
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Figure 9. Olive mapping results using the region sampling approach and DG imagery. The legend
only applies to (c,d,g,h). (a) RGB imagery in semi-arid site 5; (b) classification map in semi-arid site 5;
(c) classification map showing TP/TN/FP/FN in semi-arid site 5; (d) classification map showing
TP/TN/FP/FN in grid 5, semi-arid site 5; (e) RGB imagery in sub-humid site 9; (f) classification map in
sub-humid site 9; (g) classification map showing TP/TN/FP/FN in sub-humid site 9; (h) classification
map showing TP/TN/FP/FN in grid 4, sub-humid site 9.



Remote Sens. 2021, 13, 1740 15 of 25

3.2. Mapping Olive Orchards Using 3-m Planet Imagery
3.2.1. Results Using Single Time Planet Imagery and CNN

Table 7 shows the best result that single time Planet imagery could achieve among
the 12 time steps for each site, which has poorer performance compared to DG imagery.
The five semi-arid sites consistently have low values of precision, recall, F1 score, and
OA, which are on average 0.26, 0.42, 0.32, and 0.59, respectively. Since a larger portion of
olives in the sub-humid region is with older ages, larger crowns, and wider spacings, the
expectation for this region is higher values in all metrics than the semi-arid region. The
result coincides with this and the average precision, recall, F1 score, and OA are 0.55, 0.56,
0.55, and 0.66, respectively.

Table 7. Evaluation metrics of olive mapping using single time Planet imagery using CNN.

Site TP FP TN FN Precision Recall F1 OA

Semi-arid

1 78 209 582 157 0.212 0.332 0.299 0.643
2 35 104 290 81 0.252 0.302 0.275 0.637
3 123 261 359 89 0.320 0.580 0.413 0.579
4 90 304 345 116 0.228 0.437 0.3 0.509
5 44 183 298 69 0.194 0.389 0.259 0.576

Overall 370 1061 1874 512 0.259 0.420 0.320 0.588

Sub-humid

6 116 146 216 50 0.443 0.699 0.542 0.629
7 94 71 260 108 0.570 0.465 0.512 0.664
8 86 75 138 61 0.534 0.585 0.558 0.622
9 132 65 306 121 0.670 0.522 0.587 0.702

Overall 428 357 928 340 0.545 0.557 0.551 0.659

Compared to the result using DG imagery shown in Figure 8, Figure 10 further reveals the
limitations of Planet imagery in olive orchard mapping visually. First, fewer olive trees with
distinguishable features were correctly detected (patch 3 in Figure 10f, patch 6 in Figure 10h).
Second, olive trees with no distinguishable features and non-olives were misclassified mutually
(patch 1, 2 in Figure 10f, patch 4, 5 in Figure 10h). Third, trees in the shaded area were mostly
obscured compared to the VHR DG imagery, e.g., patch 4 in Figure 10.
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Figure 10. Olive mapping results using the grid sampling approach and Planet imagery. The legend only applies to (b,d).
(a) RGB imagery in grid 5, semi-arid site 5; (b) classification map showing TP/TN/FP/FN in grid 5, semi-arid site 5;
(c) RGB imagery in grid 4, sub-humid site 9; (d) classification map showing TP/TN/FP/FN in grid 4, sub-humid site 9;
(e) classification map in grid 5, semi-arid site 5; (f) examples for false positive and false negative values in grid 5, semi-arid
site 5; (g) classification map in grid 4, sub-humid site 9; (h) examples of false positive and false negative values in grid 4,
sub-humid site 9.
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3.2.2. Results Using Multi-Temporal Planet Imagery and LRCN

The assumption for this experiment is that multi-temporal information can help
improve misclassifications occurring when using single-time Planet imagery. However,
results in Table 8 reveal that the detection of non-olives has improved whereas olives
may or may not benefit from the multi-temporal information under different cases. In the
semi-arid region, more olive patches were misclassified compared to Table 7 (lower TP
and higher FN) but fewer non-olive patches were misclassified (higher TN and lower FP).
Therefore, the average precision is higher (0.40 versus 0.26) but recall (0.27 versus 0.42)
is lower. In the sub-humid region, as a positive case where multi-temporal information
benefits detections of both olives and non-olives, higher values of precision (0.65 versus
0.55) and recall (0.64 versus 0.56) are observed.

Table 8. Evaluation metrics of olive tree mapping for Planet imagery using LRCN and multiple time steps.

Site TP FP TN FN Precision Recall F1 OA

Semi-arid

1 61 73 718 174 0.455 0.260 0.331 0.759
2 20 44 350 96 0.313 0.172 0.222 0.726
3 58 91 529 154 0.389 0.274 0.321 0.706
4 56 70 579 150 0.444 0.212 0.337 0.743
5 44 85 396 69 0.341 0.389 0.364 0.741

Overall 239 363 2572 643 0.397 0.271 0.322 0.736

Sub-humid

6 118 47 315 48 0.715 0.711 0.713 0.820
7 91 62 269 111 0.575 0.451 0.513 0.675
8 96 71 142 51 0.595 0.653 0.612 0.661
9 184 83 288 69 0.689 0.727 0.708 0.756

Overall 489 263 1014 279 0.650 0.637 0.643 0.735

4. Discussion
4.1. Difference between Olive Orchard Mapping in Semi-Arid and Sub-Humid Regions

According to Table 4, the mean precision and recall in semi-arid region are 0.87 and
0.89, indicating that on average 13% of the identified olives are in reality non-olives, while
11% of olives were misclassified as non-olives. Albeit values of two metrics are comparable,
considering the larger portion of non-olives in dry areas (i.e., 119 out of 2935 non-olive
patches were misclassified whereas 100 out of 882 olive patches were misclassified), olive
detection is more challenging than non-olives. This is consistent with the fact that olives in
drier areas were mostly planted after 2008 with just a few olive groves having decades-old
ages. Therefore, most olives with small crown sizes bring challenges for their detection.
Meanwhile, the large spacing between olive trees relative to small tree sizes further increases
the difficulty. Compared to olives, non-olives in drier sites are more detectable as landscapes
have simple and consistent features. Therefore, fewer non-olives were misclassified.

Compared to the results in the semi-arid region, the sub-humid region has a higher
mean recall, i.e., 0.92, suggesting that olives in the humid area can be more easily recognized.
The reason is that the sub-humid region provides a more favorable environment for olive
growth, including sufficient water supply and more fertile soil. As a result, olive planting
has a long history in humid areas, and most olives have large enough crown sizes to be
easily recognized from satellite imagery. However, the higher mean precision, i.e., 0.88,
does not mean non-olives are also easily detectable in this area. Instead, the detection
becomes more challenging due to more abundant backgrounds. For example, some natural
forests and random trees can occasionally display features similar to olives, which leads to
misclassification. Therefore, a higher ratio of misclassified non-olives is observed in the
sub-humid region, i.e., 98 out of 1275 versus 119 out of 2935 in the drier area. However,
since the absolute value of false positives is smaller (98 versus 119) as well as true positives
are comparable (710 versus 782), the precision value becomes slightly higher according to
Equation (3).
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4.2. Model Generalizability under Different Levels of Spatial Variability

One of the goals is to explore the model generalizability under different levels of
spatial variability. To achieve this goal, we employed two sampling approaches, i.e., grid
sampling and region sampling, to generate training, validation, and testing dataset. The
grid sampling approach represents a weaker spatial variability (Section 2.4.3) and the mean
F1 score and OA for two climatic regions are 0.88 and 0.94, 0.90 and 0.92, respectively,
based on the datasets generated from it.

As a comparison, the region sampling generates datasets with stronger spatial vari-
ability. Results in Table 5 show that when using the same three testing grids in each site,
region-sampling is worse than grid-sampling. The loss in precision comes from more
confusion between olives and non-olives, i.e., less true positives and more false positives.
Simultaneously, as fewer true positives are equivalent to more false negatives, values
of recall also drop from 0.89 to 0.85 in the semi-arid region and from 0.92 to 0.90 in the
sub-humid region. The loss in precision and recall indicates that variability exists among
different sites within the same climatic region. Due to this, for a given site, olives and
non-olives with features that are not learned by the model from other sites are less likely to
be correctly identified. When enlarging the testing set, more variability was involved and
worsened the model performance.

Two experiments using grid and region-sampling together measure to what degree
spatial variability will influence model generalizability. In our case, while still yielding
satisfying performance, when generalizing models to new data with distribution shift
(spatial variability), values of precision, recall, F1 score, and OA could have decreased by
up to 0.05, 0.05, 0.05, and 0.04, respectively.

4.3. The Effectiveness of Planet Imagery Compared to DG Imagery

Another goal of this study is to explore the effectiveness of HR imagery compared
to the VHR imagery. Results in Table 7 indicate that the single date Planet imagery, even
with selecting the best result among 12 time steps, has much poorer performance than
DG imagery. This can be attributed to the fact that most olives are invisible on Planet
imagery due to the small canopy size relative to the spacing between adjacent olive trees.
Patches labelled as olives but with no distinguishable features would likely bias the model,
making it incapable of differentiating featureless olive patches from non-olive patches.
Consequently, misclassifications occurred frequently between olives and non-olives, i.e.,
1061 non-olive and 512 olive patches were misclassified into the opposite category. In the
sub-humid region, more detectable features of olives mitigate the confusion between the
two classes. Consequently, only 340 out of 768 olive patches and 357 out of 1285 non-olives
were misclassified compared to 512 out of 882 and 1061 out of 2935 in the semi-arid region.

Incorporating multi-temporal information also does not necessarily improve the
performance. In the semi-arid region, the improvement in non-olive detection can be
attributed to the seasonality shown by some non-olives that helps to better recognize the
non-olives misclassified as olives using single time imagery. Two reasons may explain
the decreased capacity for olive detection. First, only a portion of non-olives in dry areas
has annual changes and other portions are featured by more barren lands showing less
intensive periodical variations. Since the temporal change for olives is also marginal,
incorporating temporal information does not help distinguish olives without obvious
texture features from similar barren lands. Additionally, due to the strong seasonal change
of non-olives, the weak spatial feature of some olives can be obscured by it if those olives
are grown with annual plants such as grasses.

Similarly, the improvement in non-olive detection in the sub-humid region is due to
the seasonality of some non-olives. However, differences in the background environment
and olive features in the sub-humid region also facilitate the detection of olives. First, there
is a larger portion of non-olives in the humid region having seasonal changes, which can
help reduce the misclassification from olives. For example, natural forests that display
similar texture features. Second, older and larger olives in the humid region have stronger
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spatial features than younger and smaller ones in the arid region, thus will not be easily
obscured by temporal features from surrounding annual plants.

The two experiments using single time and multi-temporal Planet imagery suggest
that spatial information, e.g., texture feature, still plays a key role in olive detection. The
multi-temporal information can be helpful as an auxiliary force for spatial information,
e.g., in the sub-humid region where older trees have obvious texture features. However,
if the spatial feature itself is weak, incorporating temporal information may not improve
the performance.

4.4. Feature Representation for Olive Orchards

To explore how feature representations relate to the model performance, we visualized
features of five convolutional layers of DG and Planet imagery, respectively. This has been
proven to be an effective way to know representative features in different tasks, e.g., cropland
mapping [58,77] and yield prediction [78].

Figure 11 shows an example where the DG-based model learned well but the Planet-
based model failed to learn representative features. For the DG-based model, the shape of trees
is first learned, and every single tree stands out without differentiating between plantation
and natural trees (Figure 11b). From Figure 11b–e, the texture feature of olive orchards is
highlighted incrementally with the model forwarding to deeper layers. As a result, in the fifth
convolutional layer (Figure 11f), areas with distinct texture features are distinguished from
other areas. As a comparison, in Figure 11g, due to younger ages and smaller sizes, most
olives show no spatial features on coarser Planet imagery and are confused with non-olives.
Therefore, instead of learning some distinguishing features, what highlighted in each layer
were common features to the two categories. Consequently, a large extent of misclassification
was observed due to the unrepresentative features learned in previous layers (Figure 11I).

Similarly, in Figure 12a–f, feature representation of each layer of the DG-based model
started from low-level features such as the shape of trees to high-level features such as the
line texture. Finally, olives planted along the contour were correctly classified. However, in
contrast to the unrepresentative features learned by the Planet-based model in Figure 11,
the spatial feature of olives was gradually highlighted as the model proceeded to deeper
layers. Although confusions were still observed in the upper region where natural forests
were grown, the degree of this was reduced compared to Figure 11I. This example reveals
that the Planet-based model also learned useful information when olives are older, bigger,
and show more detectable spatial features on Planet imagery.

4.5. When Is Planet-Alike HR Imagery Effective?

The spatial resolution has been considered as a key factor influencing the performance
of remote sensing applications. For example, [79] discussed the effect of spatial resolution
on the capacity of satellite imagery to monitor individual fields, [80] emphasized the
importance of finer resolution imagery in global land cover mapping. VHR imagery is
attractive due to the capability to capture features that are usually omitted by relatively
coarser resolution imagery but at the cost of data acquisition and accessibility [28,81]. For
example, to obtain single-date imagery covering the entire semi-arid region shown in
Figure 1 (approximately 15,000 km2), the cost of commonly used VHR imagery with spatial
resolution greater than 0.5 m ranges from ~$150,000 to ~$450,000. As a comparison, the
cost of 3 m PlanetScope imagery is about $15,000 [82]. Therefore, although DG imagery has
been proven to have consistent good performance in detecting less dense and relatively
smaller olive orchards, it is still worthwhile to find out when we should use DG-alike VHR
imagery only and when Planet-alike HR imagery can be effective.

A direct answer from previous experiments is that Planet imagery should be used in
areas with most olive orchards being distinctly identifiable. Two main factors determine the
identifiability of olive orchards on Planet imagery. The primary factor is crown size, which
is linked with tree age. As shown in Figure 13a,b, either in the semi-arid or sub-humid
region, olives with approximately a diameter of 5 meters have visible texture features on
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Planet imagery. The second factor, i.e., the spacing between individual olives, explains why
olive orchards still show features when crown sizes are relatively small. When spacings
between olives are narrow relative to their crown size, the feature of an olive row is more
likely to be obvious. For example, the crown size is about 3.5 m while the spacing is
less than 3 m in Figure 13c,d, otherwise, it becomes blurry (Figure 13e). Another effect
of tree spacing is that olives are generally more densely planted in one direction than
in the perpendicular direction. Equidistant tree spacings in all directions for trees with
large crowns would cause this texture feature to disappear (Figure 13f). Consequently, a
more general answer to the question is that Planet imagery is of acceptable effectiveness to
identify the olive orchards in areas where trees are with large crown sizes or other texture
features that are visible at its pixel sizes; whereas it is not of sufficient accuracy to identify
recently planted olive orchards that have smaller crown sizes, e.g., less than 2.5 to 3 m, and
with wide spacings between trees, e.g., larger than 3 to 3.5 m.
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Figure 13. Cases when olive orchards are visible and invisible on Planet imagery (DG: left, Planet: right); (a,b) olives with
large crowns are visible on Planet imagery; (c,d) olives with small crowns but narrow spacing are visible on Planet imagery;
(e) olives with small crowns with large spacing are invisible on Planet imagery; (f) olives with large crowns and close
spacing within and across rows are invisible on Planet imagery.
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4.6. Extension to Larger Scales: When to Consider Spatial Variability in Sampling?

In previous experiments with DG imagery, we employed two sampling approaches,
i.e., grid random sampling and region random sampling, which introduced different levels
of spatial variability in generating training, validation, and testing sets. The original goal
of this experiment is to evaluate how the model generalizability under different levels
of spatial variability is, but not to evaluate the goodness or badness of each sampling
approach. However, as spatial variability is an inherent issue for most remote sensing
applications, considering spatial variability in sampling approach selections is critical but
often less discussed. Note that the grid sampling and region sampling approaches are
not concrete methods but just representations of the sampling approaches that introduce
different levels of spatial variability in generating datasets. For a given study, its ultimate
goal determines the necessity of encompassing spatial variability and hence the choice of
appropriate sampling approaches.

Based on their goals, studies can fall into two categories. The first category aims at
generating one-time products at the scale from local to global, such as thematic maps.
Such studies prioritize the product accuracy instead of model generalizability and ground
truth and labels are usually available for new regions to train the local models. Thus, a
sampling approach that guarantees the identical distribution among datasets is appropriate.
As an example at the local scale, ref [51] produced flooding maps in two different cities
of the United States. With available local labels, they used a simple random sampling
to erase spatial variability among datasets and reached OAs of 0.94 and 0.99 for the
two sites, respectively. For research at the global scale, ref [80] pointed out that sample
representativeness and homogeneity are necessary considerations for developing global
land cover products and they randomly collected samples from neighboring image scenes to
ensure that. Typical examples of the second category include studies aiming at developing
universal algorithms but only evaluating local sites due to various reasons [62,83]. In such
cases, model generalization is required to extend to other areas and spatial variability
should be introduced in model construction. This helps to test the robustness of the model
for new data coming from a spatially different region. Otherwise, model performance will
remain unpredictable.

5. Conclusions

In this study, we used olives as the representation of less densely planted and relatively
smaller tree crops and attempted to answer several fundamental questions regarding
mapping such tree crops at a larger scale. First, how will spatial variability influence
the model generalizability? In this experiment, two sampling approaches representing
different levels of spatial variability were used to generate datasets for DG imagery. Results
showed that spatial variability could lead to a decrease in F1 score up to 5% and OA to
4% when generalizing the model to new regions. Second, how effective is HR imagery
compared to VHR imagery? We conducted experiments for DG’s 0.5 m-resolution imagery
and multi-temporal Planet’s 3 m-resolution imagery respectively. Results showed that
DG imagery had consistent good performances in capturing the texture feature of olive
orchards in both semi-arid and sub-humid regions. In contrast, Planet imagery was
only capable of detecting olive orchards with larger crown size and smaller tree spacings
even with temporal information. Spatial information served as a key factor in olive
orchard mapping and temporal information only helps when enough spatial features can
be captured. Therefore, in the semi-arid region where olives are younger and have a smaller
size and larger spacing, the usability of Planet imagery is impaired. In the sub-humid
region with a long history of olive cultivation, more olives can be recognized using Planet
imagery. These findings can serve as a practical reference for subsequent upscaling work
and many other similar mapping tasks in other places. Future efforts focusing on similar
topics may be expected from addressing the shortage of labels with self-representation
learning or meta-learning.
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