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Abstract: When flooding occurs, Synthetic Aperture Radar (SAR) imagery is often used to identify
flood extent and the affected buildings for two reasons: (i) for early disaster response, such as rescue
operations, and (ii) for flood risk analysis. Furthermore, the application of machine learning has
been valuable for the identification of damaged buildings. However, the performance of machine
learning depends on the number and quality of training data, which is scarce in the aftermath of
a large scale disaster. To address this issue, we propose the use of fragmentary but reliable news
media photographs at the time of a disaster and use them to detect the whole extent of the flooded
buildings. As an experimental test, the flood occurred in the town of Mabi, Japan, in 2018 is used.
Five hand-engineered features were extracted from SAR images acquired before and after the disaster.
The training data were collected based on news photos. The date release of the photographs were
considered to assess the potential role of news information as a source of training data. Then, a
discriminant function was calibrated using the training data and the support vector machine method.
We found that news information taken within 24 h of a disaster can classify flooded and nonflooded
buildings with about 80% accuracy. The results were also compared with a standard unsupervised
learning method and confirmed that training data generated from news media photographs improves
the accuracy obtained from unsupervised classification methods. We also provide a discussion on
the potential role of news media as a source of reliable information to be used as training data and
other activities associated to early disaster response.

Keywords: disaster; flood; machine learning; training data collection; remote sensing

1. Introduction

In recent years, the frequency of typhoons and heavy rains that cause floods has
increased in Japan and other countries. When a flood occurs, it is necessary to understand
the entire flooded area to search and rescue citizens [1]. It is also essential to identify
the extent of the flooded area for vulnerability and risk studies [2–4]. Local governments
must understand the details of the damage and prevent the spread of damage and its
recurrence [5,6]. For carrying out such rescues and recovery activities efficiently, it is
required to assess the damage at each building in the affected area. Remote sensing
technology has attracted attention for wide-area damage assessment during disasters.
Synthetic Aperture Radar (SAR) image analysis enables us to observe the ground surface
without being affected by time and weather conditions [7–9].

A SAR image is produced from an active sensor. Therefore, the electromagnetic
waves backscattered from smooth surfaces, such as water bodies, have a clear pattern:
their intensity is very low. Thus, in SAR images, flood areas might be associated with
areas with low intensity. An additional SAR image recorded before the occurrence of
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the flood can be used as a baseline to remove permanent water bodies [10]. However,
special attention must be paid to anthropic activities [8]. Identifying changes between
pre-event and post-event images is a common approach to identify the effects of many
kinds of disasters [11–14]. For the identification of flood-based water bodies, a reduction
of the backscattering intensity is expected. It has been pointed out that detecting floods
in urban areas is, however, more challenging [15]. In addition to the low backscattering
intensity associated with the specular reflection mechanism, a common join effect of
specular reflection and double bounce may produce high backscattering intensity [16,17].
Therefore, the change in intensity between the pre- and post-event SAR images can be either
positive or negative. In addition to backscattering, other features such as interferometric
coherence [8,9,12,18], texture features [19,20], semantic labels [21], multi-sensors data [22],
and phase correlation [14] have been used to identify flooded urban areas. The referenced
features are generally analyzed using machine learning methods. Other studies use deep
neural networks to identify the features inherent in the images [23,24]. To use machine
learning methods for early disaster response, a sufficient amount of training data is required.
Although it is desirable to prepare training data based on field surveys, it may take several
days to several weeks immediately after a disaster. There are some solutions to this problem,
the most intuitive of which is the use of training data collected from past events [9,23].
This solution may increase the complexity of the problem. Building samples from the
previous disaster might not be in the same spatial domain as in the current disaster, which
is reflected by the different distributions of flooded and nonflooded buildings [9]. In [23],
data augmentation techniques were performed to overcome this issue. Another solution
involves avoiding the use of training data by using different constraints. In [25,26], the use
of damage functions developed for disaster risk analysis and numerical models of the
disaster were used to calibrate a machine learning classifier.

Recently, information from social networks and news media has been studied for
disaster management due to its capacity to disseminate information regarding the threat-
ening disaster and evacuation orders. In [27], the factors influencing people’s perception
of the cost and benefits of taking recommended protective measures were assessed. The
referred study stressed the role of social marketing to reduce the perceived cost and in-
crease the benefits. In [28], Twitter was used as a social sensor to identify geotemporal
patterns associated with the disaster, assessing the damage extent. In general, disaster
response agencies commonly use social media photographs as essential eyewitness photos
in disaster response [29]. News media have more vital and robust resources to disseminate
information quickly. Among the resources are:

1. The staff is prepared to act immediately;
2. Remote-controlled cameras strategically placed on top of tall buildings and pointing

to the society and hazardous areas (i.e., volcanoes, nuclear power plant);
3. Camera crews that are out to send information, videos, and images;
4. Helicopters to deploy for coverage of the news;
5. They operate in satellite and cable network communication systems.

Therefore, news media can broadcast disaster-related information within a few min-
utes [30]. It is also found that oblique images, such as those taken by news media from
helicopters, are useful in disaster response [31].

From the above, the weather news media can be used to geolocate flooded and non-
flooded buildings. How precise a machine learning classifier, with calibration from news
media-based training data, is able to achieve to detect the flood extent from SAR imagery is
a query this study attempts to elucidate.An experimental evaluation is performed, in which
the flood induced by the heavy rainfall of 2018 in western Japan is used as a case study.
Flooded areas and buildings were identified from news media photographs published
within a few hours, 24 h, and 48 h after the floods [32–36]. The support vector machine
(SVM) was then used to calibrate a discriminant function, to be used as a classifier of
flooded buildings. Considering SVM’s usefulness for land surface classification and flood
area determination, we used this machine learning method [37–39]. In addition, the flood
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map provided by the Geospatial Information Authority of Japan (GSI) is used to contrast
our results. The rest of the paper is structured as follows: Section 2 describes the flow
of analysis, the study area, and the data used. Section 3 introduces the feature space,
the news media-based training data, and the discriminant function. Section 4 reports the
performance of the discriminant function in terms of accuracy at different times. Section 5
provides a discussion on the potential collaboration of the news media community and the
remote sensing community. Finally, the conclusions are drawn in Section 6.

2. Target Area, Data Sets, and Analysis Flow
2.1. 2018 Japan Floods

In western Japan, the heavy rains in 2018 induced severe damage over a wide area. A
detailed report can be found in The Government’s Disaster Prevention White Paper [40],
and it is summarized as follows. The weather front, which remained still in northern Japan
since 28 June 2018, moved north to Hokkaido in northern Japan on 4 July, and then it
moved south to western Japan on 5 July. The typhoon Prapiroon, which approached Japan
at about the same time as the weather front, brought a continuous supply of warm and very
moist air that resulted in widespread, record-breaking rainfall that led to floods. The heavy
rains produced 1800 mm of rainfall to the Shikoku region in southwest Japan and 1200 mm
to the Tokai region in eastern Japan, two to four times the average monthly rainfall in
July. The heavy rains in western Japan caused extensive damage in a wide area. The areas
that were affected the most were the Prefectures of Hiroshima, Ehime, and Okayama. In
particular, Okayama Prefecture is characterized by the flood that occurred in Mabi-town,
Kurashiki City. A total of 51 casualties were reported. In this study, Mabi-town is selected
as the target area. The map of Mabi-town is shown in Figure 1.

Figure 1. Map of Japan and Mabi-town, Okayama Prefecture as a target area.

2.2. Land Observation by ALOS-2

The ALOS-2 satellite was developed by the Japan Aerospace Exploration Agency
(JAXA) as ALOS’s successor. ALOS-2 products have contributed to a wide range of
mapping, regional observation, disaster monitoring, and resource exploration applications.
ALOS-2 carries the PALSAR-2, an enhanced version of the L-band Synthetic Aperture
Radar (PALSAR) onboard ALOS. Unlike the optical sensors, ALOS-2 is not affected by day
and night or weather conditions. In the aftermath of the heavy rainfall of 2018, ALOS-2
performed observations in the affected area. Figure 2 shows a SAR image of the affected
area recorded on 8 July, Japan Standard Time (JST). A second image recorded on 14 April
under similar acquisition conditions is shown as well. The incident angle was about
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37 degrees, HH polarization, and a resolution of about 3 m. The images were calibrated,
speckle filtered, and terrain corrected with ENVI/SARscape [41].

Figure 2. SAR image of Mabi-town, (a) Data on 14 April 2018 (JST), (b) Data on 8 July 2018 (JST).

Figure 3. Flooded and nonflooded areas interpreted by news media photographs with publica-
tion dates.
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2.3. The Flow of Analysis, News-Based Truth Data, and GSI Flood Map

As mentioned previously, we aim to assess news media-based training data. Flooded
areas were identified from The Yomiuri Shimbun (YS) [32], The Asahi Shimbun (AS) [34],
Jiji Press Ltd., (JJ) [35], and All-Nippon News Network (ANN) [36]. Table 1 reports the
release date of the information. It is observed that YS, MS, and AS provided information
by midday of 7 July, JJ reported affected areas on the next day, and ANN published a video
of the affected area by 11:48 a.m. on 9 July. In western Japan, a weather front developed
from 5 July, but the torrential rains did not start until late in the evening of 6 July. In
addition, rivers began to overflow and collapse, and towns began to be inundated from
7 July onward, which is when the news started to report the damage. From the above, we
have used news media information after 7 July.

Table 1. News media used to create training data and publishing time.

News Media Publishing Time

The Yomiuri Shimbun [32] 0:33 p.m. on 7 July
The Mainichi Newspapers [33] 0:41 p.m. on 7 July
The Asahi Shimbun [34] 0:49 p.m. on 7 July
Jiji Press Ltd. [35] Afternoon on 8 July
All-Nippon News Network [36] 11:48 a.m. on 9 July

Based on visual inspection, eleven areas were identified in Mabi-town (See Figure 3),
from which seven were flooded and four were nonflooded. Buildings located within the
referred areas were collected to calibrate a discriminant function. A total of 1109 buildings
were identified in the flooded areas, and 513 buildings were identified in the nonflooded
areas. In order to consider the relevance of the time-release of information, three sets are
defined. The set S1 contains building samples collected from news published on 7 July.
S1 (#S1) cardinality is 1238, which consists of 725 flooded and 513 nonflooded buildings.
The set S2 contains building samples collected from news published until 8 July. The
#S2 = 1579; that is, 341 additional flooded buildings were identified from JJ news. The set
S3 contains building samples collected until 9 July. The #S3 = 1622, which means that only
43 additional buildings were identified from ANN news. Note that S1 ⊆ S2 ⊆ S3.

Regarding labeling the training samples, we manually tagged large flooded/nonflooded
areas observed in news photographs and translate them into the labels of building footprint
data on GIS. It is applied in three steps. First, large areas of flooded or nonflooded, hereafter
referred as blocks, are identified from news media photos and videos. Each block contained
between 100 and 200 buildings. For the case of flooded block, at least one floor was flooded in
all buildings. Second, news media photos that include blocks are pinpointed in satellite images.
This step was performed manually for the case study. Landmarks in the photos and addresses
reported in the news assisted in their geolocation. Third, building footprints inside the
flooded/non-flooded blocks are automatically identified and labeled as flooded/nonflooded.
An overview of analysis flow, including generating news media-based training data, is
shown in Figure 4.
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Figure 4. Overview of the study.

In addition to the information collected by the news media, the flood map reported
by the GSI [42] is used as a material for creating test data to evaluate the discriminant
function’s performance. The GSI confirmed the flooded area based on aerial images and
photographs available from social networking services sources.

3. Feature Space and Discriminant Function

A set of hand-engineered features are computed to express the level of similarity
between the pair of images. A previous study has shown that interferometric coherence
can be used to identify flooded buildings [9,18]. Under normal conditions, urban areas
show high coherence, whereas flooded urban areas exhibit low coherence. Regarding the
backscattering intensity in urban areas, it mainly shows high values in medium resolution
SAR images. On the other hand, high-resolution SAR images show more complex patterns
with low values associated with the shadowing effect and large values related to the double
bounce backscattering mechanism [43]. Water bodies produced by the floods in urban
areas generate modifications in the backscattering intensity. If the flood depth is lower
than the building environment, the backscattering intensity increases due to the joined
effect of specular reflection and double bounce mechanism [44]. In order to measure the
variations in the backscattering intensity, the three-dimensional texture features—contrast,
dissimilarity and homogeneity—are employed [20]. The referred hand-engineered features
are expressed as follows:

Coherence =
|∑(i,j) Ipre

i,j Ipost
i,j
∗
|√

∑(i,j) Ipre
i,j Ipre

i,j
∗

∑(i,j) Ipost
i,j Ipost

i,j
∗ (1)
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1
N ∑

(i,j)
(|Ipre

i,j | − |I
post
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2 (2)
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Homogeneity =
1
N ∑
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1

1 +
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Correlation =
1
N ∑
(i,j)

(
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i,j | − µpre)(|Ipost
i,j | − µpost)

σpreσpost (5)

where Ipre
i,j denotes the complex backscattering of the pre-event SAR image, Ipost

i,j denotes
the complex backscattering of the post-event SAR image, ∗ denotes the complex conjugate,
| · | denotes the complex amplitude, µ and σ denote the mean value and the standard
deviation of the backscattering intensity. The features were computed at each sample
building collected from the news. When calculating the features, we extracted values from
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each building’s interior and surrounding pixels and used them, as shown in Figure 5,
following the method to detect damaged buildings [20]. Then, each feature was normalized
to have zero mean and unit variance. Figure 6 depicts the density distribution of the
S3 training data features, which shows the differences between flooded and nonflooded
buildings. Figure 6 indicates that the training data can be categorized into flooded and
nonflooded buildings.

Figure 5. The method how to extract value from interior and surrounding pixels of building.

Figure 6. Density distribution of the features. Red and blue lines show the flooded and nonflooded
buildings, respectively.

As mentioned in the introduction, the SVM method is employed to calibrate the
following linear discriminant function [45]:

f (xi) = sign(w · xi + ρ) (6)

where xi is a sample vector that contains the features, w is a vector perpendicular to the
hyperplane w · xi + ρ = 0; and ρ is a constant offset. If a sample building xi is flooded,
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then f (xi) = 1, otherwise, f (xi) = −1. The parameters w and ρ are calculated from the
following optimization problem:

min
w,ξ

{
1
2

w · w + λ
N

∑
i

ξi

}
(7)

subject to zi(w · xi + ρ)− 1 + ξi ≥ 0

ξi ≥ 0

where xi is a training sample, ξi is a slack variable, λ is a regularization parameter defined
in advance, zi = 1 if the training sample xi belongs to the class flooded; otherwise, zi = −1,
N denotes the number of training samples. In this study, a linear SVM was used to classify
flooded and nonflooded buildings.

The performance of the discriminant function made from news-media photographs
is evaluated using 10-fold cross-validation and the learning curve. Consider a truth data
set of size N; the 10-fold cross-validation consists of randomly dividing the truth data into
ten subsets. Nine subsets are used for training, and the rest one is used for validation.
This process is repeated ten times, each with different subset for the validation step. The 10-
fold cross validation is performed for different size of N. The learning curve shows the
relation between N and the resulted scores. The benefits of increasing the amount of truth
data are depicted in the learning curve.

In addition to 10-fold cross-validation and the learning curve, we applied unsuper-
vised learning classification to check whether the news media-based training data caused
the classifier to experience over-learning or under-learning.As a classic unsupervised learn-
ing method, we employed the K-means method. It has been found that it is possible
to extract areas where floods have changed the landscape by applying K-means to SAR
imagery [46]. First, assuming the N samples are classified into two clusters, two representa-
tive points of each class are determined randomly. Second, the distance between each data
and the representative point is then calculated, and the data should belong to the cluster to
which the representative point with the shorter distance is located. After doing this for all
samples, we compute the centroid of the data classified into each cluster. With this centroid
as the new representative point, we reclassify each data set. Finally, this process is repeated
until the centroid no longer moves. 10-fold cross-validation, Learning curve, K-means
method and Linear SVM were performed with Python language programming using the
scikit-learn library [47].

4. Results

Figure 7 shows the learning curve for the three sets S1, S2, and S3. The red and
green solid line denotes the learning curve computed with the training and testing data,
respectively. The shaded areas denote the region within the mean plus/minus the standard
deviation of the score. As a general trend, the standard deviation decreases as the number
of samples increases, and the mean value shows convergence. For the case of S1, the mean
score does not change significantly. Furthermore, there is a difference of about 2% between
the score of the training and testing data sets. The results for the set S2 are similar to that
from S3. That is, the training data score is high at the beginning and decreases as the
number of samples increases. Furthermore, the test data score is low initially and increases
as the number of samples increases. It is also observed that the convergence value for
the training and testing data sets are similar, and the standard deviation is lower than
that computed from the set S1. These suggest that the discriminant function did not incur
in over-learning.

Table 2 shows a prediction on testing data from the 10-fold computed using S3,
and Table 3 reports the recall, precision, and F1 scores. The recall is the percentage of
flooded (nonflooded) buildings predicted to be flooded (nonflooded). Likewise, the pre-
cision represents the percentage of buildings predicted to be flooded (nonflooded) that
were flooded (nonflooded). The F1 score is calculated from the recall and precision:
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F1 = 2/(recall−1 + precision−1). The average scores range from 0.81 to 0.87. These scores
indicate a good agreement between the predictions and the truth data. In the same way,
as in Table 2, the results of K-means method for each of the 10 groups of data set are shown
in Table 4. The recall, precision, and F1 scores calculated from Table 4 are shown in Table 5.
Comparing Tables 3 and 5, we can check that the F1 score’s average is 0.15 higher for
the SVM classification results than for the K-means classification results. In particular,
the recall for the classification of flooded buildings and the precision for the classification of
nonflooded buildings can be improved by using training data and supervised learning. The
results show that applying news media-based training data and SVM effectively identifies
flooded and nonflooded buildings with limited information.

Figure 7. The learning curve, (a) S1 (Training data on 7 July), (b) S2 (Training data until 8 July), (c) S3

(Training data until 9 July).

Table 2. Result of prediction on S3 data using 10-fold cross-validation by support vector ma-
chine (SVM).

Prediction Result
Flooded Building Non-Flooded Building Total

Truth Flooded building 105 5 110
Non-flooded building 17 35 52

Total 122 40 162
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Table 3. Scores of prediction on SVM, calculated by the Table 2.

Recall Precision F1

Flooded building 0.86 0.95 0.91
Non-flooded building 0.88 0.67 0.76

Average 0.87 0.81 0.83

These results suggest that about 80% can be achieved with information gathered from
S1, available in near-real-time. Besides, an improvement of about 2% was able to achieve
with additional information collected in the next 24 h. The data collected on 9 July did
not influence the performance of the classifier. Note that the data collected on 8 and 9 July
is small compared with that collected on 7 July, which might be the reason for a small
improvement in the scores. In addition to the evaluation, Figure 8 shows the results of the
buildings’ classification by the discriminant function inside the GSI’s estimated flooded
area. The red and blue marks denote the flooded and nonflooded buildings, the green
marks are the buildings used as training data, and the yellow line denotes the flooded
area delineated by GSI. Table 6 reports the predictions performed by the discriminant
function calibrated with S1, S2, and S3. It is only possible to compute the recall score, which
indicates the percentage of flooded buildings correctly judged to be flooded. The results
are consistent with the learning curve; that is, there is an improvement when data collected
on 8 July is used.

Table 4. Result of prediction on S3 data using 10-fold cross-validation by K-means method.

Prediction Result
Flooded Building Non-Flooded Building Total

Truth Flooded building 64 46 110
Non-flooded building 3 49 52

Total 67 95 162

Table 5. Scores of prediction on K-means method, calculated by the Table 4.

Recall Precision F1

Flooded building 0.96 0.58 0.72
Non-flooded building 0.48 0.94 0.64

Average 0.72 0.81 0.68
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Figure 8. SVM estimating result using S3 training data.

Table 6. Classification result for buildings inside of Geospatial Information Authority of Japan’s
(GSI’s) estimated flooded area. The total number of buildings: 4391.

Source of Training Data Flooded Building Nonflooded Building Recall (%)

S1 3119 1272 71.0
S2 3603 788 82.1
S3 3642 749 82.9

5. Discussion

The results show that the news media information is useful for gathering reliable train-
ing data, which enables one to detect the whole extent of the flooded area with the aid of
machine learning techniques. Although the news media-based training data is fragmented,
it is effective enough for supervised learning classification purpose. Regarding the number
of training samples, we estimate that it is sufficient to identify 500 to 1000 buildings for
each class, flooded and nonflooded buildings.

In addition to the quantitative evaluation, we found necessary additional points
regarding the characteristics of news-data that can contribute to identify the extent of a
flooded area. We consider four essential aspects that news photographs should consider
in order to be used together with remote sensing data for early disaster response. First,
information regarding flood depth can be estimated from the building’s sidewalls. Side
looking imagery are useful in this regard. In a previous study, aerial photographs taken
from a helicopter were used to assess damage to buildings that had collapsed or cracked
due to earthquakes. It was noted that the photographic angle of 30–45 degrees was the
right balance in assessing building damage [48]. For the explicit case study reported
in our study, the Yomiuri Shimbun’s photographs clearly showed the inundation depth
were about the first floor height in some buildings. Such information contributes to a
understand the magnitude of the damage. Second, recording time of the photography must
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be available. For example, The Asahi Shimbun published the photo’s recording time [34].
It has been pointed out that the difference between the acquisition time of the SAR images
and that from the photographs used as training data reduces the analysis’s accuracy [10].
Furthermore, the chronological changes, such as contraction or expansion of the affected
area, can be estimated if news media photographs with recording time is available. This is
useful to confirm the gap between the SAR-based flood map and that from visual inspection
of photographs [9]. Third, photographs should be geocoded and contain landmarks. An
important pitfall is that, in most cases, news does not provide geocoded photographs. In
the case study the photographs were geocoded manually. However, sharing geocoded
photographs would represent a step further into a potential collaboration between news
media community and the technicians that use remote sensing data for damage mapping.
Furthermore, in order to associate the buildings observed in the photographs to a geocoded
building footprint database, landmarks such as schools, hospitals, high-rise buildings,
rivers, stations, and shopping malls should be included in the news photographs. Manual
tagging of flooded/nonflooded will be more efficient if the news photos capture these local
landmarks. Fourth, nonflooded urban areas near the affected area should also be reported.
This is because the calibration of a machine learning classifier requires training data of both
flooded and nonflooded samples.

Damage mapping is extremely useful for early disaster response, which consists of all
the activities required to save lives, alleviate suffering, and facilitate rescue operations. It is
expected that the referred activities must be performed within the first 72 h [49]. We believe
training data can be obtained from news media information within a few hours, because
training data collection using news media photos is done manually but in block scale.
Another important factor that affects the release date of damage maps is the acquisition
date of the remote sensing data. However, both tasks are not in conflict because they can be
performed in parallel. Therefore, a collaboration between news-media and remote sensing
communities will provide timely and accurate damage maps.

6. Conclusions

In this study, we assessed news media as a source of information to prepare flood
damage maps using machine learning. We aimed to study the level of accuracy at different
timeline stages of a machine learning classifier calibrated from training data collected from
news media photographs. The flood occurred in Mabi-town, Japan, and was selected
as a study case, from which news photographs/videos were collected. The news media
photographs were used to geolocate flooded and nonflooded buildings. It is worth noting
that about 76% (1238) of the building damage inventory we collected from information
released within a few hours after the occurrence of the flood, about 19% buildings from the
next 24 h, and about 3% on the second day after the flood. The buildings captured in news
media photographs were then used as training data to identify change patterns from a pair
of SAR images in the building environment. As a machine learning for flooded building
detection, the support vector machine was used to calibrate a classifier.

The evaluation of the classifier calibrated from news media-based training data was
performed using 10-fold cross-validation, the learning curve, and a comparison with an
unsupervised classifier. The results show that with the information used in the first hours
(S1) provided about 80% accuracy, and the accuracy increased up to about 82% with data
collected in the following 24 h (S2). The reason for the improved accuracy could be due
to the fact that S2 and S3 contain S1 and thus more data was learned. Besides, the results
were consistent with the flood map published by the GSI. Overall, the results indicate that
the news media photographs are beneficial for generating flood maps in near-real-time.
Furthermore, we provided a set of recommendations to the news media community to
collaborate with the remote sensing community for early disaster response activities.
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