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Abstract: This paper describes the Passive microwave Neural network Precipitation Retrieval algo-
rithm for climate applications (PNPR-CLIM), developed with funding from the Copernicus Climate
Change Service (C3S), implemented by ECMWF on behalf of the European Union. The algorithm
has been designed and developed to exploit the two cross-track scanning microwave radiometers,
AMSU-B and MHS, towards the creation of a long-term (2000–2017) global precipitation climate
data record (CDR) for the ECMWF Climate Data Store (CDS). The algorithm has been trained on an
observational dataset built from one year of MHS and GPM-CO Dual-frequency Precipitation Radar
(DPR) coincident observations. The dataset includes the Fundamental Climate Data Record (FCDR)
of AMSU-B and MHS brightness temperatures, provided by the Fidelity and Uncertainty in Climate
data records from Earth Observation (FIDUCEO) project, and the DPR-based surface precipitation
rate estimates used as reference. The combined use of high quality, calibrated and harmonized
long-term input data (provided by the FIDUCEO microwave brightness temperature Fundamental
Climate Data Record) with the exploitation of the potential of neural networks (ability to learn and
generalize) has made it possible to limit the use of ancillary model-derived environmental variables,
thus reducing the model uncertainties’ influence on the PNPR-CLIM, which could compromise the
accuracy of the estimates. The PNPR-CLIM estimated precipitation distribution is in good agreement
with independent DPR-based estimates. A multiscale assessment of the algorithm’s performance
is presented against high quality regional ground-based radar products and global precipitation
datasets. The regional and global three-year (2015–2017) verification analysis shows that, despite
the simplicity of the algorithm in terms of input variables and processing performance, the quality
of PNPR-CLIM outperforms NASA GPROF in terms of rainfall detection, while in terms of rainfall
quantification they are comparable. The global analysis evidences weaknesses at higher latitudes
and in the winter at mid latitudes, mainly linked to the poorer quality of the precipitation retrieval in
cold/dry conditions.

Keywords: precipitation; satellite retrieval; microwave; neural network; climate data record; essential
climate variables; Copernicus

1. Introduction

In 2016, the European Centre for Medium-Range Weather Forecasts (ECMWF) im-
plemented the Copernicus Climate Change Service (C3S), on behalf of the European
Union, aimed at producing a new set of Essential Climate Variables (ECVs, variables
that critically contribute to the characterization of the Earth’s climate) from observa-
tions (https://climate.copernicus.eu/c3s312b-essential-climate-variable-products-derived-
observations, accessed on 12 February 2021). The project focuses on five different variable
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categories, related to atmospheric physics (Lot 1), atmospheric composition (Lot 2), ocean
(Lot 3), land hydrology and cryosphere (Lot 4) and land biosphere (Lot 5). Lot 1 contains
precipitation as an essential climatic variable. Indeed, precipitation plays a crucial role in
the global hydrological and energy cycles and therefore in many activities, such as agri-
culture, management of water resources and natural hazards, weather and hydrological
predictions. Accurate global measurements of precipitation are important for these reasons
and for understanding the natural variability of the Earth’s climate [1–9].

In this context, satellite borne sensors, providing global observations, play a key role
in estimating precipitation, while ground-based measurements provided by rain gauges
and radars have limited coverage [6,9–11]. Microwave (MW) sensors, in particular, are
essential for the space-based precipitation measurements as, unlike infrared and visi-
ble instruments, directly respond to the absorption and scattering of cloud hydrometers
(e.g., [2,12–16]). Opaque channels around 183 GHz, for example, originally designed to
retrieve water vapor distribution due to their different sensitivity to specific layers of the
atmosphere [17–19], have shown great potential for precipitating cloud characterization
and for precipitation retrieval. In fact, the different penetration properties of these fre-
quency channels in the atmosphere can be exploited to analyze the vertical distribution of
hydrometeors [17,18,20–26] and to obtain some criteria for the characterization of precipi-
tation (weak, moderate, strong convective and stratiform, for example, [27,28]).

The Passive microwave Neural network Precipitation Retrieval algorithm for climate
applications (PNPR-CLIM) described in this paper, has been designed and developed to
exploit the two cross-track scanning passive microwave radiometers, Advanced Microwave
Sounding Unit-B (AMSU-B) and Microwave Humidity Sounder (MHS) long-term measure-
ments to contribute to the global precipitation climate data record (CDR) to be released
in collaboration with Deutscher Wetterdienst (DWD) within the C3S program. Neural
Networks (NNs) represent a highly flexible ensemble of non-linear and non-parametric
regression and classification statistical models, widely applied in many fields of the Envi-
ronmental Sciences for their capability to approximate complex non-linear and imperfectly
known functions to various degrees of accuracy [19,29,30]. The opportunities offered by
their ability to learn and generalize, as well as to be quite robust to handle noise in the input
variables, have encouraged their use in precipitation estimation from satellite and ground
measurements. This technique has proven to be effective in this area of research and were
successfully used in many rainfall estimation and monitoring applications [31–38]. By
definition, NN models [35] are supervised learning algorithms and, as such, their design
requires a training phase in which the model parameters are chosen to model an empirical
function of some sample data (the training dataset). In the precipitation retrieval context,
this translates into a sample of radiometric and ancillary input states, together with the
actual precipitation rates linked to them. It is worth noting that the performance of the NN
is largely dependent on the training dataset completeness and representativeness, and on
its consistency with the actual observations. Training datasets created by means of both
cloud resolving model (CRM) coupled to radiative transfer models were used for a long a
time [6,39–43]. They were also used in the previous version of the PNPR algorithms for
AMSU/MHS [35] and for Advanced Technology Microwave Sounder (ATMS) [36] that are
currently used to deliver operational regional products (mainly over Europe and Africa)
within the EUMETSAT Satellite Application Facility for Operational Hydrology and Water
Management (H SAF). There are, however, some limitations associated with the use of
CRMs, such as uncertainties in surface property characterization (e.g., surface emissivity),
single scattering properties of ice or mixed phase hydrometeors, cloud microphysics pa-
rameterizations (particle size distributions, bulk densities, conversion processes), vertical
and horizontal distribution of solid and liquid hydrometeors [44–46]. These limitations,
being essentially due to the complexity and variety of the real atmospheric states and cloud
structures, can be partially overcome by considering purely observational training datasets,
if available.
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Since the launch of the Global Precipitation Measurement mission (GPM) on
28 Febuary 2014, an extended and high quality set of spaceborne radar precipitation mea-
surements have become available [47–49]. The Dual-frequency Precipitation Radar (DPR)
at Ku-band (13.6 GHz) and Ka-band (35.5 GHz) [50] on-board the NASA/JAXA GPM Core
Observatory (GPM-CO) provides precipitation measurements, covering the globe from
67◦ N to 67◦ S. The high quality of DPR-based products is supported by several validation
studies [51–54] and field campaigns [55,56].

Metrologically-robust Fundamental Climate Data Records (FCDRs), that is, long-term
records of satellite measurements (top-of-atmosphere radiance, reflectance and brightness
temperature (BT)), were developed within the “Fidelity and Uncertainty in Climate data
records from Earth Observation (FIDUCEO)” project. FIDUCEO FCDRs consist of con-
tinuous, harmonised records of calibrated, geolocated, uncertainty-quantified microwave
sensor observations [57–61]. Carefully calibrated and homogenized radiance datasets are a
fundamental prerequisite in the development of an algorithm aimed at performing climate
analysis and monitoring. Thus, to take advantage of the enhanced stability and consis-
tency of the FIDUCEO FCDR, ideally preserved in the derived geophysical variables for
climate applications, the PNPR-CLIM algorithm was trained with an observational dataset
composed of global GPM DPR-based precipitation estimates coincident, in space and time,
with the AMSU-B/MHS BT measurements. In the dataset, the DPR-based precipitation
rate is coupled to the FIDUCEO FCDR BTs.

However, it should be noted that, despite the advantages of using entirely obser-
vational training datasets, some criticality remains. Indeed, the precipitation retrieval
from multi-frequency microwave BTs (especially from radiometers equipped only with
high-frequency channels as the MHS and AMSU-B) does not guarantee unique surface
precipitation rate solution, as a given multi-channel radiometric observation may be associ-
ated to different precipitation profiles (this is the ambiguity, or ill-posed inverse problem).
Therefore, without the knowledge of an approximate state of the atmosphere, this problem
turns out to be hardly solvable. Bayesian algorithms, like the GPM’s Goddard Profiling
Algorithm (GPROF, [41]), or the Cloud Radiation Dynamic Database approach [42,43,46,62]
overcome this difficulty, to a certain degree, by drawing from a large a priori database
only the precipitation profiles constrained by model-derived atmospheric conditions at the
time closest to the satellite overpass. The most probable state associated with each new
observation is then used to return the surface precipitation estimate. Of course, this implies
a good confidence in the highly dependent ancillary variables used to constrain the search-
ing scheme at each algorithm run, reducing the algorithm independence from the model
reanalysis or prediction. Similarly, but with important peculiarities, PNPR-CLIM uses two
kinds of ancillary, model-derived variables to tune its predictions—snow-cover and sea-ice
fraction daily products on one side, and 2 m temperature, freezing level and total precip-
itable water monthly means, all provided by the ECMWF ERA5 global reanalysis [63]. The
daily time resolution of the sea-ice and snow cover data was chosen to better represent
these two highly variable fields. In fact, their extremely variable emissivity has a significant
effects on the upwelling radiation (especially in dry conditions) and tends to contaminate
the precipitation microwave signal [64–67]. The choice of low time resolutions (monthly)
for the other ERA5 variables, instead, ensures the dominance of the instantaneous informa-
tion (TBs) over the ancillary one, determining a weak dependence on other data sources. It
is therefore a global training dataset, mostly based on GPM and AMSU/MHS coincident
global observations, as required within the C3S project. The goal is to provide high quality
satellite-based precipitation rate estimates using calibrated and harmonized long-term
input data, reducing as far as possible the dependence on the uncertainties inherent in
external datasets and/or models by exploiting in the best way the information provided by
the satellite observations.

Besides the description of the algorithm design, training and preliminary verification
phase (against an independent DPR coincidence database), this paper presents the result
of PNPR-CLIM quality assessment at regional and global scales. At regional scale the
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verification examines the instantaneous (Level 2) precipitation rate, comparing the GPROF
and PNPR-CLIM estimates with the Multi-Radar and Multi-Sensor (MRMS) system precip-
itation product over the CONtiguous U.S. region (CONUS). The global verification, instead,
is carried out at daily scale using the Global Precipitation Climatology Project (GPCP) daily
precipitation product for comparison [68–70].

The paper is structured as follows—in Section 2 the adopted material and methods,
namely the general definitions, input data, reference products and analysis methodologies
are reported and described. Then, in Section 3, the algorithm design and implementation
are described. Section 4 contains the verification results and the discussion. This section
includes a global verification over the DPR covered area, a regional validation over the
CONUS area and global analysis of PNPR-CLIM and GPROF using GPCP. Finally, Section 5
is devoted to the conclusions.

2. Materials and Methods
2.1. Neural Networks

Generally, a NN consists of a number of neurons, arranged in different layers, which
exchange information with each other. Each layer holds a number of neurons determined,
along with the number of layers, during the design of the network. Each layer has its own
(non-linear) transfer function and receives, as input, a linear transformation of the outputs
of the previous layer. Therefore, the output of the l-th layer of a generic, fully-connected,
NN turns out to be

y(l)(x; ω(1), . . . , ω(l)) =

 f (l)
(

ω(l) · y(l−1)
(

x; ω(1), . . . , ω(l−1)
))

, l > 1,

f (1)
(

ω(1) · x
)

, l = 1,

where, for k = 1, . . . , l, ω(k) is the weight matrix of the k−th layer, f (k) is the activation
function of the same layer, and x is the augmented input vector (i.e., the input vector
embedded in a higher dimensional space by (x1, . . . , xm) 7→ (x1, . . . , xm, 1)).

The weights ω = (ω(1), . . . , ω(l)) are optimal parameters, solution of the (local) opti-
mization problem

ω = arg min
ω′

E
(
ω′
)
,

for a suitable error function E , commonly found throughout an iterative minimization
scheme. Depending on the applications, a common choice of the error function, adopted
also for PNPR-CLIM, is

E =

{
1
n ∑n

i=1(yi − ti)
2, for regression,

1
n ∑n

i=1(ti log(yi) + (1− ti) log(1− yi)), for binary classification,

where n is the number of elements in the training set and yi = y(xi; ω) and ti = t(xi) are
the model prediction and real value, at the i−th sample xi, of the variable t to modelize.
A detailed description of the NN design process adopted for PNPR-CLIM can be found
in [35–37].

2.2. Input Data

The PNPR-CLIM algorithm is based on the cross-track AMSU-B and MHS radiometers
on board the NOAA and MetOp satellites, for the measurement of brightness temperatures
at five frequencies (Table 1). MHS channels are very similar to those of AMSU-B with the
exception of channel 2 centered at 157 GHz and channel 5, which is a single passband
channel centered at 190 GHz. Some differences are also present in the polarization of
channels 3 and 4 that are horizontal for MHS and vertical for AMSU-B at nadir. The nominal
resolution of AMSU-B and MHS varies with the cross-track scan angle from 16 × 16 km2

(circular) at nadir to 26 × 52 km2 (ovate) at scan edge. The regular 1.1◦ sampling geometry
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of AMSU-B and MHS leads to a variable at-surface sampling distance, which corresponds
to 16 km at nadir.

The BTs utilized in PNPR-CLIM are provided by FIDUCEO FCDR (v4.1). The FCDR
file contains, for the MW sensor series aboard the NOAA and MetOp satellites, the cali-
brated BTs for each channel, its uncertainties categorised by their origin from independent,
structured and common effects, and concise quality flags conveying helpful information
on the usability of the data. It includes a period of more than twenty years (1994–2017)
with a global spatial coverage. Despite the differences between the two radiometers, and
the ones between different satellites, the inter-satellite and inter-instruments biases were
understood and reduced by an improved calibration in the FIDUCEO FCDR [59]. There-
fore, in this work we will refer to the AMSU-B/MHS FIDUCEO FCDR without specifying
the instrument used for a given period. For PNPR-CLIM development activity (training
and verification), a two-year (2015–2016) period was considered. The complete AMSU-B
and MHS FCDR was used to produce the L2 precipitation rate estimate for the 18 year
(2000–2017) period.

In addition to the FIDUCEO BTs, two kinds of ancillary data are associated to each
radiometer pixel (i.e., to the BT vector). The first consists of ERA5 variables, precisely
the daily sea-ice cover and snow-cover and the monthly mean of freezing level, total
precipitable water, and 2 m temperature. The other consists of static variables, namely the
AMSU-B/MHS cross-track scan angle of each observation, and the land type (either ocean,
coast or land). The list of the PNPR-CLIM input variables is summarized in Table 2.

Table 1. AMSU-B and MHS radiometers’ characteristics.

Satellites
AMSU-B: NOAA-15, NOAA-16, NOAA-17

MHS: NOAA-18, NOAA-19, MetOp-A, MetOp-B, MetOp-C

MHS/AMSU-B Central
Frequency (GHz)

MHS/AMSU-B Channel
Bandwidth (MHz)

MHS/AMSU-B Channel
Polarisation (nadir)

89.0 2800/1000 V/V
157.0/150.0 2800/1000 V/V
183.31 ± 1.0 1000/500 H/V
183.31 ± 3.0 2000/1000 H/V

190.311/183.31 ± 7.0 2000/2000 V/V

Table 2. PNPR-CLIM input variables.

Variable Type Source

Brightness Temperatures Instantaneous FIDUCEO
Sea-ice cover Daily ERA5
Snow-cover Daily ERA5

Freezing level Monthly ERA5
Total precipitable water Monthly ERA5

2 m temperature Monthly ERA5
Scan angle Static FIDUCEO

Surface type map Static ESA

2.3. GPM-CO Dual-Frequency Precipitation Radar

For the development of the PNPR-CLIM algorithm, an observational dataset, built
from time and space coincident GPM-CO DPR precipitation estimates (used as refer-
ence) and the AMSU-B/MHS BTs measurements, was used in the NNs training and
verification phases.

The DPR is the second space-borne precipitation radar, following the Precipitation
Radar (PR), launched on the TRMM satellite in November, 1997. The DPR consists of a
Ku-band (13.6 GHz) and a Ka-band (35.5 GHz) radars (Iguchi, 2020). These Earth-pointing
KuPR and KaPR instruments provide 3D precipitation measurements over all surfaces
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between 67◦ N and 67◦ S since March 2014. The KuPR and KaPR design specifications are
shown in Table 3.

Table 3. Summary of the characteristics of the GMP Dual-frequency Precipitation Radar (DPR). The
GPM KuPR minimum threshold is closer to 12–13 dBZ than the official 18 dBZ in the table (from [71]).

Instrument GPM DPR

Bands KaPR KuPR

Launch time 27 February 2014 27 February 2014

Altitude (km) 407 407

Inclination angle (◦) 65 65

Frequencies (GHz) 35.547/35.553 13.597/13.603

Horizontal res. at nadir (km) 5.2 5.2

Swath width (km) 120 245

Vertical resolution (m) 250/500 250

Minimum detectable Ze (dBZ) 12 (KaHS)/18 (KaMS) 18

Measurement accuracy (dBZ) <±1 <±1

2.4. Datasets and Products for the Quality Assessment

The quality assessment of PNPR-CLIM precipitation estimates involved several pre-
cipitation products and was carried out at regional and global scales. The description of
the reference product and of the other satellite precipitation datasets used for comparison
is provided in the following sections.

2.4.1. MRMS

The MRMS system incorporates observations from polarimetric radars (U.S. Next-
Generation Radar (NEXRAD) network of 160 S-band polarimetric doppler (WSR-88D)
radars, together with some of the Canadian radars), automated rain-gauge networks,
lightning observations and forecast model predictions over CONUS. Data are produced
by the National Oceanic and Atmospheric Administration (NOAA)’s National Severe
Storms Laboratory (NSSL) jointly with the University of Oklahoma [68]. MRMS provides
high quality gridded precipitation products over a 0.01◦ resolution regular horizontal
grid, and 2 min temporal resolution, and is used as a benchmark for GPM precipitation
products. In this study the radar-only precipitation rates (2 min temporal resolution, values
in mm/h) and radar quality indices (2 min temporal resolution, values between 0, low
quality, and 1, high quality) were considered. All the MRMS data used in this analysis are
archived and freely disseminated by the Iowa State University, department of Geological
and Atmospheric Sciences.

2.4.2. GPCP

The Global Precipitation Climatology Project (GPCP) provides global estimates of
precipitation at daily resolution since 1996 on a 1◦ × 1◦ spatial grid [69,70]. The dataset
is based on observations by microwave imagers on polar-orbiting satellites and infrared
imagers on geostationary satellites. The data are made available via NOAA’s National
Centers for Environmental Information and, since 2020, through the ECMWF Copernicus
Climate Data Store (CDS). In this study the 1◦ × 1◦ daily product (mm/d), 1DD version
v1.3 is used for the verification of PNPR-CLIM precipitation estimation at global scale.

2.4.3. GPROF

The Goddard PROFiling algorithm (GPROF) is a physically-based Bayesian precipita-
tion retrieval algorithm used to deliver the official NASA GPM L2 precipitation products
for all the GPM MW radiometers’ constellation including AMSU-B and MHS. It was origi-
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nally proposed by [72], and since then it has continuously evolved towards a parametric
approach that allows its use with different passive microwave sensors [6,41,73]. For this
verification study, the 2A GPROF V05C for AMSU-B/MHS product was considered. It
consists of L2 precipitation estimates (mm/h) derived from an a-priori database built using
DPR Ku-band and 2B-CMB V04 products as reference over land and ocean, respectively
(MRMS product is used as reference over snow-covered land). The a priori database is
partitioned using two model-derived variables (2 m temperature, total precipitable water),
and MW-based surface type climatology [74]. Daily updates for snow cover and sea ice
by NOAA’s AutoSnow product [75] are used in the retrieval process. GPROF determines
precipitation phase (i.e., frozen precipitation rate estimate) by applying the methodology
of [76] based on Global Analysis (GANAL) near-surface variables.

2.5. Regional and Global Verification Methodology
2.5.1. Regional Verification Methodology

For the regional verification over the CONUS area the L2 instantaneous precipitation
rate data from PNPR-CLIM, GPROF and MRMS were used. The inter-comparisons between
the PNPR-CLIM and GPROF instantaneous retrievals and the MRMS radar-only instanta-
neous precipitation product, were carried out considering all the MHS observations, from
2015 to 2017, within the CONUS area. Following [77], for each MHS observation pixel, the
nearest MRMS grid point was identified and the radar precipitation product was averaged
to a coarser resolution of 15 km × 15 km. In addition, to filter out unreliable radar data, a
one-year set of MRMS observations was used to produce a daily, 15 km resolution, average
quality index which was applied to select high-quality observations. All the observations
with daily quality index lower than 0.9 were discarded from the analysis. The hypothetical
geographical coverage of the selected observations is given in Figure 1, where the one-year
average MRMS radar quality index is shown. Furthermore, the validation was carried out
only for liquid precipitation, discarding all observations where GPROF indicated frozen
precipitation rate > 0 mm/h.

Figure 1. One-year average MRMS Radar Quality Index at 15 km resolution over CONUS.
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2.5.2. Global Verification Methodology

For the inter-comparison on a global scale two analyses were performed. Firstly, an
entire one-year (2016) set of observations was selected from the DPR-MHS coincidence
dataset for validation. The algorithm was evaluated focusing on two distinct aspects:
instantaneous precipitation detection and estimate. Secondly, to evaluate the algorithm
against independent datasets, a three-year (2015–2017) analysis of PNPR-CLIM, GPROF
and GPCP was carried out. PNPR-CLIM and GPROF datasets were processed to make them
comparable to GPCP, that is, 1◦ × 1◦ spatial resolution and at daily temporal resolution. The
PNPR-CLIM and GPROF L2 precipitation rates were spatially aggregated (by averaging
over all the MHS pixels within each grid box) to produce a gridded global hourly product.
This intermediate dataset was further aggregated over 24 h to obtain a daily product.

Passive MW radiometers are carried out by LEO satellites and have a repetition time
of several hours. Therefore, estimating the daily precipitation from them is not trivial. For
the present study, 4 satellites were considered: NOAA-18/19 and MetOp-A/B, whose
ascending equatorial crossing times are shown in Figure 2. Since the two MetOp satellites
have equal ascending nodes, only 6 independent observations were guaranteed within
each day. The undersampling problem was tackled in previous works, over limited areas
(e.g., [78]) and for some case studies, (e.g., [79,80]) tested the possibility of monitoring
intense precipitating events using PMW observations only. Their results show a strong
dependence on the number of available overpasses and their temporal distribution. In
this context the comparison between PNPR-CLIM or GPROF with GPCP is biased by the
number of daily overpasses at a given latitude and by their spread within the day, that will
affect the representativeness of the precipitation daily cycle. Nevertheless, the two sets
of PMW-derived daily precipitations were obtained by considering the same collection of
observations, namely the MHS measurements taken onboard NOAA-18/19 and MetOp-
A/B, and therefore the error contribution due to the sparse sampling is the same in both
the datasets. In this perspective, the comparison with GPCP has the only scope to assess
the impact of the existing differences between the two retrieval algorithms on a global
scale, as the actual estimations can not be adjusted to recover the higher frequency (i.e.,
sub-daily) processes associated with the precipitation.

Figure 2. Local ascending equatorial crossing times of the four platforms considered in the global analysis over the period
2015–2017. An overall drift of about 2 h over the entire time window characterizes the NOAA-18/19 satellites.
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2.6. Statistical Scores

A brief summary of the statistical scores used in the study for the verification at regional
and global scale is provided, while for detailed definitions the reader is referred to [81].

For the precipitation/no-precipitation categorization the following indices are
exploited—the Probability of detection (POD), False alarm rate (FAR), accuracy (ACC) and
Heideke skill score (HSS). POD is the fraction of positive events correctly classified, FAR is
the fraction of false positive events arisen by the model, ACC is the fraction of correctly
classified events and HSS measures the model improvement with respect to the random
classifier (HSS = 0 means no improvements, HSS = 1 means perfect score).

The following metrics are introduced for quantitative verification—the mean error
(ME), root mean squared error (RMSE), and linear correlation coefficient. (CC). The ME and
RMSE metrics measure the model departure from the reference, whereas the CC measures
the covariance degree between the two.

3. Algorithm Description
3.1. The MHS-DPR Coincidence Dataset

The dataset used for the development of PNPR-CLIM consisted of two years (2015–2016)
of coincident observations (within a time interval of 15 min) between MHS swath, on-board
NOAA-18, NOAA-19, MetOp-A and MetOp-B, and the GPM-CO DPR swath. The surface
precipitation rate from the GPM 2B-CMB product (version 06A), which combines DPR
and GPM Microwave Imager (GMI) measurements, was used as reference [82,83]. The
precipitation rate estimates provided by the DPR Normal Scan (NS) (Ku-band radar) swath
(245 km wide) was used.

The training dataset is made of co-located vectors of FIDUCEO FCDR AMSU-B/MHS
BTs and ancillary variables Table 2, and 2B-CMB (hereafter referred to as DPR) surface pre-
cipitation rates spatially averaged to match the sensor instantaneous field of view (IFOV),
variable along the scan (see also [35]). Table 4 summarizes the dataset characteristics.

The entire dataset was divided into two parts—the 2015 dataset was used to train
the algorithm, and 2016 dataset was used for validation. In addition, the first dataset was
further randomly divided into two parts: 80% used for training and 20% used to monitor
(and prevent) over-fitting during the optimization phase.

Table 4. Characteristics of the AMSU-B/MHS-DPR coincidence dataset.

Period 1 January 2015/31 December 2016

Geographical area 65◦S–65◦N/180◦W–180◦E

Num. of pixels 48 × 106

Num. of prec. pixels 6.8 × 106

Reference product DPR-GMI 2B-CMB v06A (swath NS)

AMSU-B/MHS BTs FIDUCEO FCDR v4.1

PNPR-CLIM Design

The PNPR-CLIM algorithm consists of two distinct NN-based modules, the precipita-
tion classification module (PCM) and the precipitation estimate module (PEM), conceived
by benefiting from the experience gained during the development of previous versions of
PNPR algorithm for cross-track scanning MW radiometers (PNPR v1 for AMSU/MHS and
PNPR v2 for ATMS, described in [35,36]). The PCM is designed to estimate the pixel-based
probability of precipitation conditioned to the input vector state (AMSU-B and MHS BTs
and ancillary variables). It is composed of a single NN with three hidden layers of 45,
15 and 1 neurons respectively, connected by sigmoid transfer functions. Its output is a
continuous function with values in the range [0,1] which, under suitable hypotheses on the
training dataset distribution [84], approximates the precipitation probability conditioned
to the input state. The threshold value of 0.5 is used to distinguish precipitating (above 0.5)
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and non-precipitating states (below 0.5, inclusive). The PEM evaluates the pixel-based
instantaneous precipitation rate for observations classified as precipitating by the PCM.
Also the PEM consists of a single NN with three hidden layers of 28, 8 and 1 neurons
respectively, connected by sigmoid transfer functions.

Model selection in NNs aims at finding as few hidden layers and neurons as necessary
for a good approximation of the true function. Thus, two relatively distinct aspects must
be considered—determining how many layers to use and how many neurons to include in
each layer. In the present work the model selection was carried out using a cross-validation
method [35,85,86]. Several different combinations of layers, neurons per layer and transfer
functions were therefore tested. The resulting architecture proved to be the most adaptive
and performing.

It is worth noting that the use of different NNs for different types of surfaces [33]
is suggested by the remarkably different characteristics of the microwave signatures on
different backgrounds, especially in the window channels (e.g., 89 GHz) and/or in dry
atmospheric conditions. However, the use of different NNs can often lead to discontinuity
of the estimates in correspondence with background surface transitions. The single-NN ap-
proach prevents this kind of discontinuities or inconsistencies in the retrieved precipitation
patterns, while making the various phases of the design more complex (training, learning,
network architecture, and selection of inputs).

4. Results and Discussion
4.1. Global Verification with DPR

The PCM and PEM performances were tested using the 2016 MHS-DPR coincidence
dataset, which is an independent part of the full observational MHS-DPR coincidence
dataset (Section 3.1), not used in the training and design phase of the algorithm.

4.1.1. PCM Performances

To assess the PCM performance, the ACC, HSS, POD and FAR scores were computed
as a function of the detection threshold δ, meaning that DPR estimates above (below) δ
denoted precipitating (non-precipitating) conditions. Notice that the variations of δ do
not change the proportion of the predicted positives/negatives, thus, to balance the effect
of introducing fictitious false alarms by increasing δ (small rates correctly identified as
non-zero), the various indices were computed on the reduced population given by those
pixels with DPR rate either equal to 0 mm/h or greater than δ. The results are shown
in Figure 3. In the figure, the ACC values are quite stable, around 0.94 above 0.1 mm/h.
The HSS maximum (0.71) is achieved at about 0.32 mm/h. At the same threshold, POD
is 0.80 and FAR is 0.33. The POD increases beyond 0.86 above 0.5 mm/h. The FAR value
at the 0 mm/h threshold is 0.21. In the light of these results, the minimum threshold of
0.32 mm/h (HSS maximum location) can be assumed as the PNPR-CLIM sensitivity limit.

It should be highlighted that, despite PNPR-CLIM was trained to reproduce the DPR
product, the perfect agreement is not achieved. However, this is expected for several
reasons. Firstly, the GMI and DPR instruments, fully exploited in the 2B-CMB product,
have peculiar characteristics (sensitivity, spatial resolution) and enhanced precipitation
sensing capabilities compared to MHS. Secondly, the coincidences are affected by spatio-
temporal uncertainties, due to their different scan geometries and orbits. Nevertheless,
the present results are in-line with those obtained in [37], where a precipitation retrieval
algorithm designed for the conically scanning GMI radiometer is trained and tested against
the same DPR product.
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Figure 3. ACC, HSS, POD and FAR scores (upper left, bottom left, upper right and bottom right panel respectively) at
various detection thresholds δ. For δ > 0 the scores are evaluated over the reduced population of pixels with reference
precipitation rate either equal to 0 mm/h or greater than δ.

4.1.2. PEM Performances

In the PEM performance analysis, the precipitation distribution of the NN was com-
pared with the reference (DPR). Only pixels where both PEM and DPR provide rainfall rate
≥0.1 mm/h (hits) were considered in order to evaluate the agreement between the PEM
and the DPR estimates in presence of relevant precipitation. The 0.1 mm/h threshold was
chosen as a compromise between the DPR detection threshold (0.2 mm/h in the Ka band
and 0.5 mm/h in the Ku band) and the smoothing resulting from the averaging procedure.
Figure 4 shows the density scatterplot of the surface rain rate estimates (mm/h) from the
PEM and the corresponding values of DPR in the verification dataset, over ocean and
land. The figure shows a very good consistency between the two products, with a quite
homogeneous trend in the two panels. Most of the points are close to the main diagonal
for both ocean and land, with a slight overestimation by PEM for low precipitation rain
rate <0.5 mm/h over land. It should be noted that these discrepancies appear at low
regimes, when the scattering signal within the upwelling radiation can easily fall below
the radiometer sensitivity. The accuracy statistical scores (ME, RMSE and CC) obtained for
PEM (hits only), were ME = 0.10 mm/h, RMSE = 1.09 mm/h and CC = 0.71 over ocean,
and ME = 0.11 mm/h, RMSE = 1.10 mm/h and CC = 0.70 over land.
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Figure 4. Density scatterplot of pixel-based comparison of surface precipitation rate estimates from the PEM and the
corresponding DPR values in the verification dataset, over ocean (left) and land (right). Only pixels where both the NN and
the dataset provide precipitation (hits) are shown. A logarithmic scale is used for the precipitation rates in mm/h, whereas
colors represent the number of points in the dataset for each 2D precipitation rate bin (0.1 mm/h).

4.2. Regional Verification over CONUS
4.2.1. Precipitation Detection

The first analysis over CONUS involved the detection statistics. It should be high-
lighted that, ground-based radar data and satellite observations, besides the resolution
heterogeneity and sampling asynchrony, have different sensitivity thresholds (for MRMS
it corresponds to the minimum 5 dBz reflectivity threshold, [68]). For these reasons, all
the precipitation events correctly identified by the radar but likely missed by the satellite
sensor should be removed before the assessment. Indeed, events with either low intensity
(below the radiometer sensitivity threshold) or small spatial extension (a little fraction of
the sensor resolution) do not contribute to the algorithm evaluation. In this verification
each regridded MRMS pixel (15 km resolution) was classified as precipitating if its average
precipitation rate is greater than 0.1 mm/h and the area covered by precipitation within
it, with respect to the native grid (at 0.01◦ resolution), is greater than 90%, whereas in the
non-precipitating portion the average precipitation rate was zero. With this convention,
2.2% of the entire population was classified as precipitating.

HSS, POD and FAR (see Section 2.6) were computed at different values of the detection
threshold δ, as reported in Figure 5. Note that this analysis was different from that carried
out for the verification of PCM described in Section 4.1.1 as, in this case, the threshold is
applied to the predictions too. In the figure, the indices show that PNPR-CLIM generally
achieves better results than GPROF, especially for low detection thresholds, both in terms
of single classes predictions (POD and FAR) and aggregated ones (HSS). The differences
are quite evident especially in terms of FAR, for small detection thresholds (δ ≤ 0.2 mm/h),
with PNPR-CLIM showing significantly lower values than GPROF. At δ = 0.3 mm/h the the
FAR for two products tend to converge (around 0.35), while PNPR-CLIM has consistently
higher POD (0.80) and HSS (above 0.70) than GPROF.

4.2.2. Precipitation Estimate

The second evaluation concerned the comparisons of the precipitation distributions of
the three products, PNPR-CLIM, GPROF, and MRMS.

In Figure 6 the joint normalized densities between products and reference are dis-
played (from left to right: PNPR-CLIM with MRMS and GPROF with MRMS). In the panels,
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the color of each gridbox [x1, x2]× [y1, y2] corresponds to the number of observations for
which the reference (on the x-axis) and the product (on the y-axis) have values in [x1, x2)
and [y1, y2) respectively, finally weighted by the bin area (x2 − x1)(y2 − y1). Note that the
two densities were additionally normalized (by a common factor) to have non-dimensional
units between 0 and 1. In Table 5, the values of the three metrics ME, RMSE and CC (com-
puted including zeros) are also reported. Both the satellite products tend to underestimate
heavy precipitation regimes (>10 mm/h), although GPROF spreads these rates on a wider
range, as the smoothness of the rightmost peak testifies. In the same range, the GPROF
underestimations are more severe than those of PNPR-CLIM, peaking at about 30 mm/h
(referred to MRMS). For moderate rates (<10 mm/h), both PNPR-CLIM and GPROF over-
estimate MRMS with no notable differences. At about 3 mm/h, PNPR-CLIM shows a weak
underestimate, towards 1 mm/h, of MRMS. The same tendency is experienced by GPROF,
although less perceptible. The ME value is negative for PNPR-CLIM (−0.007 mm/h), and
positive for GPROF (0.005 mm/h). This anomaly is likely due to the occasional high rates
overestimates of GPROF. The lower RMSE value achieved by PNPR-CLIM (0.606 mm/h,
compared to 0.621 mm/h by GPROF) confirms this observation Table 5. Finally, the CC
value, which for both products is 0.712, proves the good consistency of the two algorithms,
as their relative low RMSE (0.393 mm/h) and high CC (0.853) testify.

Figure 5. HSS (left panel), POD (right panel) and FAR (bottom panel) achieved by PNPR-CLIM (blue dots) and GPROF
(red dots) against MRMS for different detection thresholds. The Precipitation/No-precipitation convention is specified in
the text.

Table 5. ME, RMSE and CC between PNPR-CLIM, GPROF and MRMS using the entire dataset.

ME (mm/h) RMSE (mm/h) CC

PNPR-CLIM vs. MRMS −0.007 0.606 0.712

GPROF vs. MRMS 0.005 0.621 0.712

PNPR-CLIM vs. GPROF −0.012 0.393 0.853



Remote Sens. 2021, 13, 1701 14 of 22

Figure 6. Joint normalized densities (see text for details) of PNPR-CLIM and MRMS (left panel) and GPROF and MRMS
(right panel). The black line denotes the bisector.

4.3. Global Comparison of PNPR-CLIM and GPROF with GPCP
4.3.1. Mean Errors

The first part of the global verification and intercomparison involved the evaluation
of the ME and False Precipitation (FP) global maps (over a 1◦ × 1◦ regular grid) of PNPR-
CLIM and GPROF precipitation fields against the GPCP dataset for the period 2015–2017.
The results are shown in Figure 7, where the ME was computed in each grid box with
respect to the time dimension onlys (first row). In the same figure FP represents the mean
daily false precipitation of PNRP-CLIM and GPROF referred to GPCP (second row), that is,
the average non-zero daily precipitation relative to the non-rainy days [3]. The ME and FP
differences between PNPR-CLIM and GPROF are also shown (right panels).

The PNPR-CLIM errors show higher ME values over different regions—southern
Pacific, southeastern Asia and central Africa. Smaller areas, off the coast of Japan and
Eastern US, in the northwestern Atlantic and northwestern Pacific respectively, are also
characterized by locally larger values. In contrast, in GPROF these anomalies are either
less pronounced (over land) or reversed (over ocean), as highlighted in the upper right
panel showing the ME differences. It is worth noting that these regions are characterized
by high annual precipitation values (as shown by the GPCP mean values). So, the PNPR-
CLIM overestimations could be related to the scarce sampling, which forces the daily
mean rate to be aligned with the only available observations of intense precipitation (see
Section 2.5.2). The same regions are also affected by moderate values of FP, indicating the
existence of non-zero estimated precipitation during non-rainy days. However, these areas
are well localized.

Looking at the GPROF maps, instead, it emerges that the ocean areas where GPROF
exhibits greater ME values (i.e., central Pacific and Indian oceans, as shown in the upper
right panel of Figure 7) coincide with regions manifestly characterized by high FP levels.
Notice that FP represents the amount of estimated precipitation in non-rainy days and, as
such, it turns out to be independent of the sampling scheme (i.e., increasing the number of
observations does not make the field vanish). This suggests that GPROF actually retrieves
more precipitation than the reference over these wide ocean areas. It is generally true
that, over ocean, GPROF FPs are higher, while, over land, PNPR-CLIM shows moderately
higher values although GPROF exhibits greater peaks (e.g., southern Brasil).
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Figure 7. Mean error ME (upper panels) and false precipitation FP (central panels) maps of PNPR-CLIM (first column)
and GPROF (second column) with respect to GPCP, together with the GPCP mean values (bottom panel), for the period
2015–2017 between 60◦ S and 60◦ N. In the rightmost panels the differences of ME (upper right panel) and FP (central right
panel) are shown.

4.3.2. CC and RMSE

In the second part of the analysis, the RMSE and CC global maps referred to GPCP
were considered; the results are shown in Figure 8. As already explained, the absolute
values of the RMSE (as well as of the ME) are of moderate interest due to the inherent
undersampling errors. In this analysis, the main focus is on the differences between
the results obtained for GPROF and PNPR-CLIM when compared to the same reference
(GPCP), rather than their actual performances against GPCP. The CC metric, instead, is
a more effective parameter to consider for the assessment, also for the comparison with
GPCP per se, as it provides a measure of the temporal coherence between the various
products regardless of their actual mean values.

It is evident that PNPR-CLIM shows a better agreement with GPCP than GPROF over
ocean, as the relative lower RMSE and the higher CC highlight; although the RMSE values
are everywhere higher than the GPCP mean. In particular, GPROF exhibits higher values
of RMSE almost everywhere, both on ocean and land. As expected, the higher values
are visible in the wet regions (see Figure 8, bottom panel)—central Pacific and northern
Atlantic, southeastern Asia, central Africa, southern and central America. The CC field
shows analogous patterns. PNPR-CLIM has higher CC over the ocean: above 0.4 at high
latitudes and between 0.5 and 0.8 at mid and low latitudes, increasing towards the Equator.
Also GPROF shows the same CC spatial patterns, although with smaller values. GPROF
performance is moderately better than that of PNPR-CLIM over land: both the products do
not exceed the value of 0.7 and are frequently between 0.4 and 0.5.
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Figure 8. Root mean squared errors (first row) and correlation coefficients (second row) of PNPR-CLIM (first column),
GPROF (second column) with respect to GPCP over the time period 2015–2017 and between 60◦ S and 60◦ N.

4.4. Zonal Means

Figure 9 shows the comparisons of the zonal means of PNPR-CLIM, GPROF and GPCP
over the considered period (2015–2017). The averaging was performed by categorizing per
surface type (global, ocean, and land) and per season.

Despite the limitations due to the passive microwave products’ sampling scheme, the
overall zonal means of the satellite products considerably agree with the GPCP estimates,
particularly in the 30◦ N/S latitude range. The major difference is observed over land
at about 10◦ S during the wet seasons in DJF and MAM. Notable divergences between
the products were already observed in central America and central Africa at this latitude
(Section 4.3.1), which now reflect on the zonal means. However, PNPR-CLIM and GPROF
respond differently in these zones, indicating a substantial difference of the two algorithms
in estimating the peculiar precipitation of these areas.

The agreement between PNPR-CLIM and GPCP is still appreciable up to 40◦ N/S,
whereas the GPROF estimations result in a sensible lack of precipitation around 40◦ N/S
due to the underestimation over the ocean. At higher latitudes also PNPR-CLIM un-
derestimates GPCP with a more pronounced effect during the winter season. This is a
typical limitation of the DPR-based precipitation products, that fail to accurately depict
the high latitudes precipitation and snowfall, as recently pointed out by several studies
(e.g., [46,87]).
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Figure 9. Zonal seasonal means of PNPR-CLIM, GPROF and GPCP over the time period 2015–2017 computed globally
(first row), over ocean (second row) and over land (third row) for each season (columns).

5. Conclusions

The new PNPR-CLIM algorithm was designed and developed using an NN approach
within the Copernicus C3S project to produce a long-term global L2 precipitation rate
dataset based on the AMSU-B and MHS measurements. The algorithm was successfully
trained with a one-year (2015) observational dataset composed of coincident calibrated
BTs of the radiometers (provided by FIDUCEO FCDR records) and the GPM GMI-DPR
precipitation estimates used as reference. The algorithm has shown remarkable adaptive
properties, as demonstrated in the global verification analysis carried out with an indepen-
dent set of DPR-based precipitation data. The estimated precipitation distribution over
one year (2016) turned out to be in good agreement with the DPR estimates, testifying the
successful parametrization of the precipitation radiative properties achieved by the NNs.
In addition, the use of a single NN has responded correctly at transitions among different
surface backgrounds, without introducing discontinuities in the precipitation distributions.

Since the DPR-based product was used as reference during the training, the algorithm
was additionally tested against other independent precipitation products on a regional
scale. The analysis was carried out over the CONUS area, considering instantaneous
precipitation rates obtained from the GPROF algorithm (applied to the AMSU-B/MHS
BTs) and MRMS over a period of three year (2015–2017). For the comparison, all the
three datasets were adjusted to a common resolution of 15 km × 15 km. In addition, the
radar quality information was used to select the most reliable data only. The assessment
confirmed the positive performance of PNPR-CLIM highlighted during the verification
against DPR. Moreover, the dichotomous statistical scores proved to be better than those of
GPROF—for a detection threshold of 0.3 mm/h, PNPR-CLIM showed an HSS of 0.73, a
POD of 0.81 and a FAR of 0.33, while GPROF achieved an HSS of 0.69, a POD of 0.77 and
a FAR equal to 0.36. Regarding the verification on the estimates against MRMS, the two
algorithms’ performances were quite similar—PNPR-CLIM showed ME, RMSE and CC
of about −0.007 mm/h, 0.606 mm/h and 0.712, respectively, while for GPROF the scores
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were 0.005 mm/h, 0.621 mm/h and 0.712, respectively. No appreciable differences were
observed, but a less pronounced underestimation of the MRMS high rates by PNPR-CLIM
than GPROF (above 10 mm/h, as inferred from Figure 5).

Then, the global verification, covering the three-year period 2015–2017, was carried
out by comparing PNPR-CLIM and GPROF with the GPCP 1DD v1.3 product (at daily
time scale and over a 1◦ × 1◦ regular grid). Considering the inherent limitation of such
analysis, mainly related to the low-frequency temporal sampling of the daily precipitation
by the passive microwave products, notable differences between GPROF and PNPR-CLIM
were highlighted. The analysis has showed that the GPROF performances over land
were slightly better than those of PNPR-CLIM, although both the products showed large
underestimates over tropical regions, like central America and southeastern Asia. These
regions are characterized by strong Monsoon activities, and it is likely that the few satellite
overpasses strongly constrain the local estimates, as the daily cycles are not properly
resolved. Differently, in central Africa, both PNPR-CLIM and GPROF overestimated the
precipitation compared to GPCP.

However, to understand the source of these differences, further local analyses should
be carried out, using high-frequency ground based measurements if available. Indeed, these
environments have unique characteristics—the great amount of total precipitable water
in the Amazon during the wet season, for instance, produces very peculiar atmospheric
profiles, potentially masking the precipitation-related upwelling signal (in the available
AMSU-B and MHS frequency channels) from the lower troposphere. Over ocean, instead,
the PNPR-CLIM performances turned out to be moderately better than those of GPROF:
the overall CC was higher and the RMSE was lower.

The comparison of the zonal means confirmed these remarks and additionally high-
lighted the quick GPROF performance degradation above 40◦ N/S, contrarily to PNPR-
CLIM, which was still very similar to GPCP. At higher latitudes, however, both PNPR-CLIM
and GPROF showed to miss relevant amounts of precipitation.

In summary, the algorithm proved to be very effective in retrieving the precipitation
using a combination of MHS/AMSU-B observations and model derived variables. Never-
theless, the global verification at daily scale showed complex error features across the globe,
not exclusively related to the undersampling associated with the satellites overpasses
frequency, as evidenced by some spatial error features. Especially over complex surface
backgrounds (e.g., tropical rainforest) high errors were observed. Indeed, peculiar environ-
ments could be marginally described in a global training dataset, which is the only source
of information of the NNs. More precisely, the representativeness of typical high variable
regimes of small areas, like the Amazon, was not guaranteed in the training dataset, al-
though it counted more than 20 million pixels of MHS-DPR coincidences collected over one
year. In fact, a few hundreds of observations taken over one wet season can not be repre-
sentative of the complex and peculiar dynamics characterizing such regions and, moreover,
turn out to be statistically rare within the training dataset and thus easily ignored during
the NN optimization phase. Together with the lack of microwave observations below
89 GHz, essential for the background surface characterization, this explains the variable
performances of the algorithm across the globe, especially at high latitudes. In this regard,
one of the challenges for satellite precipitation retrieval is the improvement of high latitude
precipitation estimation (light rain/drizzle and snowfall) [87–89]. CloudSat-based machine
learning snowfall retrieval techniques seem to be very promising to this purpose [66,90–92].
Specific efforts will be dedicated in the future to the improvement of snowfall detection and
estimation in PNPR-CLIM. In particular, an analysis will be carried out aimed at detecting
snowfall and retrieve the associated snow rate through the development of dedicated
modules. Also these modules will be based on machine learning techniques and will be
applied to a training dataset based on AMSU-B and MHS coincident observations with the
Cloud Profiling Radar onboard CloudSat.
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80. Petković, V.; Kummerow, C.D. Performance of the GPM Passive Microwave Retrieval in the Balkan Flood Event of 2014.
J. Hydrometeorol. 2015, 16, 2501–2518. [CrossRef]

81. Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA,
USA, 2011.

82. Grecu, M.; Olson, W.S.; Munchak, S.J.; Ringerud, S.; Liao, L.; Haddad, Z.; Kelley, B.L.; McLaughlin, S.F. The GPM Combined
Algorithm. J. Atmos. Ocean. Technol. 2016, 33, 2225–2245. [CrossRef]

83. You, Y.; Petkovic, V.; Tan, J.; Kroodsma, R.; Berg, W.; Kidd, C.; Peters-Lidard, C. Evaluation of V05 Precipitation Estimates from
GPM Constellation Radiometers Using KuPR as the Reference. J. Hydrometeorol. 2020, 21, 705–728. [CrossRef]

84. Bishop, C.M. Neural Networks for Pattern Recognition; Clarendon Press: Oxford, UK, 1995.
85. Anders, U.; Korn, O. Model selection in neural networks. Neural Netw. 1999, 12, 309–323. [CrossRef]
86. Marzban, C. Basic Statistics and Basic AI: Neural Networks. In Artificial Intelligence Methods in the Environmental Sciences; Haupt,

S.E., Pasini, A., Marzban, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 15–47. [CrossRef]
87. Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.B.; Levizzani, V. Satellite Estimation of Falling Snow:

A Global Precipitation Measurement (GPM) Core Observatory Perspective. J. Appl. Meteorol. Climatol. 2019, 58, 1429–1448.
[CrossRef] [PubMed]

88. Behrangi, A.; Christensen, M.; Richardson, M.; Lebsock, M.; Stephens, G.; Huffman, G.J.; Bolvin, D.; Adler, R.F.; Gardner, A.;
Lambrigtsen, B.; et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos.
2016, 121, 4468–4486. [CrossRef]

89. Panegrossi, G.; Casella, D.; Sanò, P.; Camplani, A.; Battaglia, A. Recent Advances and Challenges in Snowfall detection and
Estimation. In Precipitation Science; Michaelides, S., Ed.; Elsevier: Radarweg, The Netherlands, 2021.

90. Edel, L.; Rysman, J.F.; Claud, C.; Palerme, C.; Genthon, C. Potential of Passive Microwave around 183 GHz for Snowfall Detection
in the Arctic. Remote Sens. 2019, 11, 2200. [CrossRef]

91. Rysman, J.F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S.; Casella, D.; Camplani, A.; Claud, C.; et al.
Retrieving Surface Snowfall With the GPM Microwave Imager: A New Module for the SLALOM Algorithm. Geophys. Res. Lett.
2019, 46, 13593–13601. [CrossRef]

92. Adhikari, A.; Ehsani, M.R.; Song, Y.; Behrangi, A. Comparative Assessment of Snowfall Retrieval from Microwave Humidity
Sounders Using Machine Learning Methods. Earth Space Sci. 2020, 7. [CrossRef]

http://dx.doi.org/10.3390/rs10081278
http://dx.doi.org/10.1175/JHM-D-20-0260.1
http://dx.doi.org/10.1175/BAMS-D-14-00174.1
http://dx.doi.org/10.7289/V5RX998Z
http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
http://dx.doi.org/10.1175/JTECH-D-19-0165.1
http://dx.doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
http://dx.doi.org/10.1007/978-3-030-24568-9_8
http://dx.doi.org/10.1002/qj.803
http://dx.doi.org/10.1175/1520-0450(2000)039<1866:AMOSCO>2.0.CO;2
http://dx.doi.org/10.1175/JHM-D-14-0211.1
http://dx.doi.org/10.1002/qj.3175
http://dx.doi.org/10.1016/j.jhydrol.2016.12.057
http://dx.doi.org/10.1109/JSTARS.2016.2520660
http://dx.doi.org/10.1175/JHM-D-15-0018.1
http://dx.doi.org/10.1175/JTECH-D-16-0019.1
http://dx.doi.org/10.1175/JHM-D-19-0144.1
http://dx.doi.org/10.1016/S0893-6080(98)00117-8
http://dx.doi.org/10.1007/978-1-4020-9119-3_2
http://dx.doi.org/10.1175/JAMC-D-18-0124.1
http://www.ncbi.nlm.nih.gov/pubmed/32655334
http://dx.doi.org/10.1002/2015JD024546
http://dx.doi.org/10.3390/rs11192200
http://dx.doi.org/10.1029/2019GL084576
http://dx.doi.org/10.1029/2020EA001357

	Introduction
	Materials and Methods
	Neural Networks
	Input Data
	GPM-CO Dual-Frequency Precipitation Radar
	Datasets and Products for the Quality Assessment
	MRMS
	GPCP
	GPROF

	Regional and Global Verification Methodology
	Regional Verification Methodology
	Global Verification Methodology

	Statistical Scores

	Algorithm Description 
	The MHS-DPR Coincidence Dataset 

	Results and Discussion
	Global Verification with DPR
	PCM Performances
	PEM Performances

	Regional Verification over CONUS
	Precipitation Detection
	Precipitation Estimate

	Global Comparison of PNPR-CLIM and GPROF with GPCP
	Mean Errors
	CC and RMSE

	Zonal Means

	Conclusions
	References

