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Abstract: Graph learning is an effective dimensionality reduction (DR) manner to analyze the intrin-
sic properties of high dimensional data, it has been widely used in the fields of DR for hyperspectral
image (HSI) data, but they ignore the collaborative relationship between sample pairs. In this paper,
a novel supervised spectral DR method called local constrained manifold structure collaborative pre-
serving embedding (LMSCPE) was proposed for HSI classification. At first, a novel local constrained
collaborative representation (CR) model is designed based on the CR theory, which can obtain more
effective collaborative coefficients to characterize the relationship between samples pairs. Then, an
intraclass collaborative graph and an interclass collaborative graph are constructed to enhance the
intraclass compactness and the interclass separability, and a local neighborhood graph is constructed
to preserve the local neighborhood structure of HSI. Finally, an optimal objective function is designed
to obtain a discriminant projection matrix, and the discriminative features of various land cover
types can be obtained. LMSCPE can characterize the collaborative relationship between sample
pairs and explore the intrinsic geometric structure in HSI. Experiments on three benchmark HSI
data sets show that the proposed LMSCPE method is superior to the state-of-the-art DR methods for
HSI classification.

Keywords: hyperspectral image; graph learning; dimensionality reduction; collaborative representa-
tion; local neighborhood structure

1. Introduction

Hyperspectral imagery (HSI) captures reflectance values over a wide range of electro-
magnetic spectra for each pixel, it can distinguish more subtle differences between land
cover types than traditional multispectral imagery (MSI) [1–4]. Due to the detailed spatial
structure and spectral information in HSI, it has been widely used in the fields of urban plan-
ning, environment monitoring, precision agriculture, and land-cover classification [5–7].
However, the improvement of the spectral and spatial resolution in hyperspectral sensors
has led to high-dimensional data sets, while high-dimensionality data processing requires
huge computational resources and storage capacity [8–10]. Besides, the classification per-
formance often deteriorates as the dimensionality increases (Hughes phenomenon) [11].
Therefore, it is of great importance to perform dimensionality reduction (DR) for HSI data
while preserving the useful feature information [12,13].

Serving as a good tool for DR, graph learning methods have attracted increasing
attention of researchers by mapping the high-dimensional data into a lower-dimensional
embedding space [14–16]. Based on this theory, a lot of graph learning algorithms and its
variants have been proposed to reveal the intrinsic geometric structure of high-dimensional
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data [17–19], such as Laplacian eigenmaps (LE) [20], local linear embedding (LLE) [21], and
isometric feature mapping (ISOMAP) [22]. LE aims to find low dimensional representations
of the high dimensional data by preserving the local geometry between them [23]. LLE
computes the low-dimensional features that best preserve the local geometry of each
locally linear patch, and seeks a lower-dimensional projection of the data that preserves
distances within local neighborhoods [24]. ISOMAP aims at preserving geodesic distances
of all similarity pairs for delivering highly nonlinear manifolds, and it approximates the
geodesic distance between two points by measuring shortest path between these points [25].
However, as they are nonlinear algorithms, the DR process can not obtain an explicit project
matrix, which can map the test samples into low-dimensional space [26]. Therefore, it is
difficult for the nonlinear algorithms to process new samples.

To overcome this drawback, researchers proposed a series of linear graph learning
methods [27,28], including locality preserving projection (LPP) [29], discriminative super-
vised neighborhood preserving embedding (DSNPE) [30], and multi-manifold discriminant
analysis (MMDA) [31]. LPP constructs an adjacency matrix to weight the distance between
each pair of sample points for learning a projection that can preserve the local manifold
structures of data. DSNPE finds the optimal projection direction by pulling the neighboring
points with the same class label as near as possible, while simultaneously pushing the
neighboring points with different labels as far as possible. MMDA designs the intraclass
graph and interclass graph to characterize the intraclass compactness and the interclass
separability, and it seeks for the discriminant matrix by maximizing the interclass scatter
and minimizing the intraclass scatter simultaneously. In order to unify these algorithms,
a graph embedding (GE) framework has been designed to analyze the graph learning
methods on the basis of statistics or geometry theory [32–34]. Based on this framework,
discriminant analysis with graph learning (DAGL) method was proposed by pulling the
within-class similar samples together while pushing the between-class similar samples far
away [35]. However, the above graph learning methods construct adjacency graph mainly
depend on pairwise Euclidean distance, the classification performance of them is sensitive
to data noise, which may result in suboptimal graph representation [36–38].

Recently, the graph learning methods based on sparse representation have achieved
good classification performance [39–41]. The reason is that sparse coefficients can char-
acterize the relationship between sample pairs more accurately, and they can preserve
more valuable information of HSI data for DR. Among these methods, sparse graph based
discriminant analysis (SGDA) exploits the discriminant capability from sparse represen-
tation [42], and enhances the discriminant power with the labeled information. Sparse
manifold embedding (SME) utilizes the sparse coefficients of affine subspace to construct
a similarity graph and preserves this sparse similarity in embedding space [43]. Discrim-
inative learning by sparse representation projections (DLSP) incorporates the merits of
both local geometry structure and global sparse property, it has better discrimination
performance for different classes [44]. Although sparse graph-based methods are superior
to traditional graph learning methods, they suffer from the problem of over-sparseness
issue when there are few samples. Besides, these methods solve the sparse coefficients
with l1-norm, which is an iterative procedure and may lead to a higher computational
cost [45,46]. Therefore, collaborative representation is introduced to graph learning for
avoiding the above-mentioned problems [47,48]. Collaborative graph-based discriminant
analysis (CGDA) exploits the discriminant capability with collaborative representation, it
can effectively characterize the relationship between sample pairs and improve the classi-
fication performance [49]. Manifold aware discriminant collaborative graph embedding
(MADCGE) constructs an adjacent graph with the collaborative representation coefficients,
it can preserve the linear reconstructive relationships between samples, and sufficiently
utilize the merits of label information and nonlinear manifold structure to further im-
prove the discriminative ability [50]. Collaborative representation based local discriminant
projection (CRLDP) utilizes collaborative representation relationships among samples to
construct the within-class graph and the between-class graph, which can characterize
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the compactness and separability of samples, then it seeks to find an optimal projection
matrix by maximizing the ratio of the between-class scatter to the within-class scatter [51].
However, these methods only consider global geometry information of high dimensional
data, and ignore the local neighborhood information of within-class samples, which will
limit the discriminant ability of collaborative representation.

To characterize the collaborative relationship and intrinsic structure of the HSI data,
we proposed a novel supervised spectral DR method, termed local constrained mani-
fold structure collaborative preserving embedding (LMSCPE) for HSI classification. The
LMSCPE method makes full use of collaborative relationship and local neighborhood in-
formation of HSI to extract discriminant features for classification. The main contributions
of this paper are listed as below: (1) Based on the collaborative representation theory, we
proposed a novel local constrained CR model, which can obtain more effective collabo-
rative coefficients to characterize the relationship between samples pairs. (2) According
to the graph embedding frame, an intraclass collaborative graph and an interclass collab-
orative graph are constructed to enhance the intraclass compactness and the interclass
separability. (3) To preserve the local neighborhood structure of HSI, a local neighborhood
graph is constructed by its k-nearest neighbors, and the aggregation of HSI data can be
improved. (4) An optimal objective function is designed to obtain a discriminant projection
matrix, it can extract the discriminant features and subsequently improve the classification
performance of HSI.

The paper organization is as follows: Section 2 gives a brief description of GE and
collaborative representation (CR). Section 3 describes the details of the proposed LMSCPE
method. Section 4 gives the parameter analysis of LMSCPE to achieve the best classification
performance. Section 5 provides some analysis and discussion about the experiment results.
Finally, we summarize this paper and give recommendations for future work in Section 6.

2. Related Works

For convenience, let us denote a HSI data set with D bands by X = [x1, x2, . . . , xN ] ∈
RD×N , where N is the pixels number of HSI. Suppose the class label of i-th pixel can be
represented as li ∈ {1, 2, . . . , c}, where c is the number of total classes in HSI. For DR
methods, the goal is to map X ∈ RD×N into Y ∈ Rd×N , where d�D is the embedding
dimensionality. For the linear DR methods, the low-dimensional embedding features
Y ∈ Rd×N can be computed as Y = VTX, where V ∈ RD×d is the projection matrix.

2.1. Graph Embedding

The graph embedding (GE) framework helps to redefine most DR algorithms in a
unified framework, it characterizes the statistical and geometric properties of data by
intrinsic graph G = {X, W} and penalty graph GP =

{
X, WP}, where X is the vertex set,

W ∈ RN×N and WP ∈ RN×N are the weight matrices [52,53]. In GE, intrinsic graph G is
adopted to describe similarities relationship of different vertexes, and penalty graph GP is
employed to reveal dissimilarities properties between vertex pairs.

The GE framework aims to represent a graph in a low dimensional space which
preserves as much graph property information as possible. The optimal objective function
can be given by a graph preserving criterion:

min
tr(YTHY)=h

1
2 ∑

i 6=j

∥∥∥yi − yj

∥∥∥2
wij = min

tr(YTHY)=h
tr
(

YTLY
)

(1)

in which L is the Laplacian matrix of intrinsic graph G, H is the constraint matrix for
avoiding a trivial solution, and it is typically set as a diagonal matrix or the Laplacian
matrix of penalty graph GP. Then, L and LP can be given by

L = D−W, Dii =
N

∑
j 6=i

wij, W =
[
wij
]N

i,j=1 (2)
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LP = DP −WP, DP
ii =

N

∑
j 6=i

wP
ij , WP =

[
wP

ij

]N

i,j=1
(3)

2.2. Collaborative Representation

In the hyperspectral imagery community, many representative graph learning meth-
ods have been proposed for preserving intrinsic structure information of HSI data, these
methods often employ sparse representation coefficients to characterize the relationship
of different samples. However, sparse representation is an iterative procedure, which
usually suffers from computational expensiveness and the solution is often sub-optimal.
Therefore, the problem of collaborative representation (CR) has received considerable
attentions recently [54–56].

The basic idea of CR is that a query sample can be reconstructed by a set of training
samples, and the reconstructive coefficients achieved by the l2-norm optimization can be
treated as the affinities between the query sample and other training samples. For each
pixel xi in HSI, the typical collaborative representation can be formulated as the following
l2-norm optimization problem:

min
αi
‖αi‖2 such that ‖xi − Ziαi‖2 ≤ ε (4)

in which Zi is the d × (N − 1) dimensional dictionary excluding xi itself, ε > 0 is a
small tolerance, and αi = [αi,1, . . . , αi,N−1]

T ∈ RN−1 is the collaborative representation
coefficients with size of (N − 1). Then, the objective function of CR can be reformulated as

min
αi
‖xi − Ziαi‖2

2 + γ‖αi‖2
2 (5)

where γ is a tuning parameter to balance the residual term ‖xi − Ziαi‖2 and regularization
term ‖αi‖2 of the collaborative representation.

With some mathematical operations, the collaborative representation vector αj can be
calculated as

αi =
(

ZT
i Zi + γI

)−1
ZT

i xi (6)

in which I is an identity matrix of size (N − 1)× (N − 1).

3. Local Constrained Manifold Structure Collaborative Preserving Embedding

To characterize the discriminative properties and intrinsic structure of the HSI data,
a local constrained manifold structure collaborative preserving embedding (LMSCPE)
method was proposed for DR. LMSCPE first designs a novel CR model to discover the
collaborative relationship between different samples that belong to the same class. Based
on the collaborative representation coefficients, it constructs an intraclass collaborative
graph and an interclass collaborative graph to characterize the intraclass compactness and
the interclass separability. Then, it selects neighbors to construct a local neighborhood
graph, which can effectively preserve the local geometric structure of HSI. After that, the
collaborative graph and local neighborhood graph are incorporated to learn an effective
projection matrix. LMSCPE can preserve the local neighborhood structure in HSI and
enhance the discrimination power of embedding features. The flowchart of the proposed
LMSCPE method is shown in Figure 1.
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Figure 1. The flowchart of the proposed local constrained manifold structure collaborative preserving embedding
(LMSCPE) method.

3.1. Local Constrained Collaborative Graph Analysis Model

Due to the nonlinear optical effects of spectrum transmitting in the atmosphere, such
as reflection, absorption, and dispersion, the spectral curves of pixels of the same category
usually emerge subtle differences, which will affect the final classification performance
of HSI [57–59]. Existing graph learning algorithms usually employ a distance-based
weight matrix to reflect the similarity relationship between sample pairs, and construct
a graph structure to map the high-dimensional data into a low-dimensional space for
DR [60,61]. However, the subtle differences in spectral curves often cause the weight matrix
inaccurate [62]. Therefore, according to the CR theory, we design an LCCR model to obtain
more accurate weight coefficients.

In the proposed LCCR model, we incorporate locality-constrained terms into collabo-
rative representation, and the minimization problem can be formulated as

arg min
αi
‖xi − Ziαi‖2

2 + γ‖Γiαi‖2
2 + δ

∥∥xi − Ẑiαi
∥∥2

2 (7)

in which γ and δ are two regularization parameters that balance the minimization between
regularization terms and the residual part. Ẑi ∈ Rd×N consists of the k-nearest neighbors
of xi and (N − k) zero vectors 0 ∈ Rd×(N−k), Γi is a biasing Tikhonov matrix, it can be
given by
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Γi =

 ‖x1 − Zi‖2 0
. . .

0 ‖xN−1 − Zi‖2

 (8)

where x1, x2, ..., xN−1 are the columns of matrix Zi.
In (7), the introduction of Γi in the first regularization term can adjust the collabora-

tive coefficient adaptively based on the distance between sample pairs, and the second
regularization term is designed to explore the local geometric structure of HSI, which can
effectively enhance the aggregation of HSI data.

According to LCCR model, we construct the intraclass collaborative graph and the
interclass collaborative graph to characterize the intraclass compactness and the interclass
separability. For intraclass collaborative graph, the weight matrix is set as the collaborative
coefficients between each point and the points from the same class. Denote the samples of
the ith class as Xi = [x1

i , . . . , xNi
i ], where Ni is the samples number of the ith class. Then,

the intraclass dictionary Zjw
i of xj

i can be given by

Zjw
i = Xi/xj

i =
[
x1

i , . . . , xj−1
i , xj+1

i , . . . , xNi
i

]
∈ RD×(Ni−1) (9)

Therefore, the intraclass collaborative representation coefficients of xj
i can be solved by

α
jw
i = arg min

α
jw
i

{∥∥∥xj
i − Zjw

i α
jw
i

∥∥∥2
+ γ

∥∥∥Γw
i α

jw
i

∥∥∥2
+ δ
∥∥∥xj

i − Ẑjw
i α

jw
i

∥∥∥2

2

}
(10)

With some mathematical operations, the collaborative representation coefficients α
jw
i

can be calculated as

α
jw
i = [(Zjw

i )TZjw
i + γ(Γw

i )
TΓw

i + δ(Ẑjw
i )TẐjw

i ]−1[δ(Ẑjw
i )T + (Zjw

i )T ]xj
i (11)

in which Γw
i is the Tikhonov matrix of xj

i , it can be given by

Γi =


∥∥∥x1

i − Zjw
i

∥∥∥
2

0
. . .

0
∥∥∥xNi−1

i − Zjw
i

∥∥∥
2

 (12)

where x1
i , x2

i , ..., xNi−1
i are the columns of matrix Zjw

i .
After obtaining the collaborative coefficients of each class, the intraclass weight matrix

Ws can be constructed as

Ws =


Ws1 0 · · · 0

0 Ws2 · · · 0

0 0
. . . 0

0 0 · · · Wsc

 (13)

in which 0 is the zero matrix and Wjk
si is defined as

Wjk
si =


0, k = j
α

jkw
i , k < j

α
j(k−1)w
i , k > j.

(14)

where α
jkw
i is the kth element of α

jw
i , and Wjk

si is the jth row and kth column of matrix Wsi.
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For interclass collaborative graph, the interclass dictionary Zjb
i of xj

i is designed as

Zjb
i = X/Xi =

[
x1

1, . . . , xNi−1
i−1 , x1

i+1, . . . , xNc
c

]
∈ RD×(N−Ni) (15)

where xNc
c is the Ncth sample in the c class.

Then, the interclass collaborative representation coefficients of xj
i can be given as

α
jb
i = arg min

α
jb
i

{∥∥∥xj
i − Zjb

i α
jb
i

∥∥∥2
+ γ

∥∥∥Γb
i α

jb
i

∥∥∥2
+ δ
∥∥∥xj

i − Ẑjb
i α

jb
i

∥∥∥2

2

}
(16)

With some mathematical operations, the collaborative representation coefficients α
jb
i

can be calculated as

α
jb
i = [(Zjb

i )
TZjb

i + γ(Γb
i )

TΓb
i + δ(Ẑjb

i )
TẐjb

i ]
−1[δ(Ẑjb

i )
T + (Zjb

i )
T ]xj

i (17)

where Γb
i has the similar form with Γw

i .
Considering that the CR coefficients can effectively characterize the similarity rela-

tionship between sample pairs, we adopt the coefficients to construct the interclass weight
matrix Wb in the following way:

Wb =
[
(Wb1)

T , (Wb2)
T , . . . , (Wbc)

T
]T

(18)

where

Wjk
bi =



∣∣∣αjkb
i

∣∣∣, 0 < k ≤
i−1
∑

t=1
Nt

0,
i−1
∑

t=1
Nt < k ≤

i
∑

t=1
Nt∣∣∣αj(k−Ni)b

i

∣∣∣, i
∑

t=1
Nt < k ≤

c
∑

t=1
Nt.

(19)

in which α
jkb
i is the kth element of α

jb
i , and Wjk

bi is the jth row and kth column of matrix Wbi.
Therefore, based on the intraclass collaborative graph Gw(X, Ws), the intraclass com-

pactness in the reduced subspace can be defined as

Jw =
N

∑
i=1

∥∥∥∥∥VTxi −
N

∑
j=1

(Ws)ijV
Txj

∥∥∥∥∥
2

= tr

VT

 N

∑
i=1

(
xi −

N

∑
j=1

(Ws)ijxj

)
×
(

xi −
N

∑
j=1

(Ws)ijxj

)T
V


= tr

(
VT
(

X(I−Ws)(I−Ws)
TXT

)
V
)

= tr
(

VTXMwXTV
)

(20)

where Mw = I−Ws −WT
s + WsWT

s and I is identity matrix of size N × N .
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Similarly, according to interclass collaborative graph Gb(X, Wb), the interclass separa-
bility in the reduced subspace can be designed as

Jb =
N

∑
i=1

∥∥∥∥∥VTxi −
N

∑
j=1

(Wb)ijV
Txj

∥∥∥∥∥
2

= tr

VT

 N

∑
i=1

(
xi −

N

∑
j=1

(Wb)ijxj

)
×
(

xi −
N

∑
j=1

(Wb)ijxj

)T
V


= tr

(
VT
(

X(I−Wb)(I−Wb)
TXT

)
V
)

= tr
(

VTXMbXTV
)

(21)

where Mb = I−Wb −WT
b + WbWT

b .
For the purpose of seeking an optimal projection, it is natural to minimize the intraclass

compactness and maximize the interclass variance simultaneously, that is min
V

tr
(

VTXMwXTV
)

max
V

tr
(

VTXMbXTV
) (22)

3.2. Local Neighborhood Graph Analysis Model

Due to the fact that the spectral curves of HSI pixels are easily affected by external
environment and imaging equipment, the actually obtained spectral curves of each cate-
gory exhibits a certain degree of difference, which will lead to a degraded classification
performance [63–65]. To eliminate this impact, we construct a local neighborhood graph
by considering the spectral similarity of pixels, and it explores the projection relationships
from high dimensional space to a lower dimensional space by aggregating the local graph
structure and separating the total data.

In local neighborhood graph GL, ith point xi is connected with its intraclass neighbor
points that are from the same class. Denote the neighbor set of xi as C(xi) = [xi1, xi2, . . . , xik],
where k is the neighbor number. Then, the similarity weight ww

ij between xi and xj can be
given as following:

ww
ij =

 exp
(
−‖xi−xj‖2

2t2
i

)
, if xi ∈ C

(
xj
)

or xj ∈ C(xi) and li = lj

0, otherwise
(23)

where ti =
1
k ∑k

j=1
∥∥xi − xj

∥∥.
To enhance the aggregation of data on local neighborhood structure, each point and

its neighbor points are adopted to formulate the optimization problem in low-dimensional
embedding space

J1(V) = arg min
N

∑
i=1

k

∑
j=1

∥∥∥yi − yj

∥∥∥2
ww

ij

=
N

∑
i=1

k

∑
j=1

∥∥∥VTxi −VTxj

∥∥∥2
ww

ij

= tr

(
VT

[
N

∑
i=1

k

∑
j=1

(
xi − xj

)(
xi − xj

)Tww
ij

]
V

)
= tr

(
VTSV

)
(24)
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in which S = ∑N
i=1 ∑k

j=1
(
xi − xj

)(
xi − xj

)Tww
ij is the local neighborhood scatter matrix of

training set.
In addition, aiming to separate the local graph structure of each pixel as far as possible,

the optimization problem between different classes can be designed as follows.

J2(V) = arg max
N

∑
i=1

∥∥∥VTxi −VTx
∥∥∥2

ci

=
N

∑
i=1

VT(xi − x)ci(xi − x)TV

= tr

(
VT

[
N

∑
i=1

(xi − x)ci(xi − x)T

]
V

)
= tr

(
VTHV

)
(25)

where x is the mean of training set, ci = exp
(
−‖xi − x‖2/2t2

ik

)
is the weight between xi

and x, H = ∑N
i=1(xi − x)ci(xi − x)T is the total scatter matrix.

To explore the local neighborhood structure in low-dimensional embedding space,
we minimize the local neighborhood scatter matrix and maximize the total scatter matrix.
Therefore, the optimal projection matrix V should satisfy the following two optimiza-
tion criteria:  arg min

V
VTSV

arg max
V

VTHV
(26)

For high dimensional data, the collaborative relationship and local neighborhood
structure between pixel pairs should be discovered simultaneously. Therefore, based on
optimization problem of (22) and (26), we propose a local constrained manifold structure
collaborative preserving embedding (LMSCPE) method for DR of HSI data. This method
can reveal the collaborative relationship and the local neighborhood structure for learning a
more effective projection, and the optimal objective function of LMSCPE can be designed as

J(V) = min
tr
{

VT[aXMwXT + (1− a)S
]
V
}

tr
{

VT
[
aXMbXT + (1− a)H

]
V
} (27)

where a ∈ [0, 1] is a trade-off parameter that balances the contributions of collaborative
graph and local neighborhood graph in embedding space. Then, the optimization problem
of (27) can be transformed as: min

V
VT[aXMwXT + (1− a)S

]
V

s.t. VT
[

aXMbXT + (1− a)H
]
V = B

(28)

where B is a constant matrix.
With the Lagrangian multiplier method, the solution of (28) can be obtained through

the following generalized eigenvalue problem:[
aXMwXT + (1− a)S

]
vi = λi

[
aXMbXT + (1− a)H

]
vi (29)

in which λi is the ith eigenvalue and vi is the corresponding eigenvector, the eigenvectors v1,
v2, . . . , vd corresponding to the first d eigenvalues construct the optimal projection matrix
V = [v1 v2 . . . vd]∈ RD×d. Then, the low-dimensional embedding Y can be represented as
Y = VTX.
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4. Experimental Setup and Parameters Discussion

In this section, three public HSI data sets are adopted to demonstrate the effectiveness
of LMSCPE by comparing it with some state-of-the-art DR algorithms.

4.1. Data Set Description

PaviaU data set: This data set was acquired by the ROSIS-03 sensor over the University
of Pavia, Italy. The spatial size of the scene is 610 × 340 with the spatial resolution of
1.3 m/pixel, and each pixel contains 115 spectral bands ranging from 0.43 to 0.86 µm. Due
to 12 bands suffering from water absorption, we adopted the remaining 103 bands for
experiments. Figure 2 shows the false color image, ground truth (GT) and spectral curves
of PaviaU data set.

Figure 2. PaviaU hyperspectral image. (a) False color image. (b) Ground truth. (c) Spectral curves. (Note that the number
of samples for each class is shown in brackets).

LongKou data set: This data set was captured by Headwall Nano-Hyperspec imaging
sensor on a UAV platform in Longkou Town, Hubei province, China. The full scene
contains 550 × 400 pixels, each pixel contains 270 spectral bands ranging from 400 to
1000 nm. The data set possesses 9 different land cover types, and the spatial resolution is
about 0.463 m. Figure 3 shows the false color image, ground truth (GT) and spectral curves
of LongKou data set.

Figure 3. LongKou hyperspectral image. (a) False color image. (b) Ground truth. (c) Spectral curves. (Note that the number
of samples for each class is shown in brackets).

MUUFL data set: This data set was captured by the ITRES CASI-1500 sensor over the
University of Southern Mississippis-Gulfpark Campus. The full scene contains 325× 220 pixels
with a spatial resolution of 1 m, and the number of spectral bands in this dataset is 72. After
removing 8 bands affected by noise, we adopt the remaining 64 spectral bands for classification.
Figure 4 shows the false color image, ground truth (GT) and spectral curves of the MUUFL
data set.
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Figure 4. MUUFL hyperspectral image. (a) False color image. (b) Ground truth. (c) Spectral curves. (Note that the number
of samples for each class is shown in brackets).

4.2. Experimental Setup

In this section, the HSI data were randomly divided into training and test sets. The
training set was adopted to learn a DR model, while the test set was used to verify the
validity of the model. Then, we employed the nearest neighbor (NN) classifier for classi-
fication. After that, four performance indicators were used to evaluate the effectiveness
of the algorithms, such as classification accuracy of each class (CA), overall classification
accuracy (OA), average classification accuracy (AA), and kappa coefficient (KC) [66–68].
For robustness, all experiments were repeated 10 times under the same conditions.

In experiments, we compared LMSCPE with some state-of-the-art DR algorithms,
including principal component analysis (PCA), locality preserving projection (LPP), linear
discriminant analysis (LDA), local Fisher Discriminant Analysis (LFDA), local geomet-
ric structure Fisher analysis (LGSFA), sparse graph based discriminant analysis (SGDA),
collaborative graph-based discriminant analysis (CGDA), and low-rank graph-based dis-
criminant analysis (LGDA). Among them, PCA and LPP are unsupervised DR algorithms,
they only consider the spectrum similarity between different pixels. The later six algorithms
are supervised DR algorithms, which simultaneously consider the spectrum similarity and
category information of pixels. Besides, the RAW method was added to compare with
the DR algorithms, it indicates that the test set was classified by the NN classifier directly
without DR process.

To demonstrate the effectiveness of the proposed LMSCPE algorithm, the parameters
of all the DR models were optimized to achieve higher classification accuracies. For LPP
and LFDA, the neighbors number was set to 7. For LGSFA, the numbers of intraclass
neighbor and interclass neighbor were set as k1 = 7 and k2 = 7, respectively.

4.3. Analysis of Neighbors Number k

To analyze the influence of different neighbor number k on classification performance,
we randomly selected 50 labeled samples from each class to form the training set, and the
remaining samples construct the testing set. The corresponding experimental results on
these three different HSI data sets are given in Figure 5, in which parameter k varies from
1 to 15 with an interval of 1.

As shown in Figure 5, parameter k has similar change trends on three different HSI
data sets. That is, as the neighbor number k increases, the OAs first improve and then
decrease with the increase of k. The reason is that a larger number of neighbor points
possesses richer spectral information, and the neighbors can be utilized to construct a more
effective graph learning model, so it has more powerful discrimination capabilities for
complex pixels in HSIs. However, when the neighbors number k is too large, it will produce
too much useless information for adjacency graph construction, which will degrade the
final classification performance of HSI. Therefore, the classification accuracies of LMSCPE
will remain stable or even slightly decrease. Besides, a larger spectral neighbor set will
lead to high computational cost, which requires huge computational resources and storage
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capacity. To balance the running time and classification performance, we set k = 5 for
the PaviaU data set and k = 7 for both the LongKou data set and MUUFL data set in the
following experiments.

 k

Figure 5. Classification results with different neighbors number of k on three hyperspectral image
(HSI) data sets.

4.4. Analysis of Regularization Parameters γ and δ

To evaluate the classification performance of the proposed LMSCPE method under
different regularization parameters of γ and δ, 50 labeled samples per class were selected as
the training set, and the remaining samples were used as the testing set. Parameters γ and
δ were tuned with a set of {0, 10, 20, ..., 110, 120} and a set of {0, 1, 2, ..., 9, 10}, respectively.
Figure 6 shows the classification results with different regularization parameters γ and δ.

(a) (b) (c)

Figure 6. Classification results with different regularization parameters γ and δ. (a) PaviaU. (b) LongKou. (c) MUUFL.

From Figure 6, we can see that parameter γ has a strong influence on the classification
performance of LMSCPE, which indicates that Tikhonov regularization helps the CR model
to obtain more appropriate collaborative coefficients for constructing adjacency graphs.
That is, Tikhonov matrix is an effective distance-based measurement between sample pairs,
it can adjust the collaborative coefficients of each pixel adaptively. When two pixels in HSI
have a similar spectrum, then the distance between them will be small, the introduction
of the Tikhonov regularization will cause the corresponding weight coefficient to get
bigger, thereby enhancing the effectiveness of adjacency graph structure and improving
the discrimination ability of the DR model. Besides, an increasing δ leads to a subtle
improvement on classification accuracy, because it can explore the local neighborhood
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structure and enhance the aggregation of HSI data. To achieve the best classification
accuracies, we set γ and δ to 60 and 4 for the PaviaU data set, 70 and 3 for the LongKou
and MUUFL data sets in the experiments.

4.5. Analysis of Trade-Off Parameter a

In the experiments, the trade-off parameter a will also affect the classification per-
formance of LMSCPE, it is mainly employed to balance the contributions between the
collaborative graph and local neighborhood graph. To investigate the classification perfor-
mance with different trade-off parameter a, we randomly selected 50 labeled samples per
class for training, and the remaining were for testing. To obtain the optimal classification
performance, parameter a was chosen within a set of {0, 0.1, 0.2, 0.3, . . . , 0.9, 1}. Figure 7
illustrates the classification results of LMSCPE with different trade-off parameter a.

According to Figure 7, the OAs first improve with the increase of a and then slightly
decrease at the peak value, which indicates that both collaborative graph and local neigh-
borhood graph contribute to enhance the classification performance. Aiming to achieve the
best classification performance, we set a to 0.7 for the PaviaU and MUFFL data sets and 0.8
for the LongKou data set in the following experiments.

a

Figure 7. Classification results of LMSCPE with different tradeoff parameter a on three HSI data sets.

4.6. Investigation of Embedding Dimension d

For the above-mentioned DR methods, the value of the embedding dimension d
determines the effectiveness of the low-dimensional embedding features, and has an
important impact on the final classification performance. Therefore, we analyzed the
change of OAs with respect to different embedding dimensions d in Figure 8. In the
experiments, 50 labeled samples from each type of land covers were randomly selected as
training samples, and the remaining were used as test samples.

From Figure 8, we can draw some similar conclusions on PaviaU, LongKou, and
MUUFL data sets. As d varies from 1 to 40, the OAs of each DR method first increase
and then remain stable, because a larger embedding dimension d will preserve richer
discriminant features in the low dimensional embedding space, which can be utilized to
enhance the classification performance, especially when there are few labeled training
samples available in complex scenes. However, when the number of training samples is
fixed, the available valuable information contained in the samples is limited. Therefore, the
increase of d will not lead to the continuous increase of the OAs, but remain stable after
it reaches a peak value. Besides, most DR methods outperform RAW in terms of OA, it
indicates that these methods can effectively extract the discriminant features of HSI data,
thereby enhancing the classification performance. considering that all the DR methods
reach the peak value when d is larger than 20, we set d = 30 for all DR methods except
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LDA in the experiments, and the dimension of LDA is c-1, c is the class number of the HSI
data set.

(a) (b) (c)

Figure 8. Classification results with different embedding dimensions d. (a) PaviaU. (b) LongKou. (c) MUUFL.

5. Experimental Results and Discussion
5.1. Analysis of Training Sample Size

To analyze the influence of training sample size on the classification performance,
ni (ni = 20, 30, 40, 50, 60) samples were randomly selected from each type of land covers
as train set, and the remaining were used as test set. After that, the NN classifier was
employed to predict the labels of test set, and each experiment was repeated ten times to
reduce the random errors. Tables 1–3 present the quantitative results of different training
sample size on the PaviaU, LongKou, and MUUFL data sets.

Table 1. Classification results of each method with different training sample sizes on the PaviaU dataset [OA ± STD
(%)(KC)]. (OA—overall classification accuracy, STD—standard deviation, KC—kappa coefficient, and the best results of a
column are marked in bold).

Method 20 30 40 50 60

RAW 68.77 ± 1.74 (0.607) 70.48 ± 1.93 (0.628) 71.21 ± 2.04 (0.637) 72.79 ± 1.03 (0.655) 73.29 ± 0.76 (0.661)
PCA 68.75 ± 1.73 (0.607) 70.44 ± 1.94 (0.628) 71.23 ± 1.97 (0.637) 72.77 ± 1.01 (0.655) 73.28 ± 0.79 (0.661)
LPP 66.12 ± 0.91 (0.578) 70.91 ± 2.90 (0.634) 72.56 ± 1.48 (0.654) 74.58 ± 0.89 (0.677) 76.13 ± 1.05 (0.695)
LDA 67.28 ± 4.54 (0.589) 72.53 ± 2.21 (0.652) 75.38 ± 0.85 (0.683) 77.36 ± 1.10 (0.709) 77.57 ± 1.56 (0.711)

LFDA 61.88 ± 2.44 (0.525) 69.95 ± 2.84 (0.622) 74.03 ± 1.80 (0.670) 75.39 ± 1.02 (0.687) 77.42 ± 1.89 (0.711)
LGSFA 65.08 ± 1.96 (0.560) 71.02 ± 1.71 (0.634) 73.01 ± 1.51 (0.657) 75.18 ± 3.02 (0.683) 75.60 ± 0.98 (0.686)
SGDA 73.04 ± 1.19 (0.659) 75.62 ± 1.77 (0.690) 76.13 ± 2.33 (0.696) 78.43 ± 1.29 (0.723) 79.06 ± 1.15 (0.730)
LGDA 71.55 ± 1.90 (0.642) 73.85 ± 1.60 (0.669) 75.30 ± 2.44 (0.682) 75.65 ± 0.93 (0.690) 77.25 ± 0.81 (0.709)
CGDA 72.22 ± 2.60 (0.651) 75.20 ± 1.03 (0.686) 76.03 ± 2.62 (0.696) 77.20 ± 1.44 (0.709) 78.95 ± 1.47 (0.730)

LMSCPE 76.81 ± 1.55 (0.705) 78.11 ± 1.53 (0.722) 78.91 ± 2.50 (0.732) 79.89 ± 0.64 (0.742) 81.62 ± 2.19 (0.763)
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Table 2. Classification results of each method with different training sample sizes on the LongKou dataset [OA ± STD
(%)(KC)]. (OA—overall classification accuracy, STD—standard deviation, KC—kappa coefficient, and the best results of a
column are marked in bold).

Method 20 30 40 50 60

RAW 79.39 ± 1.52 (0.740) 81.39 ± 0.68 (0.765) 82.20 ± 0.84 (0.775) 82.49 ± 0.78 (0.778) 83.53 ± 0.89 (0.791)
PCA 79.38 ± 1.53 (0.740) 81.38 ± 0.68 (0.764) 82.18 ± 0.84 (0.774) 82.48 ± 0.80 (0.778) 83.52 ± 0.91 (0.791)
LPP 66.70 ± 1.81 (0.592) 73.26 ± 0.39 (0.668) 76.66 ± 1.38 (0.708) 80.06 ± 1.69 (0.749) 82.45 ± 0.67 (0.777)
LDA 83.94 ± 1.93 (0.795) 85.60 ± 0.74 (0.816) 87.73 ± 0.68 (0.843) 89.74 ± 1.06 (0.868) 91.16 ± 0.63 (0.886)

LFDA 77.76 ± 2.43 (0.719) 83.43 ± 2.33 (0.789) 83.02 ± 0.55 (0.784) 89.47 ± 0.57 (0.865) 91.68 ± 0.47 (0.893)
LGSFA 83.46 ± 0.66 (0.789) 83.54 ± 2.16 (0.790) 85.78 ± 1.13 (0.818) 90.12 ± 0.36 (0.873) 91.79 ± 0.40 (0.894)
SGDA 87.47 ± 2.04 (0.839) 89.05 ± 0.65 (0.859) 89.93 ± 0.91 (0.870) 90.59 ± 0.65 (0.879) 91.62 ± 0.44 (0.892)
LGDA 84.73 ± 2.62 (0.805) 85.02 ± 0.62 (0.809) 85.50 ± 1.23 (0.815) 85.79 ± 0.50 (0.819) 86.77 ± 0.53 (0.831)
CGDA 88.03 ± 2.82 (0.847) 89.61 ± 0.94 (0.866) 89.92 ± 1.01 (0.870) 90.17 ± 0.72 (0.874) 90.99 ± 0.69 (0.884)

LMSCPE 90.74 ± 1.31 (0.881) 91.28 ± 0.98 (0.887) 91.57 ± 0.73 (0.891) 91.85 ± 0.82 (0.895) 92.06 ± 0.94 (0.897)

As shown in Tables 1–3, the OAs of each algorithm significantly improve with the
increase of training samples. The reason is that a larger number of training samples will
produce more abundant feature information, which is helpful to distinguish the land covers
with similar spectrum in complex scenes. In addition, the supervised DR methods of LDA,
LFDA, LGSFA, SGDA, LGDA, CGDA, and LMSCPE perform better than unsupervised
ones in most cases, which indicates that the category information of land covers contributes
to improve the classification performance of the DR models. Among all the supervised
DR algorithms, representation-based DR methods, SGDA, LGDA, CGDA, and LMSCPE,
are superior to the other methods, because the sparse or collaborative coefficients of these
methods can effectively characterize the sparse or collaborative relationship between
sample pairs, which can be utilized as the weight coefficients of adjacency graphs, so
they have great advantages over the traditional DR methods whose structure depends on
pairwise Euclidean distance. For all the above-mentioned DR methods, LMSCPE achieves
the best OA and KC in all cases, because it simultaneously considers the collaborative
relationship and the local neighborhood structure of HSI, which can further improve the
classification accuracy of HSI.

Table 3. Classification results of each method with different training sample sizes on the MUUFL dataset [OA ± STD
(%)(KC)]. (OA—overall classification accuracy, STD—standard deviation, KC—kappa coefficient, and the best results of a
column are marked in bold).

Method 20 30 40 50 60

RAW 68.72 ± 3.60 (0.610) 70.55 ± 1.02 (0.632) 71.41 ± 1.19 (0.641) 72.58 ± 1.36 (0.655) 72.70 ± 0.40 (0.656)
PCA 68.71 ± 3.58 (0.610) 70.55 ± 1.02 (0.632) 71.42 ± 1.17 (0.642) 72.57 ± 1.32 (0.654) 72.74 ± 0.40 (0.657)
LPP 63.08 ± 4.46 (0.545) 67.32 ± 1.70 (0.594) 68.86 ± 2.25 (0.612) 70.90 ± 1.29 (0.635) 72.16 ± 1.01 (0.649)
LDA 62.23 ± 4.26 (0.532) 65.65 ± 1.70 (0.570) 65.76 ± 2.23 (0.571) 66.89 ± 0.77 (0.583) 67.04 ± 1.18 (0.586)

LFDA 62.65 ± 4.03 (0.537) 65.68 ± 2.88 (0.574) 68.45 ± 2.09 (0.606) 70.89 ± 1.25 (0.636) 71.56 ± 0.74 (0.643)
LGSFA 63.04 ± 4.68 (0.544) 67.32 ± 1.38 (0.593) 68.24 ± 2.50 (0.605) 69.97 ± 2.23 (0.625) 70.42 ± 0.73 (0.630)
SGDA 70.03 ± 3.78 (0.625) 72.61 ± 1.10 (0.656) 73.32 ± 0.95 (0.664) 73.87 ± 1.36 (0.671) 74.89 ± 0.42 (0.682)
LGDA 71.33 ± 3.75 (0.640) 72.71 ± 0.72 (0.658) 73.54 ± 0.86 (0.667) 74.11 ± 0.20 (0.673) 74.34 ± 1.19 (0.676)
CGDA 71.12 ± 3.52 (0.638) 72.40 ± 0.98 (0.654) 73.04 ± 1.08 (0.661) 74.62 ± 1.33 (0.679) 74.71 ± 0.44 (0.680)

LMSCPE 72.43 ± 4.31 (0.654) 73.96 ± 1.62 (0.672) 74.54 ± 1.83 (0.679) 76.46 ± 1.39 (0.702) 76.57 ± 0.93 (0.708)

5.2. Analysis of Classification Results

Considering that the land cover types of HSI have the problem of sample imbalance in
practical scenes, we constructed the training set by selecting a certain proportion of training
samples from each class, and the rest samples were adopted as test set. In the experiments,
we set the proportion to 1% for the PaviaU data set, 0.2% for the LongKou data set, and 1%
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for the MUUFL data set. For convenience of comparison, we listed the CAs, OAs, AAs,
and KCs of different algorithms in Tables 4–6, respectively, and Figures 9–11 present the
corresponding classification maps for whole scene on these three different HSI data sets.

Table 4. Classification results (%) of each type of land covers (t = 1%) with the nearest neighbor (NN) classifier on the
PaviaU data set. (AA—average classification accuracy, OA—overall classification accuracy, KC—kappa coefficient, and the
best results of a row are marked in bold).

Class Land Covers Training Test RAW PCA LPP LDA LFDA LGSFA SGDA LGDA CGDA LMSCPE

1 Asphalt 66 6565 84.54 84.42 84.74 84.49 69.72 84.04 85.35 84.78 88.26 91.36
2 Meadows 186 18,463 89.87 89.84 89.43 88.93 77.56 96.91 89.60 90.88 92.83 95.54
3 Gravel 21 2078 49.09 48.89 41.29 38.69 48.85 31.57 52.17 56.59 60.59 64.87
4 Trees 31 3033 75.70 75.77 79.59 86.25 92.65 88.16 75.37 78.37 78.57 85.23
5 Metal 13 1332 98.57 98.57 99.17 99.62 99.02 99.70 99.10 98.57 99.32 99.55
6 Soil 50 4979 54.25 54.35 53.99 55.79 66.98 38.24 56.92 61.54 66.94 69.65
7 Bitumen 13 1317 64.54 64.77 51.86 20.12 51.94 32.73 65.60 63.86 72.74 63.33
8 Bricks 37 3645 72.98 72.62 65.24 62.09 64.20 73.39 73.77 73.20 78.38 76.27
9 Shadows 10 937 99.89 99.89 99.79 88.26 99.89 98.40 99.89 99.15 99.36 99.79

AA 76.60 76.57 73.90 69.36 74.53 71.46 77.53 78.55 81.89 82.84
OA 80.09 80.05 78.76 77.56 73.99 80.28 80.66 81.97 84.95 87.16
KC 73.29 73.23 71.55 70.02 66.59 72.92 74.10 75.87 79.84 82.76

From Tables 4–6, we can see that the proposed LMSCPE method possesses best OAs,
AAs, and KCs for the three different HSI data sets, and it has the higher classification
accuracies in most classes than the other algorithms. Besides, the classification maps of
LMSCPE are smoother and have less Salt&Pepper noise on the homogeneous regions,
especially in the classes of Asphalt, Gravel, and Soil for the PaviaU data set, Cotton, Sesame,
and Mixed weed for the LongKou data set, and Trees, Mixed ground surface, and Building
shadow for the MUUFL data set. The reason is that LMSCPE not only explores the pixel-wise
collaborative relationship of HSI data but also reveals the local neighborhood structure, so
it has a stronger ability to extract the discriminant features of HSI data and enhance the
classification performance.

Table 5. Classification results (%) of each type of land covers (t = 0.2%) with the NN classifier on the LongKou data set.
(AA—average classification accuracy, OA—overall classification accuracy, KC—kappa coefficient, and the best results of a
row are marked in bold).

Class Land Covers Training Test RAW PCA LPP LDA LFDA LGSFA SGDA LGDA CGDA LMSCPE

1 Corn 69 34,442 93.36 93.30 82.20 93.03 94.56 96.90 95.46 96.85 97.77 98.81
2 Cotton 17 8357 47.24 47.24 34.79 47.79 52.02 56.19 53.05 45.14 54.83 66.02
3 Sesame 10 3021 37.80 37.54 15.33 33.40 32.54 65.18 40.19 56.04 64.71 68.42
4 Broad-leaf soybean 126 63,086 87.33 87.32 80.98 88.89 90.57 95.36 89.74 90.09 92.22 96.67
5 Narrow-leaf soybean 10 4141 53.39 53.34 27.58 33.30 35.69 57.38 54.94 74.50 76.33 76.45
6 Rice 24 11,830 90.51 90.45 78.88 98.08 97.98 95.58 91.62 96.13 99.82 99.80
7 Water 134 66,922 99.93 99.93 99.95 99.92 99.91 99.98 99.93 99.94 99.91 99.91
8 Roads and houses 14 7110 75.09 75.08 60.03 62.57 67.33 79.54 76.17 83.36 85.54 85.23
9 Mixed weed 10 5219 28.68 28.66 29.70 60.80 57.14 58.59 34.68 50.89 59.11 65.97

AA 68.15 68.10 56.60 68.64 69.75 78.30 70.64 76.99 81.14 84.14
OA 87.67 87.65 81.30 88.47 89.52 92.84 89.33 90.91 92.78 95.01
KC 83.80 83.77 75.47 84.78 86.13 90.52 85.96 88.03 90.49 93.42



Remote Sens. 2021, 13, 1363 17 of 22

Table 6. Classification results (%) of each type of land covers (t = 1%) with the NN classifier on the MUUFL data set.
(AA—average classification accuracy, OA—overall classification accuracy, KC—kappa coefficient, and the best results of a
row are marked in bold).

Class Land Covers Training Test RAW PCA LPP LDA LFDA LGSFA SGDA LGDA CGDA LMSCPE

1 Trees 465 22,781 88.98 89.02 89.41 90.06 81.71 89.83 89.06 89.65 89.81 90.95
2 Mostly grass 85 4185 67.78 67.68 65.65 60.82 67.64 65.27 67.14 70.95 69.43 70.43
3 Mixed ground surface 138 6744 62.64 62.70 65.14 69.03 53.00 64.60 63.09 65.49 66.84 71.64
4 Dirt/sand 37 1789 58.13 58.08 64.88 62.39 80.53 72.84 57.52 62.94 67.87 71.24
5 Road 134 6553 86.60 86.66 83.56 72.01 66.89 77.92 86.27 88.17 87.34 87.70
6 Water 10 456 77.19 76.97 73.90 27.41 53.51 49.78 76.75 80.92 78.29 76.75
7 Building shadow 45 2188 61.28 60.83 57.49 30.08 52.92 41.75 60.83 62.78 64.36 65.31
8 Buildings 125 6115 77.78 77.70 75.17 69.96 64.45 76.21 77.97 82.03 83.20 82.10
9 Sidewalk 28 1357 43.25 43.25 44.42 32.82 50.69 41.06 43.76 45.95 43.03 41.79

10 Yellow curb 10 173 47.40 46.82 43.35 78.03 82.66 82.08 47.98 57.23 53.76 70.52
11 Cloth panels 10 259 88.80 88.80 89.96 94.98 94.59 94.98 88.42 89.19 87.64 89.58

AA 69.08 68.96 68.45 62.51 68.05 68.76 68.98 72.30 71.96 74.36
OA 78.70 78.69 78.42 74.98 70.84 77.39 78.69 80.65 80.93 82.21
KC 72.06 72.04 71.65 66.61 62.44 70.05 72.04 74.64 74.97 76.60

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 9. Classification maps for the whole scene on the PaviaU data set. (a) False color image; (b) ground truth; (c) RAW;
(d) PCA; (e) LPP; (f) LDA; (g) LFDA; (h) LGSFA; (i) SGDA; (j) LGDA; (k) CGDA; (l) LMSCPE.



Remote Sens. 2021, 13, 1363 18 of 22

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 10. Classification maps for the whole scene on the LongKou data set. (a) False color image; (b) ground truth; (c)
RAW; (d) PCA; (e) LPP; (f) LDA; (g) LFDA; (h) LGSFA; (i) SGDA; (j) LGDA; (k) CGDA; (l) LMSCPE.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 11. Classification maps for the whole scene on the MUUFL data set. (a) False color image; (b) ground truth; (c) RAW;
(d) PCA; (e) LPP; (f) LDA; (g) LFDA; (h) LGSFA; (i) SGDA; (j) LGDA; (k) CGDA; (l) LMSCPE.

5.3. Analysis of Computational Efficiency

For the classification task, both classification accuracy and running time are important
performance evaluation indicators. To analyze the computational complexity of LMSCPE,
denote the neighbor number of each sample as k, the intraclass weight matrix Ws and the
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interclass weight matrix Wb both take O(N2). The calculation of XMwXT and XMbXT are
both O(DN2). The local neighborhood scatter matrix S and the total scatter matrix H are
calculated with O(Nk2) and O(N), respectively. It takes O(D3) to solve the generalized
eigenvalue problem of (29). Therefore, the final computational complexity of LMSCPE is
O(N2 + Nk2 + DN2 + D3), and it mainly depends on the size of the training samples, band
number, and neighbor number.

Aiming to quantitatively evaluate the classification performance of the above-mentioned
DR methods, we detailed the running time of all DR algorithms in Table 7, in which 50 labeled
samples were randomly selected from each type of land covers for training, and the rest
samples were for testing. All the experimental results were obtained on a personal computer,
which had an i7-7800X CPU and 32-G memory, and the version of Windows system and
MATLAB are 64-bit Windows 10 and 2016b, respectively.

Table 7. Computational time (in seconds) of the different algorithms on the PaviaU, LongKou, and
MUUFL data sets.

Dataset PCA LPP LDA LFDA LGSFA SGDA LGDA CGDA LMSCPE

PaviaU 0.025 0.031 0.013 0.037 0.292 0.659 3.009 0.315 2.650

LongKou 0.014 0.124 0.023 0.040 0.616 0.308 1.655 0.112 0.887

MUUFL 0.031 0.042 0.012 0.019 0.356 0.287 2.038 0.125 1.038

As shown in Table 7, LMSCPE costs more time than the most DR methods, because
LMSCPE simultaneously considers the pixel-wise collaborative relationship and the local
neighborhood structure of HSI data, the whole process will slightly increase the com-
putational complexity. However, the slight increase in running time and computational
complexity is acceptable relative to the improvement for classification performance.

6. Conclusions

Hyperspectral images (HSI) contain abundant spectral information that can accurately
distinguish the subtle differences between different pixels. However, the high dimension-
ality of HSIs has brought huge challenge to land cover classification. Traditional graph
learning algorithms cannot effectively characterize the collaborative relationship between
sample pairs, which will lead to a degraded classification performance for HSI. In this
paper, we designed a supervised spectral DR method termed local constrained manifold
structure collaborative preserving embedding (LMSCPE) for HSI classification. LMSCPE
first adopts a novel local constrained CR model to obtain more effective collaborative
coefficients between samples pairs. Then, two collaborative graphs are constructed to en-
hance the intraclass compactness and the interclass separability, and a local neighborhood
graph is constructed to explore the local neighborhood structure of HSI. After that, an
optimal objective function is designed to obtain a discriminant projection matrix, and the
embedding features of different land cover types can be obtained. Experiments on PaviaU,
LongKou, and MUUFL hyperspectral data sets demonstrate that LMSCPE is superior to
some state-of-the-art methods. However, spectral-based DR methods only consider the
spectral information in HSI, which limit the final classification performance. Therefore, in
the future, we consider fusing the spatial information into the DR model to further improve
the classification accuracy of HSI.
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