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Abstract: In this paper, we propose a mobile edge computing (MEC)-enabled unmanned aerial
vehicle (UAV)-assisted vehicular ad hoc network (VANET) architecture, based on which a number of
vehicles are served by UAVs equipped with computation resource. Each vehicle has to offload its
computing tasks to the proper MEC server on the UAV due to the limited computation ability. To
counter the problems above, we first model and analyze the transmission model and the security
assurance model from the vehicle to the MEC server on UAV, and the task computation model of
the local vehicle and the edge UAV. Then, the vehicle offloading problem is formulated as a multi-
objective optimization problem by jointly considering the task offloading, the resource allocation, and
the security assurance. For tackling this hard problem, we decouple the multi-objective optimization
problem as two subproblems and propose an efficient iterative algorithm to jointly make the MEC
selection decision based on the criteria of load balancing and optimize the offloading ratio and the
computation resource according to the Lagrangian dual decomposition. Finally, the simulation results
demonstrate that our proposed scheme achieves significant performance superiority compared with
other schemes in terms of the successful task processing ratio and the task processing delay.

Keywords: mobile edge computing (MEC); unmanned aerial vehicle (UAV); resource allocation; task
offloading; vehicular ad hoc networks (VANETs)

1. Introduction

With the increasing number of vehicles and the rising popularity of on-board appli-
cations, vehicular ad hoc networks (VANETs) have attracted extensive attention in recent
years [1]. As an important application of intelligent transport systems (ITSs), VANETs
have been widely used in the traffic prediction, road safety, and driver behavior detection
fields [2]. In VANETs, the cellular network (CN) and the IEEE 802.11p wireless access are
the two most common communication strategies. Vehicles can obtain the traffic-related
content directly from the service providers by using a CN, or indirectly from road side
units (RSUs) by using IEEE 802.11p protocol. Due to the bulk data transmissions, the CN
faces the challenge of network congestion [3]. An efficient method to solve the congestion
issue is enabling the vehicles to acquire the traffic-related content from the RSU, instead of
obtaining it from the CN.

However, the obstructions of vehicles affect the vehicle–RSU links, which degrade
the service quality [4]. UAVs equipped with communication devices can be used as air
base stations (BSs) [5]. As UAVs can be flexibly deployed and freely move in 3D space, the
air-to-ground wireless channel (higher probability with LOS links) is usually better than
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the ground-to-ground counterpart [6]. Therefore, the UAV-assisted VANETs have great
potential in improving the quality-of-service (QoS) vehicle-related applications [7].

In addition, the computation ability of most vehicles is limited, and multiple la-
tency sensitive tasks cannot be fully processed within the allowed latency, such as the
traffic information, the security applications, etc. [8]. To solve the limitations of vehicle
computation ability, mobile edge computing (MEC) can be used. MEC can extend the
computation ability to VANETs edge and satisfy the needs of data access demands. The
work in [9] proposed a multi-resource allocation scheme to accommodate deadline sensi-
tive tasks in VANETs. Liu et al. in [10] adopted the queuing theory to study multi-user
vehicle-mounted MEC systems by jointly considering the system delay and the energy
consumption. Moreover, the researchers of [11] devised a MEC infrastructure adopting
UAVs, and they evaluated the performance of the MEC server mounted on the UAV in
terms of user coverage. Furthermore, the authors of [12] proposed the concept of vehicular
fog computing (VFC) by utilizing vehicles and RSUs as the infrastructures for computation.
Similarly, Wang et al. [13] proposed a vehicular edge computing (VEC) caching scheme to
minimize the average latency to mobile vehicles.

The above works in [9–13] have enhanced VANETs’ computation ability to achieve
significant performance. Nevertheless, there are still some deficiencies to be tackled. On
the one hand, the authors of [9,10] consider that all mobile users have to offload their tasks
to only one MEC server. Thus, all tasks cannot be fully cannot be processed within the
allowed latency threshold. On the other hand, the works of [11–13] cannot balance the
load among MEC servers, which are unable to cope with the huge computation demands
generated by urban ITS. In addition, the researchers of [9–13] ignore the impact of the
physical layer security performance on the VANETs, which results in great limitations to
apply these schemes in practical vehicle networking applications.

Motivated by the above discussions, we study jointly the task offloading, the resource
allocation, and the security assurance problem for the UAV-assisted VANETs. As shown
in Figure 1, we investigate the MEC architecture in UAV-assisted VANETs. Specifically,
UAVs can collect the traffic density information and the state of vehicles connectivity on
the ground and exchange them with vehicles through the vehicle-to-everything (V2X)
communications. The MEC architecture can reduce the computational delay, reduce energy
requirement, and improve the computation ability by distributing the latency-sensitive
tasks to MEC servers around the vehicles, which can be widely used in the automatic
drive, the multimedia entertainment service, the intelligent traffic management, and the
geographic information service. The main contributions are summarized as follows.

• We propose an MEC-enabled UAV-assisted VANET to provide vehicles with the low
latency and reliable computing services through UAVs. Specifically, we adopt compre-
hensive task processing delay as the optimization objective by jointly considering the
transmission model and the security assurance model from the vehicle to the MEC
server on UAV, and the task computation model of the local vehicle and the edge UAV.

• We design a network optimization scheme by jointly considering the task offloading,
the resource allocation, and the security assurance for VANETs. Moreover, to fully
exploit the advantages of the MEC-enabled UAV-assisted VANET architecture, we
use UAVs for boosting VANETs communications to improve VANETs’ computation
ability. Furthermore, we propose an efficient iterative algorithm based the relax-and-
rounding method and the Lagrangian method, which can effectively solve the joint
optimization problem.

• We conduct simulations to evaluate the performance of our proposed scheme. The
simulation results indicate that our designed MEC-enabled UAV-assisted VANET
architecture is superior to the traditional ground-based VANETs. In addition, our
proposed scheme can achieve significant performance superiority compared with
other schemes in the successful task processing ratio and the task processing delay.

This paper is organized as follows. Section 2 overviews the related works. In Section 3,
we introduce the considered system model and problem formulation. Section 4 describes
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the proposed scheme. Simulation results are presented in Section 5, after which a discussion
is presented in Section 6. Finally, we conclude our paper in Section 7.
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Figure 1. A mobile edge computing (MEC) architecture in unmanned aerial vehicle (UAV)-assisted vehicular ad hoc
networks (VANETs).

2. Related Works
2.1. UAV-Assisted VANETs

VANETs have paved the path to numerous road safety applications, which can share
critical information about the automatic drive with security services [14]. However, the
existing obstructions and the high mobility of vehicles can disturb the communication links
between vehicles and RSUs, resulting in many disconnections [15]. Recently in modern
cities, the number of UAVs has increased significantly. UAVs can be considered as suitable
candidates to improve the connectedness of VANETs, which have been used to relay and
process mobile messages for ground terminals [16–19]. Based on this concept, the UAVs
can form an aerial subnetwork in the sky and assist ground vehicles to communicate.

Due to their flexible mobility, the works in [20,21] proposed that the UAVs can act
as the relay nodes when the ground VANETs encounter a disconnection. In [22], Zhang
et al. designed a software-defined space air–ground-integrated network architecture for
supporting diverse vehicular services in a seamless, efficient, and cost-effective manner.
In [23], Oubbati et al. proposed UAVs that can cooperate with existing ground vehicles,
which can make the data delivery more reliable and guarantee robust paths. The above
works in [20–23] consider the UAV-assisted VANET is a fully connected network, which is
unreasonable. This is because one of the characteristics of UAVs and vehicles is that they
are highly mobile and therefore the UAV-assisted VANET has intermittent connectivity.
Therefore, the authors of [24,25] proposed that UAV-assisted VANETs can be regarded
as the vehicular delay tolerant networks (VDTNs). UAVs can assist the ground vehicle
in data transmission by the storage-carry-forward (SCF) method [26]. Additionally, the
authors of [27–30] proposed UAVs can be deployed to help ground vehicles find commu-
nication paths for their message. In addition, the researchers of [31–33] proposed that
UAV-based remote sensing can apply deep learning techniques to UAV-assisted VANETs.
Furthermore, Mukherjee et al., in [34,35], study UAV-assisted MEC and aim to maximize
UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power,
and computation load allocation. In [36], the authors proposed an Energy-aware Collab-
orative Routing (ECoR) scheme for optimally handling task offloading between source
and destination UAVs in a grid-locked UAV swarm. The work in [37] addressed the chal-
lenges of a decentralized and heterogeneous UAV swarm deployment and proposed a
Nash bargaining-based weighted intra-Edge processing offload scheme to mitigate the
problem of heavy processing in some of the swarm members. The difference is that the



Remote Sens. 2021, 13, 1547 4 of 26

UAV deployment problem is not considered in this paper. We consider a unidirectional
road, where UAVs are randomly located along the road and investigate the MEC technique
for UAV-assisted VANETs that aims at minimizing the task processing delay.

2.2. MEC-Enabled UAV-Assisted VANETs

The MEC technique have been widely applied to improve the successful task process-
ing ratio in VANETs [38–40]. The MEC technique brings the computing ability and the
storage resource to the edge of the network, which can enable the computing ability and
the storage resource in close proximity to users. Therefore, the task offloading problem has
been investigated in many researches in the context of VANETs [41–44]. In those works, the
main objective is to minimize task processing delay by selecting the optimal MEC server,
while the load balancing is not taken into account. Aiming at this problem, the authors
of [45,46] focused on task offloading and execution utilizing the computing resources
on vehicles to load balancing. Moreover, the works in [47–50] proposed to reduce task
processing delay by offloading computation-heavy and latency-sensitive tasks to nearby
RSUs or UAVs for remote execution. Furthermore, in [51–53], the offloading problem was
studied with an objective to minimize the weighted sum of mobile energy consumption for
a multiuser UAV-assisted VANET. The work in [54] designed a new system model where
UAVs can offload and/or share intensive computation tasks with other nearby network
nodes. Then, the authors of [55] used the computation response time, the energy consumed
for the computation, the cost of cellular communication, and the computation cost as the
main system metrics to make any computation offloading/sharing decisions that optimized
the system performance. The difference is herein we propose a MEC-enabled UAV-assisted
VANETs architecture, based on which a number of vehicles are served by UAVs equipped
with computational resources. Each vehicle has to offload its computing tasks to the proper
MEC server on UAV due to the limited computation ability. In addition, we assume that
each vehicle can only select one MEC server for computational offloading.

2.3. Synthesis

Different from the above works, in this paper, we investigate the MEC technique for
UAV-assisted VANETs. This is because most of the works neglect the task processing delay,
in which the adjustment on workload allocation for a task can affect the performance of
other tasks, which can reduce the overall performance of the network. Moreover, as a
common feature of the existing works, the task offloading, the resource allocation, and the
security assurance are independently utilized with different purposes. Motivated by this,
in this paper, we propose a mobile edge computing framework for task offloading, resource
allocation, and security assurance in UAV-assisted VANETs. To be more specific, each
vehicle can select one appropriate MEC server on UAV and offload parts of the computation
task, which can achieve load balancing and service reliability improvement by the task
scheduling among edge MEC servers on UAVs.

3. System Model and Problem Formulation

In this section, we introduce the concerned system model and definitions, and then
we formulate the multi-objective optimization problem by jointly considering the task
offloading, the resource allocation, and the security assurance.

3.1. Network Model

As shown in Figure 2, we consider a unidirectional road, where M UAVs are located
along the road. Each UAV is equipped with a MEC server with limited computing resources.
We denote the ID set of UAVs as M = {1, ..., M}. For ease of description, we divide the
road into M segments and denote the ID set of roads as L = {L1, L2, ..., LM}.
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Figure 2. Joint task offloading, resource allocation, and security assurance for MEC-enabled UAV-
assisted VANETs.

There are N vehicles arriving at the starting point of the road (we denote the ID set of
vehicles as N = {1, 2, ..., N}), and they obey the Poisson distribution. Each vehicle has a task
to be processed (for example, the geographic information, the security information, and the
location service information can be exchanged between vehicles and UAVs), expressed as

Ξi
∆
=
{

di, ci, Tth, λi,j

}
, i ∈ N = {1, 2, ..., N}, j ∈ M = {1, 2, ..., M}, where di represents the

size of the computing task, ci represents the computing resources required for the execution
of task Ξi, Tth represents the task maximized allowed latency, and λi,j represents the ratio of
the offloaded task to the total task. In other words, vehicle i can offload a task, λi,jdi, to the
MEC server on UAV j and compute the rest of the task,

(
1− λi,j

)
di, locally. In this scheme,

we assume that each vehicle can only select one MEC server for computational offloading.
We define xi,j as the selection decision of vehicle i, i.e., xi,j ∈ {0, 1}. Specifically, if vehicle
i chooses UAV j for task offloading, xi,j = 1, and xi,j = 0 otherwise. In addition, there is
an eavesdropper in our concerned system model, denoted as Eve, that can eavesdrop the
transmitted information Ξi.

Therefore, based on the above analysis, the task Ξi processing delay consists of three parts:
Part 1: The time T1

i,j that vehicle i moves from the starting point to the coverage of

UAV j, i.e., T1
i,j = ∑

j−1
k=1

Lk
vi

, Lk ∈ L.

Part 2: The transmission time T2
i,j for vehicle i to offload the task Ξi to UAV j via a

wireless channel.
Part 3: The time T3

i,j that for UAV j processes the task Ξi.
According to the above analysis, our proposed algorithm operation in the real scenario

mainly includes the following steps. First, N vehicles arrive at the starting point of the
road, and each vehicle has tasks waiting to be processed. Then, according to our proposed
algorithm, each vehicle selects the MEC server and calculates the ratio of the offloaded
task. Afterward, each vehicle uses the IEEE 802.11p protocol to transmit the unloading
task. After receiving the unloading task, the MEC server on the UAV allocates computing
resources to process the unloading task according to our proposed algorithm. Meanwhile,
the vehicle processes the rest of the computing task locally. Finally, the MEC server on the
UAV returns the processing results to the vehicle.

3.2. Transmission Model

The communication between vehicle and UAV is based on the IEEE 802.11p pro-
tocol, which adopts the carrier sense multiple access protocol with collision avoidance
(CSMA/CA) for data transmission [56]. In the IEEE 802.11p protocol, the transmission



Remote Sens. 2021, 13, 1547 6 of 26

of computing task Ξi within a single time slot has two states: (i) successful transmission
and (ii) collision and back off. More specifically, the task can be successfully transmitted
when the wireless channel is idle. If two vehicles try to transmit their computing tasks
simultaneously, a collision occurs. According to the Markov chain [57], we define Si,j to
represent the probability of vehicle i transmitting the task in a certain time slot (vehicle
offloads its task to UAV in a random time slot). Let pc

i,j represent that there are at least two

offloading tasks transmitted in the same time slot. Let p f
i,j and ps

i,j denote the probability
of channel idle and the successful transmission probability between vehicle i and UAV j,
respectively. We can get

pc
i,j = 1− p f

i,j − ps
i,j, (1)

p f
i,j =

(
1− Si,j

) N
∑

i=1
xi,j

,
N

∑
i=1

xi,j ≤ N, (2)

ps
i,j = Si,j

(
1− Si,j

)( N
∑

i=1
xi,j

)
−1

,
N

∑
i=1

xi,j ≤ N. (3)

According to (1)–(3), we have

Si,j =
2
(

1− pc
i,j

)
(

1− pc
i,j

)−1
+ CWmin

bmax
∑

s=1

(
2pc

i,j

)s
+ CWmax

bmax+rmax
∑

s=bmax+1

(
pc

i,j

)s
, (4)

where bmax represents the maximum number of times to avoid, rmax represents the maxi-
mum number of retransmissions, CWmin represents the minimum contention window, and
CWmax represents the maximum contention window.

3.3. Task Computation Model

To reduce collisions, we take the request to send/clear to send (RTS/CTS) method
into account [58]. As shown in Figure 3, before sending the task, the vehicle i needs to
send an RTS control frame to request channel occupancy. Then, if the wireless channel is
idle, UAV j can receive the RTS frame and reply with a CTS frame after the time interval
SIFS. Afterward, vehicle i receives the CTS frame and starts sending the task after the
time interval SIFS. Finally, UAV j responds with an ACK frame to vehicle i after receiving
the task.

DIFS

SIFS
CTS ACK

SIFS

SIFS

DATA

Period

RTS
Vehicle

UAV

Other Network Nodes

(Vehicles or UAVs)

NAV RTS

NAV CTS

NAV DATA

Contention 

Window

Delay Access

DIFS

Figure 3. Request to send/clear to send (RTS/CTS) method.

Therefore, we define the successful transmission task Ξi period between vehicle i and
UAV j as Ts

i,j, such that

Ts
i,j = Tt

i,j + HΞi + 4Tp
i,j + 3TSIFS + TACK + TDIFS + TRTS + TCTS, (5)
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where HΞi represents the task Ξi overhead of packet header, and Tp
i,j represents the propa-

gation delay. TSIFS, TACK, TDIFS, TRTS, and TCTS represent the SIFS frame interval, the ACK
frame interval, the DIFS frame interval, the RTS frame interval, and the CTS frame interval,
respectively. In addition, Tt

i,j represents the transmission delay, which can be written as

Tt
i,j ≈

λi,jdi

Bjlog2

(
1 +

P
Ξi
i Gi,j
Pn

) , (6)

where Bj represents the bandwidth of UAV j, PΞi
i represents the transmission power of

vehicle i, Pn represents the noise power at the receiver input, and Gi,j represents the channel
gain between vehicle i and UAV j.

Let Tc
i,j denote the wireless channel collision period, which can be expressed as

Tc
i,j = TRTS + TDIFS + Tp

i,j. (7)

Therefore, the normalized throughput Hi,j can be calculated as

Hi,j =
ps

i,jλi,jdi

p f
i,jδ + ps

i,jT
s
i,j + pc

i,jT
c
i,j

, (8)

where δ represents the duration of a timeslot.
According to (5)–(8), the transmission time Ttrans

i,j of task Ξi from vehicle i offloading
λi,jdi to UAV j is given by

Ttrans
i,j =

λi,jdi

Hi,j
=

p f
i,jδ + ps

i,jT
s
i,j + pc

i,jT
c
i,j

ps
i,j

= Ts
i,j +

p f
i,jδ + pc

i,jT
c
i,j

ps
i,j

. (9)

For the local computing task
(
1− λi,j

)
di of vehicle i, the local computation time Tloc

i,j
can be calculated as

Tloc
i,j =

(
1− λi,j

) ci
fi

, (10)

where fi represents the local computing frequency of vehicle i (GHz/s).
The computing resources of UAV j are limited, so the limited computing resources

need to be divided into N vehicles as evenly as possible to ensure that the task can be
completed on time. Let Fj denote the total computing frequency of UAV j and fi,j represent
the computing frequency assigned to vehicle i by UAV j, i.e., f =

{
f1,j, f2,j, ..., fN,j

}
. We have

∑N
i=1 xi,j fi,j ≤ Fj. The computing time TEdge

i,j of MEC server on UAV j can be expressed as

TEdge
i,j =

λi,jci

fi,j
. (11)

As the task Ξi can be executed in parallel on vehicle i and UAV j, the task Ξi processing
delay TΞi can be expressed as

TΞi=
M

∑
j=1

xi,j max
{

Tloc
i,j , TUAV

i,j

}
, (12)

where TUAV
i,j represents the processing delay of MEC server on UAV j, TUAV

i,j =T1
i,j + Ttrans

i,j +

TEdge
i,j .
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3.4. Security Assurance Model

We adopt the wiretap coding scheme to protect the vehicle MEC. According to the
Shannon formula, the channel capacity Ci,j between the vehicle i and the UAV j is

Ci,j = Bjlog2

(
1 +

PΞi
i Gi,j

Pn

)
. (13)

For our proposed UAV-assisted VANETs, we assume that there is an eavesdropper,
which can eavesdrop the transmitted information Ξi. To prevent eavesdroppers from
eavesdropping transmitted information Ξi, we have

Re = Ci,j − Rs ≤ Rth, (14)

where Rs represents the target secure transmission rate, Re represents the wiretap rate, and
Rth represents the maximized permitted wiretap rate.

3.5. Problem Formulation

In this paper, we focus on the UAV-assisted VANETs problem by jointly considering the
task offloading, the resource allocation, and the security assurance that aims at minimizing
the task processing delay. We formulate the optimization problem as follows:

P1 : min
x,λ,f

T(x, λ, f) = min
x,λ,f

N
∑

i=1
TΞi

s.t. C1.1 : TΞi ≤ Tth, ∀i ∈ N

C1.2 :
M
∑

j=1
xi,j = 1, ∀i ∈ N

C1.3 : xi,j ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M

C1.4 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C1.5 : 0 ≤ fi,j ≤ Fj, ∀i ∈ N, ∀j ∈ M

C1.6 : 0 ≤
M
∑

j=1
xi,jλi,j ≤ 1, ∀i ∈ N

C1.7 : 0 ≤ λi,j ≤ 1, ∀i ∈ N, ∀j ∈ M
C1.8 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(15)

In (15), C1.1 ensures that the local computation time Tloc
i,j and the processing delay of

the MEC server on UAV j TUAV
i,j cannot exceed the task Ξi maximum allowed latency Tth.

C1.2 and C1.3 indicate that each vehicle selects only one MEC service for task offloading.
C1.4 and C1.5 guarantee that the total amount of computing resources allocated by the
MEC server to all tasks cannot exceed the total computation capacity of this MEC server.
C1.6 and C1.7 represent that the total offloaded task λi,jdi of vehicle i cannot exceed 1. C1.8
guarantees the security of the transmission.

4. Joint Task Offloading, Resource Allocation, and Security Assurance Algorithm

In this section, we decouple the multi-objective optimization problem as two sub-
problems, i.e., the MEC server selection problem and the task offloading problem. Then,
as shown in Figure 4, we use the relax-and-rounding method and the Lagrangian dual
decomposition method to solve it. Finally, we propose an efficient iterative algorithm by
jointly considering the task offloading, the resource allocation, and the security assurance.
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Figure 4. General architecture of the proposed solution.

4.1. Problem Transformation

C1.3 is an integer constraint, thus the optimization problem P1 is mixed integer non-
linear programming, non-convex, and non-deterministic polynomials (NP) problem [59].
In order to solve P1, we set tΞi=max

{
Tloc

i,j , TUAV
i,j

}
and transform P1 into an equivalent

form as shown in Lemma 1.

Lemma 1. The optimization problem P1 can be equivalently recast as the following problem P2.

P2 : min
x,λ,f

T(x, λ, f)=min
x,λ,f

N
∑

i=1

M
∑

j=1
xi,jtΞi

s.t. C2.1 :
M
∑

j=1
xi,jtΞi ≤ Tth, ∀i ∈ N

C2.2 : Tloc
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C2.3 : TUAV
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C2.4 :
M
∑

j=1
xi,j = 1, ∀i ∈ N

C2.5 : xi,j ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M

C2.6 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C2.7 : 0 ≤ fi,j ≤ Fj, ∀i ∈ N, ∀j ∈ M
C2.8 : 0 ≤ λi,j ≤ 1, ∀i ∈ N, ∀j ∈ M
C2.9 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(16)

Proof of Lemma 1. See the Appendix A.

Due to the highly complex coupling among optimization variables and mixed com-
binatorial feature, the solution of P2 is still challenging. Then, we further decouple the
primal problem P2 into two subproblems, i.e., load balancing problem and task offloading
problem. Specifically, we first determine f and λ to get x. Then, we obtain x under given f
and λ. Finally, we repeat this process until convergence.
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4.2. MEC Server Selection

Given f and λ, the MEC server selection problem can be expressed as

P3 : min
x

T(x)=min
x

N
∑

i=1

M
∑

j=1
xi,jtΞi

s.t. C3.1 :
M
∑

j=1
xi,jtΞi ≤ Tth, ∀i ∈ N

C3.2 : Tloc
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C3.3 : TUAV
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C3.4 :
M
∑

j=1
xi,j = 1, ∀i ∈ N

C3.5 : xi,j ∈ {0, 1}, ∀i ∈ N, ∀j ∈ M

C3.6 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C3.7 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(17)

In (17), as the constraint C3.5 is xi,j ∈ {0, 1}, the optimization problem P3 is a zero-one

integer programming problem. In addition, the objective function T(x)=
N
∑

i=1

M
∑

j=1
xi,jtΞi is

nonlinear with respect to xi,j. Accordingly, the optimization problem P3 is a mixed integer
nonlinear programming problem, which is also a NP-hard problem [60].

To solve the above optimization problem P3, we relax the constraint C3.5, i.e., 0 ≤ xi,j ≤ 1.
We can get the following relaxed nonlinear programming problem.

P4 : min
x

T(x)=min
x

N
∑

i=1

M
∑

j=1
xi,jtΞi

s.t. C4.1 :
M
∑

j=1
xi,jtΞi ≤ Tth, ∀i ∈ N

C4.2 : Tloc
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C4.3 : TUAV
i,j ≤ tΞi , ∀i ∈ N, ∀j ∈ M

C4.4 :
M
∑

j=1
xi,j = 1, ∀i ∈ N

C4.5 : 0 ≤ xi,j ≤ 1, ∀i ∈ N, ∀j ∈ M

C4.6 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C4.7 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(18)

Lemma 2. The optimization problem P4 is a convex optimization problem.

Proof of Lemma 2. See the Appendix B.

By the corollary to Lemma 2, we can solve the optimization problem P4 by general
convex optimization algorithms and we can obtain an optimal fractional solution, which
can be expressed as x∗ = [x1, x2, ..., xn]

T , where n represents the number of solutions and
x∗ ∈ [0, 1]. However, because of the relaxation of the constraint, the space of the solution
is larger. Thus, this solution x∗ is an upper bound of the primal optimization problem P3.
In addition, x∗ is continuous and cannot satisfy the integer constraint of problem P3, i.e.,
xi,j ∈ {0, 1}. In the light of the analyses above, we adopt the relax-and-rounding method
from in [61] to obtain the feasible solution x∗i,j, where x∗i,j = {x∗|x∗ ∈ [0, 1]}.
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4.3. Joint Task Offloading and Resource Allocation

As can be seen in (6), (9), and (11), for the optimization problem P2, in the case of
given x, the joint resource allocation and task offloading problem can be written as

P5 : min
λ,f

T(λ, f)=min
λ,f

N
∑

i=1

M
∑

j=1
xi,jtΞi

s.t. C5.1 :
M
∑

j=1
xi,jtΞi ≤ Tth, ∀i ∈ N

C5.2 :
j−1
∑

k=1

Lk
vi
+ Ts

i,j +
p f

i,jR+pc
i,jT

c
i,j

ps
i,j

+
λi,jci

fi,j
≤ tΞi , ∀i ∈ N, ∀j ∈ M

C5.3 : (
1−λi,j)ci

fi
≤ tΞi , ∀i ∈ N, ∀j ∈ M

C5.4 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C5.5 : 0 ≤ fi,j ≤ Fj, ∀i ∈ N, ∀j ∈ M
C5.6 : 0 ≤ λi,j ≤ 1, ∀i ∈ N, ∀j ∈ M
C5.7 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(19)

As tΞi is nondifferentiable with respect to fi,j and λi,j, tΞi can be transformed into

tΞi ≤ Tloc
i,j + TUAV

i,j

=
(
1− λi,j

) ci
fi
+ T1

i,j + Ttrans
i,j + TEdge

i,j

=
(
1− λi,j

) ci
fi
+

j−1
∑

k=1

Lk
vi
+Tt

i,j + ϕi +
p f

i,jR+pc
i,jT

c
i,j

ps
i,j

+
λi,jci

fi,j

=λi,j

(
ci
fi
+ςi,j

)
+ κi,j,

(20)

where ϕi, ςi,j, and κi,j can be expressed as

ςi,j=−
ci
fi
+

di

Bjlog2

(
1 +

P
Ξi
i Gi,j
Pn

) , (21)

κi,j=
ci
fi
+

j−1

∑
k=1

Lk
vi

+
p f

i,jR + pc
i,jT

c
i,j

ps
i,j

, (22)

ϕi=HΞi + 4Tp
i,j + 3TSIFS + TACK + TDIFS + TRTS + TCTS, (23)

where λi,j

(
ci
fi
+ςi,j

)
+ κi,j is the upper bound of tΞi .

Substituting (20) into the optimization problem P5, the optimization problem P5 can
be equivalently recast as

P6 : min
λ,f

T(λ, f)=min
λ,f

N
∑

i=1

M
∑

j=1
xi,j

(
λi,jςi,j

ci
fi
+κi,j

)
s.t. C6.1 :

M
∑

j=1
xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
≤ Tth, ∀i ∈ N

C6.2 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C6.3 : 0 ≤ fi,j ≤ Fj, ∀i ∈ N, ∀j ∈ M
C6.4 : 0 ≤ λi,j ≤ 1, ∀i ∈ N, ∀j ∈ M
C6.5 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(24)

Lemma 3. The optimization problem P6 is a non-convex problem.
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Proof of Lemma 3. See the Appendix C.

Unfortunately, the resource allocation variables and the offload ratio variables are
highly coupled with each other in both the objective function and constraints. To solve the
problem in (24), we decouple the two variables. Specifically, we obtain f under given λ and
then obtain λ under given f, and repeat this process until convergence.

4.3.1. Optimization of Resource Allocation

Given x and λ, the resource allocation problem can be written as

P7 : min
f

T(f)=min
f

N
∑

i=1

M
∑

j=1
xi,jλi,j

(
ci
fi
+ςi,j

)
+ xi,jκi,j

s.t. C7.1 :
M
∑

j=1
xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
≤ Tth, ∀i ∈ N

C7.2 : 0 ≤
N
∑

i=1
xi,j fi,j ≤ Fj, ∀j ∈ M

C7.3 : 0 ≤ fi,j ≤ Fj, ∀i ∈ N, ∀j ∈ M
C7.4 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(25)

As ∂2T(λ,f)
∂f2 ≥ 0 and C7.1–C7.4 are linear constraints, the optimization problem P7 is a

convex optimization problem. We use the Lagrangian method to solve this optimization
problem P7. Let Θ(f, θ, ψ, ρ, ω, χ) denote the Lagrangian function of the optimization
problem P7, which can be given by

Θ(f, θ, ψ, ρ, ω, χ)=
N
∑

i=1

M
∑

j=1
xi,jλi,j

(
ci
fi
+ςi,j

)
+ xi,jκi,j

−
N
∑

i=1
θi

{
M
∑

j=1
xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
− Tth

}
−

M
∑

j=1
ψj

(
N
∑

i=1
xi,j fi,j − Fj

)
−

N
∑

i=1

M
∑

j=1
ρi,j
(

fi,j − Fj
)

+
N
∑

i=1

M
∑

j=1
ωi,j fi,j −

N
∑

i=1

M
∑

j=1
χi,j(Re − Rth),

(26)

where θi, ψj, ρi,j, ωi,j, and χi,j are Lagrangian multipliers, respectively. We have

D(θ, ψ, ρ, ω, χ) = min Θ(f, θ, ψ, ρ, ω, χ). (27)

Thus, the dual problem of optimization problem P7 can be expressed as

max D(θ, ψ, ρ, ω, χ)
s.t. θ < 0, ψ ≤ 0, ρ ≤ 0, ω ≤ 0, χ ≤ 0.

(28)

As the above problem is convex, we adopt the gradient descent method to solve (28).
As the Lagrange function is differentiable, the gradients of Lagrangian multipliers can be
expressed as

∂Θ
∂θi

= −
M

∑
j=1

xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
+ Tth, (29)

∂Θ
∂ψj

=−
N

∑
i=1

xi,j fi,j+Fj, (30)

∂Θ
∂ρi,j

= − fi,j + Fj, (31)
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∂Θ
∂ωi,j

= fi,j, (32)

∂Θ
∂χi,j

= −Re + Rth. (33)

The Lagrangian multipliers can be calculated iteratively as follows:

θi(t + 1) =
[

θi(t) + ι1
∂Θ
∂θi

]+
, ι1 > 0, (34)

ψj(t + 1) =
[

ψj(t) + ι2
∂Θ
∂ψi

]+
, ι2 > 0, (35)

ρi,j(t + 1) =

[
ρi,j(t) + ι3

∂Θ
∂ρi,j

]+
, ι3 > 0, (36)

ωi,j(t + 1) =

[
ωi,j(t) + ι4

∂Θ
∂ωi,j

]+
, ι4 > 0, (37)

χi,j(t + 1) =

[
χi,j(t) + ι5

∂Θ
∂χi,j

]+
, ι5 > 0, (38)

where t represents the gradient number; [·]+ represents max(0, ·); and ι1, ι2, ι3, ι4, and ι5
are gradient iteration steps.

The first-order derivatives of the Lagrangian function Θ(f, θ, ψ, ρ, ω, χ) with respect
to fi,j can be written as

∂Θ
∂ fi,j

= −
xi,jλi,jci

f 2
i,j

+
θixi,jλi,jci

f 2
i,j

− ψjxi,j − ρi,j + ωi,j. (39)

Let ∂Θ
∂ fi,j

=0, we have the optimal solution f ∗i,j, which can be calculated as

f ∗i,j=

√
xi,jλi,jci(θi − 1)

ψjxi,j + ρi,j −ωi,j
. (40)

4.3.2. Optimization of Task Offloading

Given x and f, the offload ratio problem can be written as

P8 : min
λ

T(λ)=min
λ

N
∑

i=1

M
∑

j=1
xi,jλi,j

(
ci
fi
+ςi,j

)
+ xi,jκi,j

s.t. C8.1 :
M
∑

j=1
xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
≤ Tth, ∀i ∈ N

C8.2 : 0 ≤ λi,j ≤ 1, ∀i ∈ N, ∀j ∈ M
C8.3 : Re ≤ Rth, ∀i ∈ N, ∀j ∈ M.

(41)

As ∂2T(λ,f)
∂λ2 =0 and C8.1–C8.3 are linear constraints, the optimization problem P8 is

a convex optimization problem. We use the Lagrangian method to solve this optimiza-
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tion problem P8. Let Λ(λ, ν, µ, η, v) denote the Lagrangian function of the optimization
problem for P8, which can be given by

Λ(λ, ν, µ, η, v)=
M
∑

j=1
xi,jλi,j

(
ci
fi
+ςi,j

)
+ xi,jκi,j

− νi

{
M
∑

j=1
xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
− Tth

}
−

M
∑

j=1
µi
(
λi,j − 1

)
+

M
∑

j=1
ηiλi,j

−
N
∑

i=1

M
∑

j=1
vi,j(Re − Rth),

(42)

where νi, µi,j, ηi,j, and vi,j are Lagrangian multipliers, respectively. Due to the Lagrange
function is differentiable, the gradients of Lagrangian multipliers can be expressed as

∂Λ
∂νi

=−
M

∑
j=1

xi,j

[
λi,j

(
ci
fi
+ςi,j

)
+ κi,j

]
− Tth, (43)

∂Λ
∂µi

= 1− λi,j, (44)

∂Λ
∂ηi

=λi,j, (45)

∂Λ
∂vi,j

=− Re + Rth. (46)

Similarly, we iterate computation the Lagrangian multipliers νi, µi,j, ηi,j, and vi,j,
which can be calculated as

νi(l + 1) =
[

νi(l) + ι6
∂Λ
∂νi

]+
, (47)

µi(l + 1) =
[

µi(l) + ι7
∂Λ
∂µi

]+
, (48)

ηi(l + 1) =
[

ηi(l) + ι8
∂Λ
∂ηi

]+
, (49)

vi,j(l + 1) =
[

vi,j(l) + ι9
∂Λ
∂vi

]+
, (50)

where l represents the gradient number; [·]+ represents max(0, ·); and ι6, ι7, ι8, and ι9 are
gradient iteration steps.

Let ∂Λ
∂λi,j

=0, we have the optimal solution λ∗i,j, which can be calculated as

λ∗i,j =
fi
[
xi,jςi,j(νi − 1) + µi − ηi

]
cixi,j(1− νi)

. (51)

4.4. Overall Algorithm

In this paper, we propose an efficient iterative algorithm by jointly considering the
task offloading, the resource allocation, and the security assurance for UAV-assisted
VANETs, named the LBTO algorithm. The proposed LBTO algorithm is summarized
in Algorithm 1. In detail, we first decompose the optimization problem P1 into two
subproblems, i.e., the MEC server selection problem and the task offloading problem. Then,
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given f and λ, we use the constraint relaxation scheme and the relax-and-rounding method
to solve the optimization problem P3. Afterward, based on the selected MEC server on
UAV, we adopt the method of Lagrangian dual decomposition to solve the optimization
problem. Finally, we repeat this process until convergence.

Algorithm 1 The Proposed LBTO Algorithm.

1: Initialization
2: Set iterations k = 0.
3: Set xk, fk, and λk.
4: repeat
5: k = k+1.
6: Based on fk−1 and λk−1, we can solve the optimization problem P3 by the constraint

relaxation scheme and the relax-and-rounding method.
7: until Obtain the feasible solution x∗i,j.
8: repeat
9: According to the Lagrangian dual decomposition, we can solve the optimization

problem P7 and P8.
10: Calculate the optimal solution f ∗i,j and λ∗i,j.
11: until Convergence.

4.5. Potential Applications

In the present decade, the potential applications of MEC-enabled UAV-assisted VANETs
are under discussion in commercial settings. Several researchers emphasized that the
potential of MEC-enabled autonomous vehicles to significantly reduce the traffic and
logistics-related challenges in complex urban ITS environments. For example, the benefits
of using MEC-enabled UAV-assisted VANETs in urban ITS environments or commercial
settings include, but are not limited to, increased safety, reduced congestion, reduced fuel
consumption and emissions, and transporting disabled or older people [14]. Specifically,
UAVs can keep the services and applications of urban ITS environments stable and ac-
tive. The MEC architecture can effectively complete the task distribution and migration
scheduling, thus alleviating task aggregation and improving UAV-assisted VANETs QoS.

5. Simulation Results

In this section, we evaluate the performance of the proposed LBTO algorithm via simulations.

5.1. Simulation Parameters

In our simulations, we consider a unidirectional road, where UAVs are randomly
located along the road. Each vehicle has a divisible computing task that can be processed on
both the MEC server on the UAV and the vehicle. The vehicle and the UAV adopt the IEEE
802.11p wireless communication techniques [62]. We compare it with three algorithms:
the vehicle local computing (λi,j = 0), the average task offloading (λi,j = 0.5), and the
vehicle-RSU LBTO algorithm. In the vehicle-RSU LBTO algorithm, the MEC server is
installed on the RSU. In order to adapt to the statistical significance of the results, we
adopt the Monte Carlo method to calculate the average of results. The detailed simulation
parameters are summarized in Table 1 [50]. In the following, the simulations are performed
by Matlab.

In our simulations, we consider the following two different metrics to demonstrate
the performance.

(1) Task Processing Delay: The task processing delay includes two parts, namely,
the vehicle local processing delay and the MEC server processing delay, which can be
expressed as Formula (12).
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(2) Successful Task Processing Ratio: The ratio of number of tasks that have been
successfully processed to the number of total tasks. The successful task processing ratio
Rsuc can be defined as

Rsuc =
m
n
∗ 100%, (52)

where m represents the tasks have been successfully processed in the task maximum
allowed latency and n represents number of total tasks.

Table 1. Simulation parameters.

Parameter Value

Vehicle transmission power 1 Watt
UAV transmission power 5 Watt

Number of UAVs 5
Number of vehicles [0, 60]

UAV computing resources 20 GHz
Vehicle computing resources 1 GHz

Task size 10 MB
Task interval 30 s

Task maximum allowed latency 10 s
Simulation times 1000

5.2. Simulation Results

Figure 5 illustrates the comparison of the task processing delay with respect to the
local computation resources under different algorithms. In the early stages, we find that
the task processing delay of the vehicle local computing algorithm is much higher than
other algorithms. This is because the computation ability of most vehicles is limited, and
thus multiple tasks cannot be fully processed within the allowed latency. Moreover, with
the increase of the local computation resources, the task processing delay of all algorithms
decreases accordingly. When the vehicle local computing resources are larger than some
values (referred to as break points), the task processing delay will decline sharply, which
represents that adding a small amount of local computing resources in the initial phase can
effectively reduce the task processing delay. Furthermore, we note that the UAV-assisted
strategy expedites the uploading progress in the simulated scenario, which verifies the
validity to apply UAVs as MEC servers, allowed them to be regarded as suitable candidates
to improve VANETs connectivity.
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Figure 5. Comparison of the task processing delay with respect to the local computation resources
under different algorithms.
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Figure 6 shows the comparison of the successful task processing ratio of the local
computation resources under different algorithms. The simulation results indicate that
compared with other algorithms, our proposed LBTO algorithm can offload tasks with
minimal local computing resources. This is because the LBTO algorithm can take full
advantage of the computation resources of all MEC servers in the entire VANETs. As we
optimize the task offload ratio when the local computation resources can satisfy the basic
processing requirements of tasks, the successful task processing ratio is counted as 100%.
Therefore, increasing the local computation resources can also improve the successful task
processing ratio. In addition, as the channel between the vehicle and the UAV has a better
quality of service than the channel between the vehicle and the RSU, we can find that
using UAVs for MEC can offload tasks more quickly. Therefore, the UAV-assisted VANETs
architecture can provide vehicles with lower latency and more reliable computing services.
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Figure 6. Comparison of the successful task processing ratio with respect to the local computation
resources under different algorithms.

Figure 7 shows the comparison of the task processing delay with respect to the vehicle
speed under different algorithms. We can observe that our proposed LBTO algorithm
greatly outperforms the other algorithms with different vehicle speeds, which verifies the
effectiveness of our proposed algorithm. On the other hand, we can find that the task
processing delay of the vehicle’s local computing algorithm cannot change with the change
of the vehicle speed. This is because in vehicle’s local computing algorithm, tasks are not
offloaded to the MEC server on UAV for processing. By contrast, with the increment of
the vehicle speed, the task processing delay of the LBTO algorithm declines greatly. In
addition, it can be observed that with the increase of vehicle speed, the decrease trend of
task processing delay gradually slows down. Our proposed LBTO algorithm can reach the
critical point (when the vehicle speed is larger than some values, the task processing delay
will decline relaxedly) faster, which shows that the proposed LBTO algorithm has good
applicability in both low-speed and high-speed scenarios. Therefore, these results tell us
that the task processing delay can be reduced by increasing the vehicle speed appropriately.
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Figure 7. Comparison of the task processing delay with respect to the vehicle speed under differ-
ent algorithms.

Figure 8 demonstrates the comparison of the task offloading efficiency with respect to the
vehicle speed under different algorithms. It is observed that our proposed LBTO algorithm
outperforms other algorithms in terms of the task offloading efficiency. In addition, the task
offloading efficiency of all algorithms (except the vehicle local computing algorithm) increases
with an increasing vehicle speed. The higher speed implies that a certain task can pass by more
MEC servers in a given timeslot. The simulation results in Figure 8 are similar to those in
Figure 7; we can find that with the increase of vehicle speed, the growth trend of successful
task processing ratio gradually slows down. Our proposed LBTO algorithm can reach
the critical point (when the vehicle speed is larger than some values, the successful task
processing ratio will increase relaxedly) faster. Therefore, as the vehicle speed increases,
the LBTO algorithm can make better MEC server choices.
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Figure 8. Comparison of the successful task processing ratio with respect to the vehicle speed under
different algorithms.

Figure 9 plots the comparison of the successful task processing ratio with respect
to the UAV flight altitude under different algorithms. As can be seen from the results,
with the increase of the UAV flight altitude, the successful task processing ratio increased
first and then decreased. This is because the channel power gain from the vehicle to UAV
increases with the UAV flight altitude in low-altitude scenarios, which can improve the
transmission rate. In high-altitude scenarios, the channel power gain from the vehicle to
the UAV decreases with the UAV flight altitude. The reason is that excessive UAV flight
altitude can increase the path loss, which can lead to a decrease in the successful task
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processing ratio. Therefore, increasing the UAV flight altitude appropriately can improve
the transmission quality, which can increase the successful task processing ratio.
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Figure 9. Comparison of the successful task processing ratio with respect to the UAV flight altitude
under different algorithms.

Figure 10 depicts the comparison of the successful task processing ratio with respect
to the number of vehicles under the number of MEC servers on UAVs. From this figure,
we can observe that increasing the number of UAVs can improve the performance of UAV-
assisted VANET in terms of the successful task processing ratio. However, the successful
task processing ratio growth slows as the number of UAVs increases. This is because the
task has a maximum allowed latency, and therefore the MEC servers on UAVs far from
the starting point cannot serve the vehicle well. Therefore, we can increase the computing
resources of the remote MEC servers on UAVs to provide better computing services for
the vehicle. In addition, it can be seen that especially in the scenario with a small number
of vehicles, the MEC-enabled UAV-assisted VANETs architecture can better provide task
processing services for vehicles. Compared to the MEC-enabled RSU-assisted VANETs,
our proposed network architecture has lower cost and better coverage capability, which
can be regarded as the potential candidates for providing different type of solutions in the
futuristic ITS.
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Figure 10. Comparison of the successful task processing ratio with respect to the number of vehicles
under the number of MEC servers on UAVs.

Figure 11 illustrates the comparison of the successful task processing ratio with respect
to the local computation resources under different task sizes. We can observe that the
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successful task processing ratio increases sub-linearly with the local computation resources.
This is because, with the increment of local computation resources, more resources can
be exploited to process tasks. Besides, we can find that when the task size is small, the
task can be processed successfully even without local computing resources. Furthermore,
the simulation results indicate that the successful task processing ratio decreases with the
increase in the number of tasks under the given local computing resources.

0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3

Local Computing Resources, f(GHz)

0

10

20

30

40

50

60

70

80

90

100

S
u

c
c
e

s
s
fu

l 
T

a
s
k
 P

ro
c
e

s
s
in

g
 R

a
ti
o

 (
%

)

Task Size = 1 MB

Task Size = 5 MB

Task Size = 10 MB

Task Size = 20 MB

Figure 11. Comparison of the successful task processing ratio with respect to the local computation
resources under different task sizes.

Figure 12 depicts the comparison of the successful task processing ratio with respect
to the vehicle speed under different task intervals. This figure shows that the successful
task processing ratio increases with the task interval. This is because our proposed LBTO
algorithm is based on IEEE 802.11p protocol, which adopts the carrier sense multiple access
protocol with collision avoidance for data transmission. Therefore, a higher task frequency
will lead to more collisions, which will decrease the successful task processing ratio. It is
also noticed that the increase in the successful task processing ratio is not significant when
the task interval is increased from 30 s to 40 s. Thereforee, from this figure, we can know
that the proper utilization of the task interval can effectively improve the MEC-enabled
UAV-assisted VANETs performance comprehensively.
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Figure 12. Comparison of the successful task processing ratio with respect to the vehicle speed under
different task intervals.
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Figure 13 presents the comparison of the successful task processing ratio with respect
to the number of vehicles under different task maximum allowed latencies. This figure
shows that when the number of vehicles is larger than some values (referred to as turning
points), the successful task processing ratio will decline sharply, which means the task
cannot be processed in time. It can be seen that the turning point of task maximum allowed
latency = 5 s is the smallest and that of the task maximum allowed latency = 20 s is the
largest. This indicates that increasing the task maximum allowed latency can provide better
task processing capability for the vehicles. In addition, from examining Figures 12 and 13,
we realize that there is a trade-off between the task interval and the task maximum allowed
latency in terms of the successful task processing ratio. The successful task processing
ratio optimization by jointly considering the task interval and the task maximum allowed
latency is an important problem for future research.

5 10 15 20 25 30 35 40 45 50 55 60

Number of Vehicles

0

10

20

30

40

50

60

70

80

90

100

S
u
c
c
e
s
s
fu

l 
T

a
s
k
 P

ro
c
e
s
s
in

g
 R

a
ti
o
 (

%
)

Task Maximum Allowed Latency = 20 s

Task Maximum Allowed Latency = 15 s

Task Maximum Allowed Latency = 10 s

Task Maximum Allowed Latency = 5 s

Vehicle Local Computing,  = 0

Figure 13. Comparison of the successful task processing ratio with respect to the number of vehicles
under different task maximum allowed latencies.

6. Discussion
6.1. Research Questions

To address the objective of this work, we have studied the following research questions
(Table 2).

Table 2. Research questions.

No. Research Questions.

1 As the obstructions of vehicles can affect the service quality of vehicle-RSU
links, how can we improve the connectivity of VANETs?

2 As the obstructions of vehicles can affect the service quality of vehicle-RSU
links, how can we improve the connectivity of VANETs?

3
How do we minimize the task processing delay for MEC-enabled UAV-
assisted VANETs by jointly considering the task offloading, the resource
allocation, and the security assurance?

Specifically, in this paper, we investigate the MEC-enabled UAV-assisted VANET
architecture to provide vehicles with low latency and reliable computing services through
UAVs. On this basis, the network optimization problem is formulated as a joint problem of
the task offloading, the resource allocation, and the security assurance, and the objective
is to minimize the task processing delay. For tackling this joint optimization problem,
we decouple the optimization problem as two subproblems and propose an efficient
iterative algorithm according the relax-and-rounding method and the Lagrangian dual
decomposition.
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The simulation results show that the proposed LBTO algorithm achieves better per-
formance than the other algorithms in terms of the successful task processing ratio and
the task processing delay. In our designed LBTO algorithm, each vehicle can select one
appropriate MEC server on UAV and offload parts of the computation task, which can
achieve load balancing and service reliability improvement by the task scheduling among
edge MEC servers on UAVs. Furthermore, these results fully show that our proposed LBTO
algorithm is better than the benchmarking algorithms, and the schemes with optimized
network parameters are superior to those without optimization.

6.2. Research Limitations and Future Research Prospects

In addition to those problems listed in the previous sections, there are many research
issues beckoning for further investigation. In this paper, we ignore the UAV energy factor
in the objective function and assume that the UAV is fixed. The UAV can be a tethered UAV,
which can adopt a ground power source transmitted via tethered cables to achieve a long
period of hovering. Compared with the balloon-based platform or the fixed camera on a
pole scheme, UAVs can be flexibly deployed in three-dimensional (3-D) space according to
the user’s special requirements and has better anti-damage capability.

As a future work, we plan to study the UAV energy consumption and combine it
with our proposed algorithm for practical application. In addition, cooperative secure
transmission is also a factor that cannot be neglected in the MEC-enabled UAV-assisted
VANET architecture, which can be an interesting aspect for further investigation.

7. Conclusions

In this paper, we have formulated a multi-objective optimization problem for MEC-
enabled UAV-assisted VANETs by jointly considering the task offloading, the resource
allocation, and the security assurance with the aim to minimize the task processing delay.
To deal with this hard problem, we have decoupled the multi-objective optimization prob-
lem as two subproblems. Exploiting the relax-and-rounding method and the Lagrangian
method, we have proposed an iterative algorithm, which effectively solves the joint op-
timization problem. The simulation results have demonstrated that our proposed LBTO
algorithm can achieve a significant performance gain in comparison with other algorithms
in terms of the successful task processing ratio and the task processing delay. Our work
can be widely applied to offer low-latency and high-reliable edge computing services to
vehicle users in a complex network environment, such as the urban ITS and the smart city.
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Appendix A

Due to tΞi=max
{

Tloc
i,j , TUAV

i,j

}
, (12) can be transformed into the following formulas:

TΞi=
M

∑
j=1

xi,jtΞi =
M

∑
j=1

xi,j

[
max

{
Tloc

i,j , TUAV
i,j

}]
≤ Tth. (A1)

Therefore, C1.1 can be equivalently changed to C2.1–C2.3. According to C1.2 and C1.3,

the objective function can be equivalent to T(x, λ, f)=
N
∑

i=1
TΞi=

N
∑

i=1

M
∑

j=1
xi,jtΞi . Moreover, as

there is only one xi,j = 1, and 0 ≤ λi,j ≤ 1,
M
∑

j=1
xi,jλi,j=λi,j ≤ 1, C1.6 is naturally satisfied.

As such, we have proved Lemma 1.

Appendix B

The second-order derivative of T(x) with respect to xi,j can be written as

∂2T(x)
∂x2

i,j
= 0. (A2)

As the second-order derivative of T(x) with respect to xi,j is equal to 0, we know
that the objective function T(x) is convex [63]. Constraints C4.1–C4.6 are linear convex
constraints. Therefore, it can be concluded that optimization problem P4 is a convex
optimization problem.

Appendix C

The first-order and second-order derivatives of the objective function T(λ, f) with
respect to f are

∂T(λ, f)
∂f

=− 1
f 2
i

(
xi,jλi,jςi,jci+ci

)
+

1
f 3
i

c2
i xi,jλi,jςi,j, (A3)

and

∂2T(λ, f)
∂f2 =

2
f 3
i

ci
(
1− λi,jςi,j

)
− 1

f 4
i

c2
i λi,jςi,j

(
1 + 3xi,j

)
+

1
f 5
i

c3
i xi,jλi,jςi,j ≥ 0. (A4)

The first-order and second-order derivatives of the objective function T(λ, f) with
respect to λ are

∂T(λ, f)
∂λ

=
1
fi

cixi,jςi,j, (A5)

and
∂2T(λ, f)

∂λ2 =0. (A6)
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According to (55)–(58), we have

∂2T(λ, f)
∂f∂λ

=− 1
f 2
i

xi,jςi,jci+
1
f 3
i

c2
i xi,jςi,j, (A7)

and
∂2T(λ, f)

∂λ∂f
=− 1

f 2
i

cixi,jςi,j, (A8)

Therefore, we can obtain

∂2T(λ,f)
∂f2 × ∂2T(λ,f)

∂λ2 − ∂2T(λ,f)
∂f∂λ × ∂2T(λ,f)

∂λ∂f

=

[
1
f 3
i

c2
i xi,jςi,j − 1

f 2
i

xi,jςi,jci

][
1
f 2
i

cixi,jςi,j

]
= 1

f 5
i

c3
i x2

i,jς
2
i,j −

1
f 4
i

c2
i x2

i,jς
2
i,j

= 1
f 5
i

c2
i x2

i,jς
2
i,j(ci − fi).

(A9)

As the above inequation (60) is indefinite, we can prove that optimization problem P6
is nonconvex. To this end, we have proved Lemma 3.
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